organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2,4,6-Tri­methyl­phen­yl)succinamic acid

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 21 July 2009; accepted 27 July 2009; online 31 July 2009)

The amide bond in the title compound {systematic name: 3-[(2,4,6-trimethyl­phen­yl)amino­carbon­yl]propionic acid}, C13H17NO3, has a trans conformation. In the crystal, two mol­ecules form a centrosymmetric dimer connected by pairs of O—H⋯O hydrogen bonds. Inter­molecular N—H⋯O hydrogen bonds link the dimers into a three dimensional network.

Related literature

For related structures, see: Gowda et al. (2009a[Gowda, B. T., Foro, S., Saraswathi, B. S., Terao, H. & Fuess, H. (2009a). Acta Cryst. E65, o399.],b[Gowda, B. T., Foro, S., Saraswathi, B. S., Terao, H. & Fuess, H. (2009b). Acta Cryst. E65, o466.],c[Gowda, B. T., Foro, S., Saraswathi, B. S., Terao, H. & Fuess, H. (2009c). Acta Cryst. E65, o873.]); Jagannathan et al. (1994[Jagannathan, N. R., Rajan, S. S. & Subramanian, E. (1994). J. Chem. Crystallogr. 24, 75-78.]). For the modes of inter­linking carboxylic acids by hydrogen bonds, see: Leiserowitz (1976[Leiserowitz, L. (1976). Acta Cryst. B32, 775-802.]).

[Scheme 1]

Experimental

Crystal data
  • C13H17NO3

  • Mr = 235.28

  • Triclinic, [P \overline 1]

  • a = 4.7646 (4) Å

  • b = 10.859 (1) Å

  • c = 13.111 (2) Å

  • α = 70.217 (8)°

  • β = 86.158 (8)°

  • γ = 79.351 (8)°

  • V = 627.31 (12) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.72 mm−1

  • T = 299 K

  • 0.55 × 0.25 × 0.08 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.692, Tmax = 0.945

  • 3109 measured reflections

  • 2234 independent reflections

  • 1918 reflections with I > 2σ(I)

  • Rint = 0.014

  • 3 standard reflections frequency: 120 min intensity decay: 1.0%

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.145

  • S = 1.05

  • 2234 reflections

  • 182 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.86 (2) 2.10 (2) 2.9368 (18) 163.6 (19)
O2—H2O⋯O3ii 0.88 (3) 1.80 (3) 2.679 (2) 172 (3)
Symmetry codes: (i) x-1, y, z; (ii) -x+2, -y+1, -z.

Data collection: CAD-4-PC (Enraf–Nonius, 1996[Enraf-Nonius (1996). CAD-4-PC. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4-PC; data reduction: REDU4 (Stoe & Cie, 1987[Stoe & Cie (1987). REDU4. Stoe & Cie GmbH, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The amide moiety is an important constituent of many biologically significant compounds. As a part of studying the effect of ring and side chain substitutions on the structures of this class of compounds (Gowda et al., 2009a,b,c), the crystal structure of N-(2,4,6-trimethylphenyl)-succinamic acid (I) {systematic name: 3-[(2,4,6-trimethylphenyl)-aminocarbonyl]propionic acid} has been determined. The conformations of N—H and C=O bonds in the amide segment of the structure are trans to each other (Fig.1). But the conformations of the amide O atom and the carbonyl O atom of the acid segment are cis to each other Further, the conformations of the C(O)—C bonds in the N—CO—CH2—CH2—C(O)—OH segment have "trans" and "gauche" torsions with the adjacent C—H bonds.

The C=O and O—H bonds of the acid group are in syn position to each other, similar to that observed in the crystal structures of N-(2,6-dimethylphenyl)- succinamic acid (Gowda et al., 2009b) and N-(2-chlorophenyl)succinamic acid (Gowda et al., 2009a) but in contrast to the anti positions observed in the structure of N-(3,5-dichlorophenyl)succinamic acid(Gowda et al., 2009c)

The torsional angles of the groups, C1 - N1 - C7 - C8, N1 - C7 - C8 - C9, C7 - C8 - C9 - C10 and C8 - C9 - C10 - O2 in the side chain are 180.0 (2)°, -160.5 (2)°, 63.5 (2)° and -174.9 (2)°, respectively. The N—H···O and O—H···O intermolecular hydrogen bonds pack the molecules in the structure into supramolecular chains (Table 1, Fig.2).

The modes of interlinking carboxylic acids by hydrogen bonds is described elsewhere (Leiserowitz, 1976). The packing of molecules involving dimeric hydrogen bonded association of each carboxyl group with a centrosymmetrically related neighbor has also been observed (Jagannathan et al., 1994).

Related literature top

For related structures, see: Gowda et al. (2009a,b,c); Jagannathan et al. (1994). For the modes of interlinking carboxylic acids by hydrogen bonds, see: Leiserowitz (1976).

Experimental top

The solution of succinic anhydride (0.025 mole) in toluene (25 cc) was treated dropwise with the solution of 2,4,6-trimethylaniline(0.025 mole) also in toluene (20 cc) with constant stirring. The resulting mixture was stirred for about one h and set aside for an additional hour at room temperature for the completion of reaction. The mixture was then treated with dilute hydrochloric acid to remove the unreacted 2,4,6-trimethylaniline. The resultant solid N-(2,4,6-trimethylphenyl)-succinamic acid was filtered under suction and washed thoroughly with water to remove the unreacted succinic anhydride and succinic acid. It was recrystallized to constant melting point from ethanol. The purity of the compound was checked by elemental analysis and characterized by its infrared spectra. The plate like colourless single crystals of the compound used in X-ray diffraction studies were grown in ethanolic solution by slow evaporation at room temperature.

Refinement top

H atoms bonded to C were positioned with idealized geometry using a riding model [C—H = 0.93 Å to 0.97Å] with U(H) set to 1.2Ueq(C). The other H atoms were located in a difference map and their position refined with U(H) set to 1.2Ueq(N,O).

Computing details top

Data collection: CAD-4-PC (Enraf–Nonius, 1996); cell refinement: CAD-4-PC (Enraf–Nonius, 1996); data reduction: REDU4 (Stoe & Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing the atom labelling and the displacement ellipsoids are at the 50% probability level. The H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Molecular packing of (I) with hydrogen bonds shown as dashed lines.
3-[(2,4,6-trimethylphenyl)aminocarbonyl]propionic acid top
Crystal data top
C13H17NO3Z = 2
Mr = 235.28F(000) = 252
Triclinic, P1Dx = 1.246 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54180 Å
a = 4.7646 (4) ÅCell parameters from 25 reflections
b = 10.859 (1) Åθ = 4.4–22.9°
c = 13.111 (2) ŵ = 0.72 mm1
α = 70.217 (8)°T = 299 K
β = 86.158 (8)°Plate, colourless
γ = 79.351 (8)°0.55 × 0.25 × 0.08 mm
V = 627.31 (12) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
1918 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.014
Graphite monochromatorθmax = 67.0°, θmin = 3.6°
ω/2θ scansh = 52
Absorption correction: ψ scan
(North et al., 1968)
k = 1212
Tmin = 0.692, Tmax = 0.945l = 1515
3109 measured reflections3 standard reflections every 120 min
2234 independent reflections intensity decay: 1.0%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.145 w = 1/[σ2(Fo2) + (0.0856P)2 + 0.1672P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.004
2234 reflectionsΔρmax = 0.30 e Å3
182 parametersΔρmin = 0.30 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.016 (3)
Crystal data top
C13H17NO3γ = 79.351 (8)°
Mr = 235.28V = 627.31 (12) Å3
Triclinic, P1Z = 2
a = 4.7646 (4) ÅCu Kα radiation
b = 10.859 (1) ŵ = 0.72 mm1
c = 13.111 (2) ÅT = 299 K
α = 70.217 (8)°0.55 × 0.25 × 0.08 mm
β = 86.158 (8)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1918 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.014
Tmin = 0.692, Tmax = 0.9453 standard reflections every 120 min
3109 measured reflections intensity decay: 1.0%
2234 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.145H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.30 e Å3
2234 reflectionsΔρmin = 0.30 e Å3
182 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3669 (3)0.77823 (17)0.30593 (13)0.0376 (4)
C20.5805 (4)0.67491 (18)0.36121 (15)0.0452 (4)
C30.6582 (5)0.6700 (2)0.46280 (16)0.0549 (5)
H30.804 (5)0.598 (2)0.5015 (19)0.066*
C40.5306 (4)0.7610 (2)0.51124 (15)0.0512 (5)
C50.3135 (4)0.8597 (2)0.45520 (15)0.0469 (5)
H50.225 (5)0.923 (2)0.4870 (18)0.056*
C60.2278 (3)0.87030 (18)0.35308 (14)0.0400 (4)
C70.4594 (3)0.81334 (16)0.11383 (13)0.0368 (4)
C80.3304 (4)0.8203 (2)0.00956 (15)0.0494 (5)
H8A0.214 (5)0.912 (2)0.0210 (18)0.059*
H8B0.205 (5)0.749 (2)0.0314 (18)0.059*
C90.5540 (4)0.8015 (2)0.07431 (16)0.0543 (5)
H9A0.683 (5)0.867 (2)0.0887 (19)0.065*
H9B0.474 (5)0.815 (2)0.142 (2)0.065*
C100.7408 (4)0.6682 (2)0.04148 (15)0.0479 (5)
C110.7206 (5)0.5687 (2)0.31581 (18)0.0607 (6)
H11A0.88840.59460.27570.073*
H11B0.58980.55700.26860.073*
H11C0.77300.48680.37410.073*
C120.6208 (6)0.7531 (3)0.62154 (18)0.0727 (7)
H12A0.82030.71630.63160.087*
H12B0.51200.69750.67630.087*
H12C0.58750.84060.62700.087*
C130.0127 (4)0.9782 (2)0.29629 (16)0.0508 (5)
H13A0.18960.94510.31220.061*
H13B0.02101.00570.21950.061*
H13C0.02271.05270.32100.061*
N10.2852 (3)0.78867 (15)0.20030 (11)0.0396 (4)
H1N0.108 (5)0.790 (2)0.1887 (16)0.047*
O10.7050 (2)0.83144 (14)0.11738 (10)0.0497 (4)
O20.9467 (3)0.65764 (18)0.11116 (13)0.0680 (5)
H2O1.049 (6)0.577 (3)0.091 (2)0.082*
O30.7089 (3)0.57886 (15)0.04196 (13)0.0631 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0274 (8)0.0490 (9)0.0385 (9)0.0093 (7)0.0005 (6)0.0158 (7)
C20.0415 (9)0.0474 (9)0.0448 (9)0.0008 (8)0.0037 (7)0.0159 (8)
C30.0538 (12)0.0562 (11)0.0483 (11)0.0068 (9)0.0139 (9)0.0151 (9)
C40.0503 (11)0.0610 (11)0.0425 (10)0.0052 (9)0.0069 (8)0.0188 (8)
C50.0424 (10)0.0570 (11)0.0450 (10)0.0039 (8)0.0014 (8)0.0244 (9)
C60.0280 (8)0.0502 (10)0.0417 (9)0.0060 (7)0.0020 (6)0.0159 (7)
C70.0226 (8)0.0466 (9)0.0426 (9)0.0003 (6)0.0025 (6)0.0190 (7)
C80.0281 (9)0.0769 (13)0.0448 (10)0.0025 (9)0.0051 (7)0.0273 (9)
C90.0417 (10)0.0776 (14)0.0417 (10)0.0032 (9)0.0022 (8)0.0241 (9)
C100.0373 (9)0.0713 (12)0.0450 (10)0.0081 (8)0.0019 (7)0.0332 (10)
C110.0688 (14)0.0530 (11)0.0553 (12)0.0092 (10)0.0086 (10)0.0202 (9)
C120.0836 (17)0.0828 (16)0.0519 (12)0.0025 (13)0.0207 (11)0.0276 (11)
C130.0356 (10)0.0627 (12)0.0517 (10)0.0049 (8)0.0025 (8)0.0226 (9)
N10.0213 (7)0.0588 (9)0.0420 (8)0.0074 (6)0.0022 (6)0.0206 (7)
O10.0221 (6)0.0789 (9)0.0516 (7)0.0109 (6)0.0004 (5)0.0249 (7)
O20.0600 (10)0.0758 (10)0.0631 (9)0.0032 (8)0.0198 (7)0.0280 (8)
O30.0569 (9)0.0678 (9)0.0624 (9)0.0033 (7)0.0161 (7)0.0256 (8)
Geometric parameters (Å, º) top
C1—C61.393 (2)C8—H8B1.02 (2)
C1—C21.395 (2)C9—C101.491 (3)
C1—N11.426 (2)C9—H9A0.99 (3)
C2—C31.387 (3)C9—H9B0.94 (3)
C2—C111.502 (3)C10—O31.215 (2)
C3—C41.378 (3)C10—O21.311 (2)
C3—H30.96 (2)C11—H11A0.9600
C4—C51.385 (3)C11—H11B0.9600
C4—C121.507 (3)C11—H11C0.9600
C5—C61.387 (2)C12—H12A0.9600
C5—H50.94 (2)C12—H12B0.9600
C6—C131.506 (2)C12—H12C0.9600
C7—O11.228 (2)C13—H13A0.9600
C7—N11.341 (2)C13—H13B0.9600
C7—C81.509 (2)C13—H13C0.9600
C8—C91.517 (3)N1—H1N0.86 (2)
C8—H8A1.01 (2)O2—H2O0.88 (3)
C6—C1—C2121.06 (15)C8—C9—H9A110.4 (14)
C6—C1—N1119.24 (15)C10—C9—H9B107.1 (14)
C2—C1—N1119.69 (15)C8—C9—H9B112.8 (15)
C3—C2—C1117.88 (17)H9A—C9—H9B106 (2)
C3—C2—C11119.76 (17)O3—C10—O2123.15 (19)
C1—C2—C11122.34 (17)O3—C10—C9123.67 (17)
C4—C3—C2122.86 (18)O2—C10—C9113.17 (18)
C4—C3—H3119.0 (14)C2—C11—H11A109.5
C2—C3—H3118.1 (14)C2—C11—H11B109.5
C3—C4—C5117.53 (17)H11A—C11—H11B109.5
C3—C4—C12121.54 (19)C2—C11—H11C109.5
C5—C4—C12120.93 (19)H11A—C11—H11C109.5
C4—C5—C6122.27 (17)H11B—C11—H11C109.5
C4—C5—H5118.5 (14)C4—C12—H12A109.5
C6—C5—H5119.2 (14)C4—C12—H12B109.5
C5—C6—C1118.35 (16)H12A—C12—H12B109.5
C5—C6—C13120.18 (16)C4—C12—H12C109.5
C1—C6—C13121.46 (15)H12A—C12—H12C109.5
O1—C7—N1123.22 (15)H12B—C12—H12C109.5
O1—C7—C8121.66 (15)C6—C13—H13A109.5
N1—C7—C8115.11 (14)C6—C13—H13B109.5
C7—C8—C9112.74 (15)H13A—C13—H13B109.5
C7—C8—H8A106.9 (13)C6—C13—H13C109.5
C9—C8—H8A107.8 (13)H13A—C13—H13C109.5
C7—C8—H8B105.4 (13)H13B—C13—H13C109.5
C9—C8—H8B112.3 (13)C7—N1—C1123.64 (14)
H8A—C8—H8B111.7 (18)C7—N1—H1N117.1 (14)
C10—C9—C8114.18 (18)C1—N1—H1N118.7 (14)
C10—C9—H9A106.1 (14)C10—O2—H2O111.1 (18)
C6—C1—C2—C32.6 (3)N1—C1—C6—C5179.01 (15)
N1—C1—C2—C3178.60 (16)C2—C1—C6—C13177.02 (16)
C6—C1—C2—C11175.73 (18)N1—C1—C6—C131.8 (2)
N1—C1—C2—C113.1 (3)O1—C7—C8—C920.7 (3)
C1—C2—C3—C41.1 (3)N1—C7—C8—C9160.51 (18)
C11—C2—C3—C4177.3 (2)C7—C8—C9—C1063.5 (3)
C2—C3—C4—C50.9 (3)C8—C9—C10—O34.2 (3)
C2—C3—C4—C12179.8 (2)C8—C9—C10—O2174.88 (17)
C3—C4—C5—C61.3 (3)O1—C7—N1—C11.2 (3)
C12—C4—C5—C6179.3 (2)C8—C7—N1—C1179.97 (16)
C4—C5—C6—C10.2 (3)C6—C1—N1—C7116.28 (19)
C4—C5—C6—C13179.05 (18)C2—C1—N1—C764.9 (2)
C2—C1—C6—C52.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.86 (2)2.10 (2)2.9368 (18)163.6 (19)
O2—H2O···O3ii0.88 (3)1.80 (3)2.679 (2)172 (3)
Symmetry codes: (i) x1, y, z; (ii) x+2, y+1, z.

Experimental details

Crystal data
Chemical formulaC13H17NO3
Mr235.28
Crystal system, space groupTriclinic, P1
Temperature (K)299
a, b, c (Å)4.7646 (4), 10.859 (1), 13.111 (2)
α, β, γ (°)70.217 (8), 86.158 (8), 79.351 (8)
V3)627.31 (12)
Z2
Radiation typeCu Kα
µ (mm1)0.72
Crystal size (mm)0.55 × 0.25 × 0.08
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.692, 0.945
No. of measured, independent and
observed [I > 2σ(I)] reflections
3109, 2234, 1918
Rint0.014
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.145, 1.05
No. of reflections2234
No. of parameters182
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.30

Computer programs: CAD-4-PC (Enraf–Nonius, 1996), REDU4 (Stoe & Cie, 1987), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.86 (2)2.10 (2)2.9368 (18)163.6 (19)
O2—H2O···O3ii0.88 (3)1.80 (3)2.679 (2)172 (3)
Symmetry codes: (i) x1, y, z; (ii) x+2, y+1, z.
 

Acknowledgements

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for a resumption of his research fellowship.

References

First citationEnraf–Nonius (1996). CAD-4-PC. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationGowda, B. T., Foro, S., Saraswathi, B. S., Terao, H. & Fuess, H. (2009a). Acta Cryst. E65, o399.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Saraswathi, B. S., Terao, H. & Fuess, H. (2009b). Acta Cryst. E65, o466.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Saraswathi, B. S., Terao, H. & Fuess, H. (2009c). Acta Cryst. E65, o873.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJagannathan, N. R., Rajan, S. S. & Subramanian, E. (1994). J. Chem. Crystallogr. 24, 75–78.  CSD CrossRef CAS Web of Science Google Scholar
First citationLeiserowitz, L. (1976). Acta Cryst. B32, 775–802.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1987). REDU4. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds