organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-tert-Butyl-5-(1H-1,2,4-triazol-1-yl)thia­zol-2-amine

aHunan Warrant Pharmaceutical Co. Ltd, Changsha 410329, People's Republic of China, and bCollege of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
*Correspondence e-mail: axhu0731@yahoo.com.cn

(Received 22 July 2009; accepted 28 July 2009; online 31 July 2009)

The dihedral angle between the triazole ring and the thia­zole ring in the title compound, C9H13N5S, is 64.35 (7)°. The crystal structure is stabilized by inter­molecular N—H⋯N hydrogen bonds, which link the mol­ecules into a two-dimensional network.

Related literature

For background and related structures, see: Zhou et al. (2007[Zhou, X., Shao, L., Jin, Z., Liu, J. B., Dai, H. & Fang, J. X. (2007). Heteroatom Chem. 18, 55-59.]); Shao et al. (2008[Shao, L., Zhou, X., Jin, Z. & Fang, J. X. (2008). Heteroat. Chem. 19, 2-6.]).

[Scheme 1]

Experimental

Crystal data
  • C9H13N5S

  • Mr = 223.30

  • Monoclinic, P 21 /c

  • a = 7.7487 (4) Å

  • b = 14.2240 (8) Å

  • c = 10.2697 (5) Å

  • β = 91.452 (1)°

  • V = 1131.54 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 173 K

  • 0.47 × 0.43 × 0.37 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.887, Tmax = 0.909

  • 6167 measured reflections

  • 2463 independent reflections

  • 2187 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.089

  • S = 1.07

  • 2463 reflections

  • 139 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2B⋯N5i 0.88 2.22 3.0049 (16) 148
N2—H2A⋯N1ii 0.88 2.17 3.0392 (14) 168
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2003[Bruker (2003). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Thiazole derivatives and 1,2,4-triazole derivatives have been found to be active compounds with diversely biological activities (Zhou et al., 2007; Shao et al., 2008). We herein report the synthesis and structures of the title compound, 4-tert-butyl-5-(1H-1,2,4-triazol-1-yl)thiazol-2-amine, which was incorporated 1H-1,2,4-triazole units into the novel thialoyl urea compounds in order to find novel leading compounds with potential anticancer activities.

The title compound (Fig. 1), contains two planar subunits: the thiazole ring and the triazole ring. The dihedral angles between them is 64.35 (7). The crystal structure (Fig. 2) is stabilized by intermolecular hydrogen bonds between the amino group and the nitrogen atoms of the thiazol ring and the triazole ring of the neighbouring molecules.

For related structures, see: Zhou et al. (2007), Shao et al. (2008).

Related literature top

For background and related structures, see: Zhou et al. (2007); Shao et al. (2008).

Experimental top

1-bromo-3,3-dimethyl-1-(1H-1,2,4-triazol-1-yl)butan-2-one (0.01 mol) were refluxed with thiourea (0.01 mol) in ethanol (45 ml) for 1.5 h (monitored by TLC). Then the pH of the mixture was adjusted to 9 with ammonia and filtered to obtain white solid, 4-tert-butyl-5-(1H-1,2,4-triazol-1-yl) thiazol-2-amine. Yield 85.5%, m.p. 451 K.

Crystals suitable for X-ray structure determination were obtained by slow evaporation of an ethanol solution at room temperature.

Refinement top

The H-atoms were positioned geometrically, with C—H = 0.98Å for methyl, C—H = 0.95Å for the triazole ring, C—H = 0.88Å for the amino group and refined as riding with Uiso(H) = 1.2Ueq(C,N) or 1.5Ueq(Cmethyl).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus (Bruker, 2003); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. A packing diagram for the title compound showing intermolecular hydrogen bonds as dashed lines. H atoms bonded to C omitted for clarity.
4-tert-Butyl-5-(1H-1,2,4-triazol-1-yl)thiazol-2-amine top
Crystal data top
C9H13N5SF(000) = 472
Mr = 223.30Dx = 1.311 Mg m3
Monoclinic, P21/cMelting point: 451 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 7.7487 (4) ÅCell parameters from 4587 reflections
b = 14.2240 (8) Åθ = 2.5–27.1°
c = 10.2697 (5) ŵ = 0.26 mm1
β = 91.452 (1)°T = 173 K
V = 1131.54 (10) Å3Block, colorless
Z = 40.47 × 0.43 × 0.37 mm
Data collection top
Bruker SMART 1000 CCD
diffractometer
2463 independent reflections
Radiation source: fine-focus sealed tube2187 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
ω scansθmax = 27.1°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 94
Tmin = 0.887, Tmax = 0.909k = 1818
6167 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0539P)2 + 0.2785P]
where P = (Fo2 + 2Fc2)/3
2463 reflections(Δ/σ)max < 0.001
139 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C9H13N5SV = 1131.54 (10) Å3
Mr = 223.30Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.7487 (4) ŵ = 0.26 mm1
b = 14.2240 (8) ÅT = 173 K
c = 10.2697 (5) Å0.47 × 0.43 × 0.37 mm
β = 91.452 (1)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
2463 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
2187 reflections with I > 2σ(I)
Tmin = 0.887, Tmax = 0.909Rint = 0.016
6167 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.089H-atom parameters constrained
S = 1.07Δρmax = 0.24 e Å3
2463 reflectionsΔρmin = 0.31 e Å3
139 parameters
Special details top

Experimental. 1H NMR (CDCl3, 400 MHz) δ: 1.11 (s, 9H, (CH3)3), 4.38 (s, 2H, NH2), 8.06 (s, 1H, C2H2N3 3-H), 8.23 (s, 1H, C2H2N3 5-H).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.10734 (4)0.36412 (2)0.12795 (3)0.02144 (11)
C10.28446 (15)0.42187 (8)0.06301 (12)0.0208 (2)
C20.38251 (15)0.27348 (8)0.06564 (11)0.0194 (2)
C30.22378 (16)0.25969 (8)0.11582 (11)0.0200 (2)
C40.52048 (16)0.19969 (9)0.03942 (13)0.0248 (3)
C50.69774 (19)0.24700 (11)0.0350 (2)0.0490 (5)
H5A0.69940.29110.03820.073*
H5B0.78690.19900.02390.073*
H5C0.72030.28110.11660.073*
C60.4799 (2)0.15274 (11)0.09224 (15)0.0392 (4)
H6A0.47390.20080.16060.059*
H6B0.36890.12000.08850.059*
H6C0.57110.10750.11170.059*
C70.5268 (2)0.12361 (10)0.14558 (16)0.0368 (3)
H7A0.62470.08160.13120.055*
H7B0.41930.08730.14200.055*
H7C0.54040.15340.23130.055*
C80.01671 (17)0.04703 (9)0.15964 (13)0.0267 (3)
H80.03130.01130.13180.032*
C90.09146 (17)0.15830 (9)0.28121 (12)0.0267 (3)
H90.11010.19850.35410.032*
N10.41461 (13)0.36685 (7)0.03390 (10)0.0210 (2)
N20.27815 (14)0.51513 (7)0.04483 (12)0.0285 (3)
H2A0.36610.54450.01080.034*
H2B0.18600.54690.06700.034*
N30.14376 (13)0.17666 (7)0.16036 (10)0.0206 (2)
N40.09397 (14)0.10478 (8)0.07907 (10)0.0254 (2)
N50.01069 (15)0.07679 (8)0.28504 (11)0.0299 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01973 (17)0.01734 (17)0.02758 (18)0.00120 (10)0.00713 (12)0.00005 (10)
C10.0194 (6)0.0182 (6)0.0251 (6)0.0023 (4)0.0045 (4)0.0005 (4)
C20.0198 (6)0.0165 (5)0.0221 (5)0.0009 (4)0.0003 (4)0.0011 (4)
C30.0218 (6)0.0155 (5)0.0229 (5)0.0016 (4)0.0023 (4)0.0011 (4)
C40.0203 (6)0.0167 (5)0.0374 (7)0.0019 (5)0.0031 (5)0.0018 (5)
C50.0202 (7)0.0241 (7)0.1029 (15)0.0024 (6)0.0083 (8)0.0026 (8)
C60.0457 (9)0.0356 (8)0.0366 (8)0.0134 (7)0.0078 (6)0.0056 (6)
C70.0380 (8)0.0275 (7)0.0447 (8)0.0103 (6)0.0008 (6)0.0090 (6)
C80.0292 (6)0.0194 (6)0.0317 (6)0.0069 (5)0.0017 (5)0.0008 (5)
C90.0316 (7)0.0254 (6)0.0234 (6)0.0073 (5)0.0042 (5)0.0014 (5)
N10.0187 (5)0.0164 (5)0.0282 (5)0.0009 (4)0.0043 (4)0.0015 (4)
N20.0242 (5)0.0149 (5)0.0471 (7)0.0002 (4)0.0136 (5)0.0022 (5)
N30.0222 (5)0.0173 (5)0.0223 (5)0.0038 (4)0.0016 (4)0.0008 (4)
N40.0294 (6)0.0197 (5)0.0271 (5)0.0062 (4)0.0031 (4)0.0029 (4)
N50.0328 (6)0.0277 (6)0.0293 (6)0.0095 (5)0.0052 (5)0.0045 (4)
Geometric parameters (Å, º) top
S1—C31.7441 (12)C6—H6B0.9800
S1—C11.7464 (12)C6—H6C0.9800
C1—N11.3169 (16)C7—H7A0.9800
C1—N21.3403 (16)C7—H7B0.9800
C2—C31.3598 (17)C7—H7C0.9800
C2—N11.3914 (14)C8—N41.3202 (16)
C2—C41.5270 (16)C8—N51.3575 (18)
C3—N31.4153 (15)C8—H80.9500
C4—C51.5312 (19)C9—N51.3187 (17)
C4—C61.533 (2)C9—N31.3410 (16)
C4—C71.5360 (18)C9—H90.9500
C5—H5A0.9800N2—H2A0.8800
C5—H5B0.9800N2—H2B0.8800
C5—H5C0.9800N3—N41.3692 (14)
C6—H6A0.9800
C3—S1—C187.73 (6)C4—C6—H6C109.5
N1—C1—N2125.59 (11)H6A—C6—H6C109.5
N1—C1—S1114.89 (9)H6B—C6—H6C109.5
N2—C1—S1119.50 (9)C4—C7—H7A109.5
C3—C2—N1113.28 (10)C4—C7—H7B109.5
C3—C2—C4127.71 (10)H7A—C7—H7B109.5
N1—C2—C4118.99 (10)C4—C7—H7C109.5
C2—C3—N3130.61 (11)H7A—C7—H7C109.5
C2—C3—S1112.26 (9)H7B—C7—H7C109.5
N3—C3—S1117.12 (9)N4—C8—N5115.32 (11)
C2—C4—C5109.61 (10)N4—C8—H8122.3
C2—C4—C6109.04 (10)N5—C8—H8122.3
C5—C4—C6109.23 (13)N5—C9—N3110.70 (11)
C2—C4—C7111.65 (11)N5—C9—H9124.6
C5—C4—C7108.55 (12)N3—C9—H9124.6
C6—C4—C7108.73 (11)C1—N1—C2111.81 (10)
C4—C5—H5A109.5C1—N2—H2A120.0
C4—C5—H5B109.5C1—N2—H2B120.0
H5A—C5—H5B109.5H2A—N2—H2B120.0
C4—C5—H5C109.5C9—N3—N4109.38 (10)
H5A—C5—H5C109.5C9—N3—C3127.35 (10)
H5B—C5—H5C109.5N4—N3—C3123.03 (10)
C4—C6—H6A109.5C8—N4—N3101.98 (10)
C4—C6—H6B109.5C9—N5—C8102.60 (11)
H6A—C6—H6B109.5
C3—S1—C1—N11.03 (10)S1—C1—N1—C21.71 (13)
C3—S1—C1—N2179.99 (11)C3—C2—N1—C11.65 (15)
N1—C2—C3—N3179.45 (11)C4—C2—N1—C1179.57 (10)
C4—C2—C3—N31.9 (2)N5—C9—N3—N40.78 (15)
N1—C2—C3—S10.87 (13)N5—C9—N3—C3175.29 (12)
C4—C2—C3—S1179.52 (10)C2—C3—N3—C9117.79 (16)
C1—S1—C3—C20.05 (9)S1—C3—N3—C960.72 (15)
C1—S1—C3—N3178.73 (10)C2—C3—N3—N468.38 (18)
C3—C2—C4—C5157.79 (14)S1—C3—N3—N4113.10 (11)
N1—C2—C4—C523.63 (17)N5—C8—N4—N31.00 (15)
C3—C2—C4—C682.69 (16)C9—N3—N4—C81.03 (14)
N1—C2—C4—C695.90 (13)C3—N3—N4—C8175.83 (11)
C3—C2—C4—C737.48 (17)N3—C9—N5—C80.16 (15)
N1—C2—C4—C7143.94 (12)N4—C8—N5—C90.56 (16)
N2—C1—N1—C2179.41 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···N5i0.882.223.0049 (16)148
N2—H2A···N1ii0.882.173.0392 (14)168
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC9H13N5S
Mr223.30
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)7.7487 (4), 14.2240 (8), 10.2697 (5)
β (°) 91.452 (1)
V3)1131.54 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.47 × 0.43 × 0.37
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.887, 0.909
No. of measured, independent and
observed [I > 2σ(I)] reflections
6167, 2463, 2187
Rint0.016
(sin θ/λ)max1)0.640
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.089, 1.07
No. of reflections2463
No. of parameters139
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.31

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2003), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···N5i0.882.223.0049 (16)148.3
N2—H2A···N1ii0.882.173.0392 (14)167.7
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y+1, z.
 

References

First citationBruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationShao, L., Zhou, X., Jin, Z. & Fang, J. X. (2008). Heteroat. Chem. 19, 2–6.  Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhou, X., Shao, L., Jin, Z., Liu, J. B., Dai, H. & Fang, J. X. (2007). Heteroatom Chem. 18, 55–59.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds