metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(acetone 4-phenyl­thio­semi­carbazonato-κ2N1,S)zinc(II)

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and bFaculty of Engineering and Science, Universiti Tunku Abdul Rahman, 53300 Kuala Lumpur, Malaysia
*Correspondence e-mail: mjamil@um.edu.my

(Received 16 July 2009; accepted 17 July 2009; online 22 July 2009)

The ZnII atom in the title compound, [Zn(C10H12N3S)2], is N,S-chelated by the deprotonated Schiff base in a tetra­hedral environment. The metal atom lies on a twofold rotation axis that relates one anion to the other. The amino H atom forms an intermolecular N—H⋯π inter­action to an aromatic ring.

Related literature

For the two modifications of acetone 4-phenyl­thio­semicarbazone, see: Jian et al. (2005[Jian, F.-F., Bai, Z.-S., Xiao, H.-L. & Li, K. (2005). Acta Cryst. E61, o653-o654.]); Venkatraman et al. (2005[Venkatraman, R., Swesi, A. T. & Yamin, B. M. (2005). Acta Cryst. E61, o3914-o3916.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C10H12N3S)2]

  • Mr = 477.94

  • Monoclinic, C 2/c

  • a = 23.5203 (5) Å

  • b = 7.2938 (2) Å

  • c = 15.1134 (5) Å

  • β = 122.761 (2)°

  • V = 2180.3 (1) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.34 mm−1

  • T = 153 K

  • 0.30 × 0.20 × 0.05 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.690, Tmax = 0.936

  • 6983 measured reflections

  • 2488 independent reflections

  • 1896 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.103

  • S = 1.10

  • 2488 reflections

  • 135 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯Cgi 0.86 2.86 3.671 (3) 157
Symmetry code: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]. Cg is the centroid of the aromatic ring.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Related literature top

For the two modifications of acetone 4-phenylthiosemicarbazone, see: Jian et al. (2005); Venkatraman et al. (2005). Cg is the centroid of the aromatic ring

Experimental top

Zinc acetate monohydrate (0.22 g, 1 mmol) and 2,4-dihydroxybenzaldehyde 4-phenylthiosemicarbazone (0.29 g, 1 mmol) were heated in ethanol (50 ml) to form [1-(4-hydroxy-2-oxidobenzylidene)-4-phenylthiosemicarbazonato]zinc. The product was recrystallized from acetone, cleaved part of the anion.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95–0.98 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2–1.5Ueq(C). The amino H-atom was similarly treated (N–H 0.88 Å).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Anisotropic displacement ellipsoid (Barbour, 2001) plot of Zn(C10H12N3S)2 at the 70% probability level. Hydrogen atoms are drawn as spheres of arbitrary radii.
Bis(acetone 4-phenylthiosemicarbazonato-κ2N1,S)zinc(II) top
Crystal data top
[Zn(C10H12N3S)2]F(000) = 992
Mr = 477.94Dx = 1.456 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2390 reflections
a = 23.5203 (5) Åθ = 3.8–28.0°
b = 7.2938 (2) ŵ = 1.34 mm1
c = 15.1134 (5) ÅT = 153 K
β = 122.761 (2)°Wedge, brown
V = 2180.3 (1) Å30.30 × 0.20 × 0.05 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
2488 independent reflections
Radiation source: fine-focus sealed tube1896 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω scansθmax = 27.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 3030
Tmin = 0.690, Tmax = 0.936k = 99
6983 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0387P)2 + 4.48P]
where P = (Fo2 + 2Fc2)/3
2488 reflections(Δ/σ)max = 0.001
135 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.45 e Å3
Crystal data top
[Zn(C10H12N3S)2]V = 2180.3 (1) Å3
Mr = 477.94Z = 4
Monoclinic, C2/cMo Kα radiation
a = 23.5203 (5) ŵ = 1.34 mm1
b = 7.2938 (2) ÅT = 153 K
c = 15.1134 (5) Å0.30 × 0.20 × 0.05 mm
β = 122.761 (2)°
Data collection top
Bruker SMART APEX
diffractometer
2488 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1896 reflections with I > 2σ(I)
Tmin = 0.690, Tmax = 0.936Rint = 0.031
6983 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.103H-atom parameters constrained
S = 1.10Δρmax = 0.40 e Å3
2488 reflectionsΔρmin = 0.45 e Å3
135 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.50000.30141 (7)0.25000.03064 (17)
S10.55393 (4)0.14771 (13)0.18550 (8)0.0501 (3)
N10.58756 (10)0.4440 (3)0.34189 (19)0.0245 (5)
N20.64335 (10)0.3888 (3)0.33788 (19)0.0253 (5)
N30.68276 (11)0.1943 (4)0.2634 (2)0.0336 (6)
H30.67120.11300.21540.040*
C10.75216 (12)0.2404 (4)0.3216 (2)0.0255 (6)
C20.78857 (13)0.1872 (4)0.2775 (2)0.0296 (6)
H20.76620.12680.21130.035*
C30.85719 (14)0.2225 (4)0.3300 (3)0.0348 (7)
H3A0.88160.18660.29930.042*
C40.89046 (13)0.3090 (4)0.4263 (3)0.0332 (7)
H40.93760.33300.46200.040*
C50.85427 (13)0.3606 (4)0.4703 (2)0.0289 (6)
H50.87700.41940.53700.035*
C60.78518 (13)0.3275 (4)0.4181 (2)0.0283 (6)
H60.76080.36460.44860.034*
C70.63093 (13)0.2588 (4)0.2715 (2)0.0275 (6)
C80.59964 (13)0.5716 (4)0.4081 (2)0.0302 (7)
C90.66790 (15)0.6551 (5)0.4773 (3)0.0456 (9)
H9A0.70070.55900.51960.068*
H9B0.66630.74530.52410.068*
H9C0.68150.71590.43380.068*
C100.54313 (16)0.6384 (5)0.4182 (3)0.0451 (9)
H10A0.50390.55750.37840.068*
H10B0.53070.76330.39030.068*
H10C0.55780.63800.49250.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0144 (2)0.0296 (3)0.0436 (3)0.0000.0129 (2)0.000
S10.0171 (3)0.0539 (6)0.0665 (7)0.0064 (3)0.0143 (4)0.0345 (5)
N10.0156 (9)0.0257 (12)0.0320 (14)0.0020 (9)0.0128 (10)0.0034 (11)
N20.0148 (10)0.0287 (12)0.0321 (14)0.0015 (9)0.0124 (10)0.0009 (11)
N30.0196 (11)0.0373 (14)0.0408 (16)0.0017 (10)0.0143 (11)0.0158 (13)
C10.0168 (11)0.0235 (14)0.0328 (16)0.0030 (10)0.0113 (12)0.0006 (12)
C20.0245 (13)0.0303 (15)0.0332 (17)0.0041 (12)0.0152 (13)0.0016 (14)
C30.0241 (14)0.0429 (18)0.0432 (19)0.0065 (13)0.0221 (14)0.0041 (16)
C40.0189 (12)0.0373 (17)0.0398 (18)0.0023 (12)0.0136 (13)0.0086 (15)
C50.0216 (13)0.0264 (14)0.0310 (17)0.0007 (11)0.0092 (12)0.0040 (13)
C60.0219 (13)0.0307 (16)0.0328 (17)0.0034 (11)0.0152 (13)0.0004 (13)
C70.0171 (12)0.0299 (15)0.0328 (17)0.0001 (11)0.0116 (12)0.0030 (13)
C80.0228 (13)0.0258 (15)0.0408 (18)0.0015 (11)0.0165 (13)0.0037 (14)
C90.0297 (15)0.0361 (19)0.063 (2)0.0023 (13)0.0197 (17)0.0213 (17)
C100.0321 (16)0.046 (2)0.062 (2)0.0046 (14)0.0284 (17)0.0102 (18)
Geometric parameters (Å, º) top
Zn1—N12.039 (2)C3—C41.376 (5)
Zn1—N1i2.039 (2)C3—H3A0.9500
Zn1—S12.2702 (8)C4—C51.386 (4)
Zn1—S1i2.2702 (8)C4—H40.9500
S1—C71.754 (3)C5—C61.390 (4)
N1—C81.281 (4)C5—H50.9500
N1—N21.405 (3)C6—H60.9500
N2—C71.294 (4)C8—C91.492 (4)
N3—C71.372 (3)C8—C101.499 (4)
N3—C11.413 (3)C9—H9A0.9800
N3—H30.8600C9—H9B0.9800
C1—C61.381 (4)C9—H9C0.9800
C1—C21.395 (4)C10—H10A0.9800
C2—C31.384 (4)C10—H10B0.9800
C2—H20.9500C10—H10C0.9800
N1—Zn1—N1i118.66 (13)C5—C4—H4120.5
N1—Zn1—S187.20 (6)C4—C5—C6120.9 (3)
N1i—Zn1—S1123.54 (7)C4—C5—H5119.6
N1—Zn1—S1i123.54 (7)C6—C5—H5119.6
N1i—Zn1—S1i87.20 (6)C1—C6—C5119.7 (3)
S1—Zn1—S1i120.82 (6)C1—C6—H6120.1
C7—S1—Zn192.67 (9)C5—C6—H6120.1
C8—N1—N2115.1 (2)N2—C7—N3118.8 (2)
C8—N1—Zn1128.17 (17)N2—C7—S1128.47 (19)
N2—N1—Zn1116.57 (17)N3—C7—S1112.8 (2)
C7—N2—N1114.8 (2)N1—C8—C9123.0 (2)
C7—N3—C1130.2 (3)N1—C8—C10118.8 (3)
C7—N3—H3114.9C9—C8—C10118.2 (3)
C1—N3—H3114.9C8—C9—H9A109.5
C6—C1—C2119.5 (2)C8—C9—H9B109.5
C6—C1—N3124.5 (2)H9A—C9—H9B109.5
C2—C1—N3116.0 (3)C8—C9—H9C109.5
C3—C2—C1120.1 (3)H9A—C9—H9C109.5
C3—C2—H2120.0H9B—C9—H9C109.5
C1—C2—H2120.0C8—C10—H10A109.5
C4—C3—C2120.8 (3)C8—C10—H10B109.5
C4—C3—H3A119.6H10A—C10—H10B109.5
C2—C3—H3A119.6C8—C10—H10C109.5
C3—C4—C5119.1 (2)H10A—C10—H10C109.5
C3—C4—H4120.5H10B—C10—H10C109.5
N1—Zn1—S1—C74.02 (12)C2—C3—C4—C50.0 (5)
N1i—Zn1—S1—C7126.96 (13)C3—C4—C5—C60.6 (4)
S1i—Zn1—S1—C7123.93 (11)C2—C1—C6—C50.3 (4)
N1i—Zn1—N1—C852.6 (2)N3—C1—C6—C5177.8 (3)
S1—Zn1—N1—C8179.7 (3)C4—C5—C6—C10.7 (4)
S1i—Zn1—N1—C854.6 (3)N1—N2—C7—N3179.0 (2)
N1i—Zn1—N1—N2132.0 (2)N1—N2—C7—S11.3 (4)
S1—Zn1—N1—N24.85 (18)C1—N3—C7—N23.8 (5)
S1i—Zn1—N1—N2120.81 (17)C1—N3—C7—S1176.5 (3)
C8—N1—N2—C7179.4 (3)Zn1—S1—C7—N24.3 (3)
Zn1—N1—N2—C73.4 (3)Zn1—S1—C7—N3176.0 (2)
C7—N3—C1—C618.0 (5)N2—N1—C8—C90.7 (4)
C7—N3—C1—C2163.9 (3)Zn1—N1—C8—C9174.8 (2)
C6—C1—C2—C30.3 (4)N2—N1—C8—C10179.7 (3)
N3—C1—C2—C3178.5 (3)Zn1—N1—C8—C104.1 (4)
C1—C2—C3—C40.4 (5)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···Cgii0.862.863.671 (3)157
Symmetry code: (ii) x+3/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Zn(C10H12N3S)2]
Mr477.94
Crystal system, space groupMonoclinic, C2/c
Temperature (K)153
a, b, c (Å)23.5203 (5), 7.2938 (2), 15.1134 (5)
β (°) 122.761 (2)
V3)2180.3 (1)
Z4
Radiation typeMo Kα
µ (mm1)1.34
Crystal size (mm)0.30 × 0.20 × 0.05
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.690, 0.936
No. of measured, independent and
observed [I > 2σ(I)] reflections
6983, 2488, 1896
Rint0.031
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.103, 1.10
No. of reflections2488
No. of parameters135
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.45

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···Cgi0.862.863.671 (3)157
Symmetry code: (i) x+3/2, y1/2, z+1/2.
 

Acknowledgements

We thank the University of Malaya (PJP FS316/2008 C) and MOSTI (ESc 02–02-11-SF0033) for supporting this study; KWT thanks the Ministry of Higher Education for a SLAI scholarship.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJian, F.-F., Bai, Z.-S., Xiao, H.-L. & Li, K. (2005). Acta Cryst. E61, o653–o654.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVenkatraman, R., Swesi, A. T. & Yamin, B. M. (2005). Acta Cryst. E61, o3914–o3916.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds