organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages o1953-o1954

2-(4-Bromo­benzene­sulfonamido)-2-phenyl­acetic acid monohydrate

aDepartment of Chemistry, Government College University, Lahore, Pakistan, and bDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 17 July 2009; accepted 17 July 2009; online 22 July 2009)

In the title compound, C14H12BrNO4S·H2O, the phenyl and benzene rings are inclined at a dihedral angle of 39.5 (5)°. The crystal packing is stabilized by N—H⋯O, C—H⋯O and O—H⋯O hydrogen-bonding inter­actions.

Related literature

For background to sulfonamide derivatives, see: Sheppard et al. (2006[Sheppard, G. S., Wang, J., Kawai, M., Fidanze, S. D., Bamaung, N. Y., Erickson, S. A., Barnes, D. M., Tedrow, J. S., Kolaczkowski, L., Vasudevan, A., Park, D. C., Wang, G. T., Sanders, W. J., Mantei, R. A., Palazzo, F., Tucker-Garcia, L., Lou, P. P., Zhang, Q., Park, C. H., Kim, K. H., Petros, A., Olejniczak, E., Nettesheim, D., Hajduk, P., Henkin, J., Lesniewski, R., Davidsen, S. K. & Bell, R. L. (2006). J. Med. Chem. 49, 3832-3849.]). For similar structures, see: Arshad et al. (2009[Arshad, M. N., Tahir, M. N., Khan, I. U., Shafiq, M. & Ahmad, S. (2009). Acta Cryst. E65, o940.]); Asiri et al. (2009[Asiri, A. M., Akkurt, M., Khan, S. A., Arshad, M. N., Khan, I. U. & Sharif, H. M. A. (2009). Acta Cryst. E65, o1246-o1247.]); Sethu Sankar et al. (2002[Sethu Sankar, K., Velmurugan, D., Thirumamagal, B. T. S., Shanmuga Sundara Raj, S., Fun, H.-K. & Moon, J.-K. (2002). Acta Cryst. C58, o257-o259.]); Wijeyesakere et al. (2008[Wijeyesakere, S. J., Nasser, F. A., Kampf, J. W., Aksinenko, A. Y., Sokolov, V. B., Malygin, V. V., Makhaeva, G. F. & Richardson, R. J. (2008). Acta Cryst. E64, o1425.]). For background to our study of the synthesis and structures of thia­zine-related heterocycles, see: Arshad et al. (2008[Arshad, M. N., Tahir, M. N., Khan, I. U., Shafiq, M. & Siddiqui, W. A. (2008). Acta Cryst. E64, o2045.]). A related derivative has gained inter­est as a ligand in complex formation (Han et al., 2006[Han, Z., Da, C. Qiu, L., Ni, M., Zhou, Y. & Wang, R. (2006). Lett. Org. Chem. 3, 143-148.]) and for its biological activity (Cama et al., 2003[Cama, E., Shin, H. & Christianson, D. W. (2003). J. Am. Chem. Soc. 125, 13052-13057.]; Dankwardt et al., 2002[Dankwardt, S. M., Abbot, S. C., Broka, C. A., Martin, R. L., Chan, C. S., Springman, E. B., Van Wart, H. E. & Walker, K. A. M. (2002). Bioorg. Med. Chem. Lett. 12, 1233-1235.]). For the synthesis, see: Deng & Mani (2006[Deng, X. & Mani, N. S. (2006). Green Chem. 8, 835-838.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C14H12BrNO4S·H2O

  • Mr = 388.23

  • Orthorhombic, P 21 21 21

  • a = 5.5654 (13) Å

  • b = 16.230 (4) Å

  • c = 17.597 (4) Å

  • V = 1589.5 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.74 mm−1

  • T = 296 K

  • 0.32 × 0.11 × 0.09 mm

Data collection
  • Bruker Kappa APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker 2007[Bruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.474, Tmax = 0.791

  • 9588 measured reflections

  • 3315 independent reflections

  • 1227 reflections with I > 2σ(I)

  • Rint = 0.083

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.180

  • S = 0.93

  • 3315 reflections

  • 206 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.40 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1246 Freidel pairs

  • Flack parameter: 0.02 (3)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O4i 0.86 2.47 3.113 (9) 132
O5—HW1⋯O1ii 0.85 (11) 2.56 (11) 3.027 (8) 116 (10)
O5—HW2⋯O3iii 0.85 (2) 2.34 (10) 2.956 (9) 131 (12)
O5—HW2⋯O2iv 0.85 (2) 2.28 (12) 2.868 (8) 127 (12)
O4—H4⋯O5 0.82 1.78 2.562 (8) 160
C6—H6⋯O2 0.93 2.51 2.897 (10) 105
C7—H7⋯O1iii 0.98 2.44 3.377 (10) 160
C7—H7⋯O2 0.98 2.48 2.958 (9) 109
Symmetry codes: (i) x-1, y, z; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) x+1, y, z; (iv) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title compound was synthesized via condensation reaction between 4-bromo benzene sulfonylchloride and phenylglycine, an amino acid. The related derivative has gained interest as a ligand in complexation (Han et al., 2006) and biological activities (Dankwardt et al., 2002, Cama et al., 2003). It is the halogenated analogue of previously reported sulfonamide derivative of phenylglycine (Arshad et al., 2009) in continuation of synthesis and crystal structure studies of thiazine related heterocycles (Arshad et al., 2008).

In the title compound (Fig. 1), the Br—C and C—O distances are as expected. The S—Cbenzene distance of 1.754 (8) Å is shorter than the reported values of 1.763 (2)Å (Asiri et al., 2009) and 1.763 (9) Å (Allen et al., 1987). The S1—N1 distance of 1.617 (6) is shorter than the literature values of 1.6213 (18) Å (Asiri et al., 2009) and 1.6458 (11) Å (Wijeyesakere et al., 2008). The mean S=O distance of 1.439 (5) Å is comparable with the reported value of 1.436 (2) Å (Sethu Sankar et al., 2002). The interplanar angle between the phenyl (C9–C14) and benzene (C1–C6) rings in (I) is 39.5 (5) °. These rings orient to the carbonyl group (C7/C8/O3/O4) with angles of 41.5 (5) and 77.1 (5) °, respectively.

The crystal packing is stabilized by N—H···O, C—H···O and O—H···O hydrogen bonding interactions (Table 1, Fig. 2).

Related literature top

For background to sulfonamide derivatives, see: Sheppard et al. (2006). For similar structures, see: Arshad et al. (2009); Asiri et al. (2009); Sethu Sankar et al. (2002); Wijeyesakere et al. (2008). For background to our study on the synthesis and structures of thiazine-related heterocycles, see: Arshad et al. (2008). A related

derivative has gained interest as a ligand in complexation (Han et al., 2006) and for its biolgical activity (Cama et al., 2003; Dankwardt et al., 2002). For the synthesis, see: Deng & Mani (2006); For bond-lengths data, see: Allen et al. (1987).

Experimental top

The title compound was prepared in accordance with the literature method (Deng & Mani, 2006). Phenylglycine (1 g, 6.6 mmol) was dissolved in distilled water (10 ml) using 1M, Na2CO3 solution at pH 8–9. 4-Bromo benzene sulfonyl chloride (1.68 g, 6.6 mmol) was then added to the solution, which was stirred at room temperature until all the 4-bromobenzene sulfonyl chloride had been consumed. On completion of the reaction the pH was adjusted to 1–2, using 1 N HCl with stirring. The precipitate obtained was filtered, washed with distilled water, dried and recrystalized in methanol for X-ray diffraction studies.

Refinement top

The H atoms of the water molecule were found from a difference Fourier map and refined with distance restraints of O—H = 0.85 (1) Å and H···H = 1.39 (1) Å. The other H atoms were positioned geometrically and treated as riding, with C—H = 0.93–0.98 Å, N—H = 0.86 Å and O—H = 0.82 Å, with Uiso(H) = 1.2Ueq(C,N) and Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom labeling scheme and displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. View of the crystal packing and hydrogen bonding (dashed lines) of the title compound, down the a-axis. H atoms not involved in the hydrogen bonding have been omitted for clarity.
2-(4-Bromobenzenesulfonamido)-2-phenylacetic acid monohydrate top
Crystal data top
C14H12BrNO4S·H2OF(000) = 784
Mr = 388.23Dx = 1.622 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 868 reflections
a = 5.5654 (13) Åθ = 2.3–16.4°
b = 16.230 (4) ŵ = 2.74 mm1
c = 17.597 (4) ÅT = 296 K
V = 1589.5 (6) Å3Rod like, white
Z = 40.32 × 0.11 × 0.09 mm
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
3315 independent reflections
Radiation source: sealed tube1227 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.083
ϕ and ω scansθmax = 27.2°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker 2007)
h = 76
Tmin = 0.474, Tmax = 0.791k = 2017
9588 measured reflectionsl = 2114
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.180 w = 1/[σ2(Fo2) + (0.0737P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.93(Δ/σ)max < 0.001
3315 reflectionsΔρmax = 0.28 e Å3
206 parametersΔρmin = 0.40 e Å3
3 restraintsAbsolute structure: Flack (1983), 1246 Freidel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (3)
Crystal data top
C14H12BrNO4S·H2OV = 1589.5 (6) Å3
Mr = 388.23Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.5654 (13) ŵ = 2.74 mm1
b = 16.230 (4) ÅT = 296 K
c = 17.597 (4) Å0.32 × 0.11 × 0.09 mm
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
3315 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker 2007)
1227 reflections with I > 2σ(I)
Tmin = 0.474, Tmax = 0.791Rint = 0.083
9588 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.057H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.180Δρmax = 0.28 e Å3
S = 0.93Δρmin = 0.40 e Å3
3315 reflectionsAbsolute structure: Flack (1983), 1246 Freidel pairs
206 parametersAbsolute structure parameter: 0.02 (3)
3 restraints
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.1150 (4)0.40711 (9)0.42252 (7)0.1257 (7)
S10.1584 (4)0.25772 (13)0.74635 (12)0.0429 (7)
O10.4134 (9)0.2431 (3)0.7477 (3)0.054 (2)
O20.0026 (9)0.1905 (3)0.7619 (3)0.051 (2)
O30.0588 (12)0.4809 (4)0.7664 (4)0.068 (3)
O40.4414 (11)0.4403 (3)0.7850 (3)0.050 (2)
N10.1125 (12)0.3278 (4)0.8100 (3)0.042 (3)
C10.0790 (16)0.2999 (5)0.6581 (4)0.041 (3)
C20.228 (2)0.3582 (6)0.6266 (6)0.073 (5)
C30.168 (3)0.3924 (6)0.5550 (6)0.096 (6)
C40.041 (3)0.3666 (6)0.5191 (5)0.068 (5)
C50.183 (2)0.3106 (7)0.5510 (5)0.076 (5)
C60.1220 (18)0.2760 (6)0.6224 (5)0.065 (4)
C70.1364 (15)0.3510 (5)0.8293 (4)0.041 (3)
C80.2012 (18)0.4313 (6)0.7896 (5)0.047 (4)
C90.1756 (17)0.3609 (5)0.9138 (4)0.041 (3)
C100.3725 (17)0.3299 (5)0.9486 (5)0.057 (4)
C110.412 (2)0.3415 (7)1.0241 (6)0.074 (5)
C120.250 (2)0.3862 (7)1.0669 (6)0.073 (5)
C130.046 (2)0.4141 (7)1.0329 (6)0.073 (4)
C140.0096 (17)0.4023 (6)0.9574 (5)0.060 (4)
O50.6162 (12)0.5722 (4)0.7272 (4)0.064 (2)
H10.231700.351300.832300.0510*
H20.366900.374900.651800.0880*
H30.266300.431600.532500.1150*
H40.473000.480300.758400.0750*
H50.323200.294200.526400.0920*
H60.221500.236700.644500.0770*
H70.244300.307700.810700.0490*
H100.483100.299900.920200.0680*
H110.548700.319301.046900.0890*
H120.279800.397001.118000.0870*
H130.069000.441501.061700.0880*
H140.129600.422500.934800.0720*
HW10.556 (19)0.606 (7)0.696 (7)0.1890*
HW20.768 (2)0.575 (9)0.726 (7)0.1890*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.2170 (18)0.1032 (11)0.0568 (7)0.0449 (12)0.0187 (10)0.0154 (7)
S10.0355 (11)0.0463 (14)0.0470 (13)0.0002 (12)0.0066 (11)0.0011 (12)
O10.028 (3)0.058 (4)0.076 (4)0.011 (3)0.004 (3)0.002 (4)
O20.043 (3)0.045 (4)0.066 (4)0.013 (3)0.008 (3)0.005 (3)
O30.049 (4)0.055 (4)0.101 (5)0.011 (3)0.003 (4)0.028 (4)
O40.043 (4)0.043 (4)0.065 (4)0.003 (3)0.013 (3)0.014 (3)
N10.026 (4)0.059 (5)0.042 (4)0.001 (4)0.013 (3)0.014 (3)
C10.035 (6)0.045 (6)0.043 (5)0.003 (5)0.004 (4)0.001 (4)
C20.101 (10)0.060 (7)0.059 (7)0.034 (7)0.007 (6)0.007 (6)
C30.143 (13)0.068 (8)0.077 (9)0.033 (9)0.018 (9)0.005 (7)
C40.122 (11)0.042 (6)0.041 (6)0.020 (7)0.005 (7)0.001 (5)
C50.063 (8)0.111 (10)0.054 (7)0.009 (7)0.015 (6)0.005 (7)
C60.052 (7)0.089 (8)0.053 (6)0.007 (6)0.002 (5)0.005 (6)
C70.030 (5)0.039 (5)0.055 (6)0.002 (4)0.006 (4)0.003 (4)
C80.038 (7)0.046 (7)0.056 (6)0.010 (5)0.011 (5)0.014 (5)
C90.043 (6)0.042 (5)0.037 (5)0.008 (5)0.000 (5)0.008 (4)
C100.044 (7)0.068 (7)0.059 (7)0.021 (5)0.003 (5)0.007 (5)
C110.058 (8)0.091 (8)0.073 (8)0.007 (7)0.015 (7)0.034 (7)
C120.079 (9)0.098 (10)0.042 (6)0.010 (6)0.010 (6)0.014 (6)
C130.076 (8)0.089 (8)0.054 (7)0.017 (7)0.002 (6)0.013 (6)
C140.057 (7)0.077 (8)0.045 (6)0.012 (6)0.011 (5)0.003 (6)
O50.055 (4)0.054 (4)0.083 (4)0.010 (3)0.007 (4)0.014 (3)
Geometric parameters (Å, º) top
Br1—C41.868 (10)C7—C81.522 (12)
S1—O11.439 (5)C7—C91.511 (10)
S1—O21.438 (5)C9—C141.376 (13)
S1—N11.617 (6)C9—C101.352 (13)
S1—C11.754 (8)C10—C111.360 (14)
O3—C81.201 (12)C11—C121.381 (16)
O4—C81.347 (12)C12—C131.361 (16)
O4—H40.8200C13—C141.358 (14)
O5—HW10.85 (11)C2—H20.9300
O5—HW20.85 (2)C3—H30.9300
N1—C71.475 (11)C5—H50.9300
N1—H10.8600C6—H60.9300
C1—C21.375 (13)C7—H70.9800
C1—C61.340 (13)C10—H100.9300
C2—C31.417 (15)C11—H110.9300
C3—C41.39 (2)C12—H120.9300
C4—C51.329 (17)C13—H130.9300
C5—C61.418 (13)C14—H140.9300
Br1···O4i3.477 (5)C13···H3xii2.9500
Br1···C8i3.660 (10)C13···HW1v2.94 (12)
O1···C7ii3.377 (10)C14···H12.7100
O1···O5iii3.027 (8)H1···H142.2200
O2···O5iv2.868 (8)H1···H10ii2.3700
O3···N12.770 (9)H1···O4ii2.4700
O3···O5ii2.956 (9)H1···C10ii3.0300
O4···O52.562 (8)H1···O32.9000
O4···C103.413 (10)H1···C142.7100
O4···Br1v3.477 (5)HW1···C13i2.94 (12)
O4···N1vi3.113 (9)HW1···H12i2.3200
O5···O3vi2.956 (9)HW1···C12i2.84 (12)
O5···O2vii2.868 (8)HW1···H42.3600
O5···O1viii3.027 (8)HW1···O2vii2.91 (11)
O5···O42.562 (8)HW1···H13i2.4900
O1···HW1iii2.56 (11)HW1···O1viii2.56 (11)
O1···H6ii2.7300H2···O12.7400
O1···H7ii2.4400H2···O4ii2.7900
O1···H22.7400HW2···O3vi2.34 (10)
O2···H72.4800HW2···O2vii2.28 (12)
O2···H62.5100HW2···H42.3200
O2···HW1iv2.91 (11)H3···H13x2.3100
O2···H12ix2.8300H3···C13x2.9500
O2···HW2iv2.28 (12)H4···HW22.3200
O3···HW2ii2.34 (10)H4···O51.7800
O3···H12.9000H4···HW12.3600
O4···H2vi2.7900H5···C5xiii2.9600
O4···H1vi2.4700H5···C4xiii2.9900
O5···H41.7800H6···O1vi2.7300
N1···O4ii3.113 (9)H6···O22.5100
N1···O32.770 (9)H7···O1vi2.4400
N1···H142.6800H7···O22.4800
C1···C83.512 (12)H7···H102.3400
C7···O1vi3.377 (10)H10···H1vi2.3700
C8···Br1v3.660 (10)H10···H72.3400
C8···C13.512 (12)H11···C9xiv3.0900
C10···O43.413 (10)H11···C10xiv3.0200
C3···H13x3.0700H12···HW1v2.3200
C4···H5xi2.9900H12···O2xiv2.8300
C5···H5xi2.9600H13···C3xii3.0700
C9···H11ix3.0900H13···HW1v2.4900
C10···H1vi3.0300H13···H3xii2.3100
C10···H11ix3.0200H14···N12.6800
C12···HW1v2.84 (12)H14···H12.2200
O1—S1—O2119.1 (3)C7—C9—C14120.2 (8)
O1—S1—N1105.1 (3)C10—C9—C14118.2 (7)
O1—S1—C1109.1 (4)C9—C10—C11121.5 (9)
O2—S1—N1107.7 (3)C10—C11—C12120.0 (10)
O2—S1—C1107.9 (4)C11—C12—C13118.7 (10)
N1—S1—C1107.4 (4)C12—C13—C14120.5 (10)
C8—O4—H4109.00C9—C14—C13121.0 (9)
HW1—O5—HW2110 (12)C3—C2—H2120.00
S1—N1—C7119.2 (5)C1—C2—H2121.00
C7—N1—H1120.00C2—C3—H3121.00
S1—N1—H1120.00C4—C3—H3120.00
S1—C1—C6120.8 (7)C4—C5—H5120.00
S1—C1—C2118.3 (7)C6—C5—H5120.00
C2—C1—C6120.9 (8)C5—C6—H6120.00
C1—C2—C3119.1 (10)C1—C6—H6120.00
C2—C3—C4119.0 (11)C8—C7—H7108.00
Br1—C4—C5119.6 (10)C9—C7—H7108.00
C3—C4—C5120.8 (9)N1—C7—H7108.00
Br1—C4—C3119.5 (9)C11—C10—H10119.00
C4—C5—C6120.2 (10)C9—C10—H10119.00
C1—C6—C5120.1 (9)C10—C11—H11120.00
N1—C7—C9112.9 (6)C12—C11—H11120.00
C8—C7—C9109.1 (7)C13—C12—H12121.00
N1—C7—C8109.6 (7)C11—C12—H12121.00
O3—C8—O4124.2 (9)C12—C13—H13120.00
O3—C8—C7125.0 (9)C14—C13—H13120.00
O4—C8—C7110.8 (7)C9—C14—H14120.00
C7—C9—C10121.5 (8)C13—C14—H14120.00
O1—S1—N1—C7173.4 (5)C3—C4—C5—C60.3 (17)
O2—S1—N1—C745.5 (6)C4—C5—C6—C10.2 (16)
C1—S1—N1—C770.5 (6)N1—C7—C8—O321.3 (12)
O1—S1—C1—C240.8 (8)N1—C7—C8—O4159.8 (6)
O2—S1—C1—C2171.6 (7)C9—C7—C8—O3102.8 (10)
N1—S1—C1—C272.6 (8)C9—C7—C8—O476.1 (9)
O1—S1—C1—C6139.3 (7)N1—C7—C9—C10136.2 (8)
O2—S1—C1—C68.6 (8)N1—C7—C9—C1443.9 (11)
N1—S1—C1—C6107.3 (8)C8—C7—C9—C10101.7 (9)
S1—N1—C7—C8101.1 (7)C8—C7—C9—C1478.2 (10)
S1—N1—C7—C9137.1 (6)C7—C9—C10—C11177.5 (9)
S1—C1—C6—C5179.8 (7)C14—C9—C10—C112.4 (14)
S1—C1—C2—C3179.4 (8)C7—C9—C14—C13177.8 (9)
C6—C1—C2—C30.7 (15)C10—C9—C14—C132.1 (14)
C2—C1—C6—C50.3 (14)C9—C10—C11—C120.4 (16)
C1—C2—C3—C40.7 (16)C10—C11—C12—C133.5 (17)
C2—C3—C4—C50.2 (18)C11—C12—C13—C143.8 (17)
C2—C3—C4—Br1177.0 (8)C12—C13—C14—C91.0 (16)
Br1—C4—C5—C6176.5 (8)
Symmetry codes: (i) x+1/2, y+1, z1/2; (ii) x1, y, z; (iii) x, y1/2, z+3/2; (iv) x+1, y1/2, z+3/2; (v) x+1/2, y+1, z+1/2; (vi) x+1, y, z; (vii) x+1, y+1/2, z+3/2; (viii) x, y+1/2, z+3/2; (ix) x1/2, y+1/2, z+2; (x) x1/2, y+1, z1/2; (xi) x1/2, y+1/2, z+1; (xii) x1/2, y+1, z+1/2; (xiii) x+1/2, y+1/2, z+1; (xiv) x+1/2, y+1/2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O4ii0.862.473.113 (9)132
O5—HW1···O1viii0.85 (11)2.56 (11)3.027 (8)116 (10)
O5—HW2···O3vi0.85 (2)2.34 (10)2.956 (9)131 (12)
O5—HW2···O2vii0.85 (2)2.28 (12)2.868 (8)127 (12)
O4—H4···O50.821.782.562 (8)160
C6—H6···O20.932.512.897 (10)105
C7—H7···O1vi0.982.443.377 (10)160
C7—H7···O20.982.482.958 (9)109
Symmetry codes: (ii) x1, y, z; (vi) x+1, y, z; (vii) x+1, y+1/2, z+3/2; (viii) x, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC14H12BrNO4S·H2O
Mr388.23
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)5.5654 (13), 16.230 (4), 17.597 (4)
V3)1589.5 (6)
Z4
Radiation typeMo Kα
µ (mm1)2.74
Crystal size (mm)0.32 × 0.11 × 0.09
Data collection
DiffractometerBruker Kappa APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker 2007)
Tmin, Tmax0.474, 0.791
No. of measured, independent and
observed [I > 2σ(I)] reflections
9588, 3315, 1227
Rint0.083
(sin θ/λ)max1)0.644
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.180, 0.93
No. of reflections3315
No. of parameters206
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.40
Absolute structureFlack (1983), 1246 Freidel pairs
Absolute structure parameter0.02 (3)

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O4i0.862.473.113 (9)132
O5—HW1···O1ii0.85 (11)2.56 (11)3.027 (8)116 (10)
O5—HW2···O3iii0.85 (2)2.34 (10)2.956 (9)131 (12)
O5—HW2···O2iv0.85 (2)2.28 (12)2.868 (8)127 (12)
O4—H4···O50.821.782.562 (8)160
C6—H6···O20.932.512.897 (10)105
C7—H7···O1iii0.982.443.377 (10)160
C7—H7···O20.982.482.958 (9)109
Symmetry codes: (i) x1, y, z; (ii) x, y+1/2, z+3/2; (iii) x+1, y, z; (iv) x+1, y+1/2, z+3/2.
 

Acknowledgements

MNA acknowledges the Higher Education Commission of Pakistan for providing a PhD Scholarship under the Indiginous 5000 PhD fellowship Programme (No. 042–120607-PS2–183).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationArshad, M. N., Tahir, M. N., Khan, I. U., Shafiq, M. & Ahmad, S. (2009). Acta Cryst. E65, o940.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationArshad, M. N., Tahir, M. N., Khan, I. U., Shafiq, M. & Siddiqui, W. A. (2008). Acta Cryst. E64, o2045.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAsiri, A. M., Akkurt, M., Khan, S. A., Arshad, M. N., Khan, I. U. & Sharif, H. M. A. (2009). Acta Cryst. E65, o1246–o1247.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCama, E., Shin, H. & Christianson, D. W. (2003). J. Am. Chem. Soc. 125, 13052–13057.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDankwardt, S. M., Abbot, S. C., Broka, C. A., Martin, R. L., Chan, C. S., Springman, E. B., Van Wart, H. E. & Walker, K. A. M. (2002). Bioorg. Med. Chem. Lett. 12, 1233–1235.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDeng, X. & Mani, N. S. (2006). Green Chem. 8, 835–838.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHan, Z., Da, C. Qiu, L., Ni, M., Zhou, Y. & Wang, R. (2006). Lett. Org. Chem. 3, 143–148.  Web of Science CrossRef CAS Google Scholar
First citationSethu Sankar, K., Velmurugan, D., Thirumamagal, B. T. S., Shanmuga Sundara Raj, S., Fun, H.-K. & Moon, J.-K. (2002). Acta Cryst. C58, o257–o259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheppard, G. S., Wang, J., Kawai, M., Fidanze, S. D., Bamaung, N. Y., Erickson, S. A., Barnes, D. M., Tedrow, J. S., Kolaczkowski, L., Vasudevan, A., Park, D. C., Wang, G. T., Sanders, W. J., Mantei, R. A., Palazzo, F., Tucker-Garcia, L., Lou, P. P., Zhang, Q., Park, C. H., Kim, K. H., Petros, A., Olejniczak, E., Nettesheim, D., Hajduk, P., Henkin, J., Lesniewski, R., Davidsen, S. K. & Bell, R. L. (2006). J. Med. Chem. 49, 3832–3849.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWijeyesakere, S. J., Nasser, F. A., Kampf, J. W., Aksinenko, A. Y., Sokolov, V. B., Malygin, V. V., Makhaeva, G. F. & Richardson, R. J. (2008). Acta Cryst. E64, o1425.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages o1953-o1954
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds