metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages m938-m939

trans-Di­aqua­bis­[5-carb­­oxy-2-(3-pyrid­yl)-1H-imidazole-4-carboxyl­ato-κ2N3,O4]iron(II)

aDepartment of Chemistry and Chemical Engineering, Henan University of Urban Construction, Pingdingshan, Henan 467044, People's Republic of China, and bDepartment of Chemistry, Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China
*Correspondence e-mail: lixia@zzu.edu.cn, wbl@zzu.edu.cn

(Received 10 March 2009; accepted 13 July 2009; online 18 July 2009)

In the title complex, [Fe(C10H6N3O4)2(H2O)2], the FeII atom is located on an inversion centre and is trans-coordinated by two N,O-bidentate 5-carb­oxy-2-(3-pyrid­yl)-1H-imidazole-4-carb­oxy­l­ate ligands and two water mol­ecules, defining a distorted octa­hedral environment. A two-dimensional network of N—H⋯O and O—H⋯O hydrogen bonds extending parallel to (110) helps to stabilize the crystal packing.

Related literature

N-Heterocyclic carboxylic acids are efficient N/O donors exhibiting versatile coordination modes and hydrogen bonding and can be successively deprotonated, resulting in a large diversity of supra­molecular architectures, see: Gu et al. (2007[Gu, J. Z., Lu, W. G., Jiang, L., Zhou, H. C. & Lu, T. B. (2007). Inorg. Chem. 46, 5835-5837.]); Liu et al. (2004[Liu, Y. L., Kravtsov, V., Walsh, R. D., Poddar, P., Srikanth, H. & Eddaoudi, M. (2004). Chem. Commun. pp. 2806-2807.]); Maji et al. (2005[Maji, T. K., Mostafa, G., Chang, H. C. & Kitagawa, S. (2005). Chem. Commun. pp. 2436-2438.]); Rajendiran et al. (2003[Rajendiran, T. M., Kirk, M. L., Setyawati, I. A., Caudle, M. T., Kampf, J. W. & Pecoraro, V. L. (2003). Chem. Commun. pp. 824-825.]); Sun et al. (2005[Sun, Y. Q., Zhang, J., Chen, Y. M. & Yang, G. Y. (2005). Angew. Chem. Int. Ed. 44, 5814-5817.]); Zou et al. (2005[Zou, R. Q., Jiang, L., Senoh, H., Takeichi, N. & Xu, Q. (2005). Chem. Commun. pp. 3526-3528.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C10H6N3O4)2(H2O)2]

  • Mr = 556.24

  • Triclinic, [P \overline 1]

  • a = 7.0100 (14) Å

  • b = 8.6670 (17) Å

  • c = 9.4110 (19) Å

  • α = 82.28 (3)°

  • β = 83.84 (3)°

  • γ = 70.66 (3)°

  • V = 533.41 (18) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.78 mm−1

  • T = 173 K

  • 0.29 × 0.24 × 0.19 mm

Data collection
  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2000[Rigaku (2000). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.826, Tmax = 0.890

  • 4126 measured reflections

  • 2084 independent reflections

  • 1693 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.105

  • S = 1.04

  • 2084 reflections

  • 172 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.55 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O4i 0.83 2.09 2.852 (3) 152
O5—H5A⋯O3ii 0.89 2.03 2.899 (3) 165
O5—H5B⋯N3iii 0.84 2.01 2.780 (3) 152
O3—H3A⋯O2 0.868 (10) 1.613 (11) 2.479 (3) 176 (3)
Symmetry codes: (i) -x, -y+2, -z+1; (ii) x+1, y-1, z; (iii) -x+1, -y+1, -z+1.

Data collection: CrystalClear (Rigaku, 2000[Rigaku (2000). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

N-Heterocyclic carboxylic acids, such as imidazole-4,5-dicarboxylic acid (H3IDC), are recognized as efficient N/O donors exhibiting versatile coordination modes and hydrogen bonding. It can be successively deprotonated to generate various species with different proton numbers (H2IDC-, HIDC2-, and IDC3-), and hence may result in a large diversity of supramolecular architectures (Sun et al., 2005; Maji et al., 2005; Liu et al., 2004; Zou et al., 2005; Rajendiran et al., 2003; Gu et al., 2007). In contrast to the well studied H3IDC, 2-(pyridin-4-yl)-1H-imidazole-4,5-dicarboxylate acid (H3PIDC), a very close analogue of H3IDC, still remains unexplored till now. We report here the single-crystal structure of a new compound, [Fe(H2PIDC)2(H2O)2] (I), in which the H2PIDC monoanion coordinates to the Fe atom, acting as a bidentate ligand.

As shown in Fig. 1, the molecule of (I) is a discrete neutral monomer, in which the Fe atom resides on a crystallographic inversion centre and the asymmetric unit contains one-half of the [Fe(H2PIDC)2(H2O)2] formula unit. Each Fe atom is six-coordinated by two N and two O atoms from two H2PIDC ligands and two water molecule in a highly distorted octahedral geometry. In this complex, the carboxylic acid (H3PIDC) ligand is singly deprotonated and bears a formal charge of -1, and the uncoordinated carboxylate atoms O3 and O2 form an intramolecular hydrogen bond (Table 1). All non-H atoms in the imidazole-4,5-dicarboxyl group are nearly coplanar [the mean deviation is 0.031 (9) Å], and the dihedral angle between imidazole group and pyridine group is 22.6 (1) °. At list in Table 2, a two-dimensional supramolecular layer is constructed via hydrogen-bonding interactions involving the coordinated water molecules, the carboxy O atoms and the protonated imidazole N atoms (Fig.2), and these two-dimensional layers are parallel arranged along b axis (Fig. 3).

Related literature top

N-Heterocyclic carboxylic acids are efficient N/O donors exhibiting versatile coordination modes and hydrogen bonding and can be successively deprotonated, resulting in a large diversity of supramolecular architectures, see: Gu et al. (2007); Liu et al. (2004); Maji et al. (2005); Rajendiran et al. (2003); Sun et al. (2005); Zou et al. (2005).

Experimental top

A mixture of Fe(II) sulfate (0.056 g, 0.2 mmol), 2-(pyridin-3-yl)-1H-imidazole-4,5-dicarboxylic acid (0.047 g, 0.2 mmol) and water (10 ml) was sealed into a Teflon-lined stainless autoclave and heated at 433 K for 4 days. The bomb was allowed to cooled to room temperature gradually and red prismatic crystals of (I) were obtained. Analysis calculated for C20H16FeN6O10: C 43.19, H 2.90, N 15.11; found: C 43.12, H 2.94, N 15.13.

Refinement top

Water H atoms and the carboxylic acid H atom were located from difference maps and refined with a DFIX restraint of 0.86 (2) Å applied to the three O—H distances. Aromatic H atoms were positioned geometrically with C—H = 0.95 Å and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku, 2000); cell refinement: CrystalClear (Rigaku, 2000); data reduction: CrystalClear (Rigaku, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular of (I), showing the atom-labelling scheme and displacement ellipsoids at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of (I), showing the two-dimensional hydrogen-bonding network, H atoms not involved in hydrogen bonding have been omited.
[Figure 3] Fig. 3. Packing diagram of two-dimensional layers along the b axis.
trans-Diaquabis[5-carboxy-2-(3-pyridyl)-1H-imidazole-4- carboxylato-κ2N3,O4]iron(II) top
Crystal data top
[Fe(C10H6N3O4)2(H2O)2]Z = 1
Mr = 556.24F(000) = 284
Triclinic, P1Dx = 1.732 Mg m3
a = 7.0100 (14) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.6670 (17) Åθ = 2.5–28.0°
c = 9.4110 (19) ŵ = 0.78 mm1
α = 82.28 (3)°T = 173 K
β = 83.84 (3)°Block, yellow
γ = 70.66 (3)°0.29 × 0.24 × 0.19 mm
V = 533.41 (18) Å3
Data collection top
Rigaku Mercury CCD
diffractometer
2084 independent reflections
Radiation source: fine-focus sealed tube1693 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω scansθmax = 26.0°, θmin = 2.5°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2000)
h = 88
Tmin = 0.826, Tmax = 0.890k = 1010
4126 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0571P)2 + 0.2007P]
where P = (Fo2 + 2Fc2)/3
2084 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.47 e Å3
1 restraintΔρmin = 0.55 e Å3
Crystal data top
[Fe(C10H6N3O4)2(H2O)2]γ = 70.66 (3)°
Mr = 556.24V = 533.41 (18) Å3
Triclinic, P1Z = 1
a = 7.0100 (14) ÅMo Kα radiation
b = 8.6670 (17) ŵ = 0.78 mm1
c = 9.4110 (19) ÅT = 173 K
α = 82.28 (3)°0.29 × 0.24 × 0.19 mm
β = 83.84 (3)°
Data collection top
Rigaku Mercury CCD
diffractometer
2084 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2000)
1693 reflections with I > 2σ(I)
Tmin = 0.826, Tmax = 0.890Rint = 0.023
4126 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0381 restraint
wR(F2) = 0.105H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.47 e Å3
2084 reflectionsΔρmin = 0.55 e Å3
172 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.50000.50000.00000.03010 (18)
O10.4346 (3)0.7540 (2)0.09416 (18)0.0407 (5)
O20.2752 (3)1.0178 (2)0.06408 (18)0.0410 (5)
O30.0627 (3)1.1808 (2)0.12660 (19)0.0408 (5)
O40.0530 (3)1.1320 (2)0.35321 (19)0.0466 (5)
O50.7690 (3)0.5052 (2)0.07395 (18)0.0406 (5)
N10.3184 (3)0.6478 (2)0.17970 (19)0.0267 (4)
N20.1534 (3)0.7958 (2)0.3559 (2)0.0280 (5)
H2A0.08410.82140.43190.034*
N30.2740 (3)0.3678 (3)0.6641 (2)0.0357 (5)
C10.3294 (4)0.8639 (3)0.0195 (2)0.0313 (6)
C20.2649 (3)0.8126 (3)0.1308 (2)0.0258 (5)
C30.1588 (4)0.9068 (3)0.2385 (2)0.0277 (5)
C40.0479 (4)1.0858 (3)0.2420 (3)0.0322 (6)
C50.2483 (3)0.6410 (3)0.3177 (2)0.0259 (5)
C60.2686 (4)0.4921 (3)0.4180 (2)0.0269 (5)
C70.2554 (4)0.4991 (3)0.5672 (2)0.0313 (6)
H30.23210.60260.60110.038*
C80.3003 (4)0.3402 (3)0.3698 (3)0.0332 (6)
H40.30600.33030.27000.040*
C90.3234 (4)0.2031 (3)0.4700 (3)0.0379 (6)
H10.34860.09770.43920.045*
C100.3092 (4)0.2212 (3)0.6157 (3)0.0360 (6)
H20.32500.12680.68330.043*
H5A0.87610.41450.08350.043*
H5B0.75520.57260.13390.043*
H3A0.137 (4)1.128 (3)0.057 (2)0.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0395 (3)0.0268 (3)0.0151 (3)0.0007 (2)0.00222 (19)0.00396 (19)
O10.0548 (12)0.0334 (10)0.0192 (8)0.0012 (9)0.0110 (8)0.0027 (7)
O20.0584 (12)0.0293 (10)0.0224 (9)0.0029 (9)0.0075 (8)0.0046 (7)
O30.0584 (13)0.0267 (10)0.0264 (10)0.0017 (9)0.0053 (8)0.0029 (7)
O40.0665 (14)0.0351 (10)0.0239 (9)0.0033 (9)0.0048 (9)0.0113 (8)
O50.0457 (11)0.0410 (11)0.0269 (9)0.0002 (9)0.0032 (8)0.0112 (8)
N10.0350 (11)0.0254 (10)0.0140 (9)0.0028 (9)0.0027 (8)0.0035 (8)
N20.0352 (11)0.0279 (11)0.0152 (9)0.0039 (9)0.0064 (8)0.0052 (8)
N30.0473 (13)0.0365 (12)0.0190 (10)0.0098 (10)0.0000 (9)0.0003 (9)
C10.0391 (14)0.0307 (13)0.0164 (11)0.0024 (11)0.0023 (10)0.0019 (10)
C20.0318 (12)0.0249 (12)0.0145 (11)0.0025 (10)0.0024 (9)0.0013 (9)
C30.0342 (13)0.0276 (13)0.0182 (11)0.0059 (10)0.0001 (9)0.0030 (9)
C40.0385 (14)0.0304 (13)0.0225 (12)0.0032 (11)0.0022 (10)0.0054 (10)
C50.0304 (12)0.0266 (12)0.0165 (11)0.0038 (10)0.0008 (9)0.0039 (9)
C60.0303 (12)0.0290 (13)0.0181 (11)0.0064 (10)0.0021 (9)0.0020 (9)
C70.0419 (15)0.0288 (13)0.0204 (12)0.0075 (11)0.0001 (10)0.0046 (10)
C80.0447 (15)0.0312 (14)0.0198 (11)0.0080 (11)0.0048 (10)0.0051 (10)
C90.0508 (17)0.0270 (13)0.0319 (14)0.0079 (12)0.0008 (12)0.0043 (11)
C100.0435 (15)0.0301 (14)0.0285 (13)0.0075 (12)0.0012 (11)0.0032 (11)
Geometric parameters (Å, º) top
Fe1—O5i2.095 (2)N2—C31.369 (3)
Fe1—O52.095 (2)N2—H2A0.8325
Fe1—O1i2.1764 (19)N3—C71.338 (3)
Fe1—O12.1764 (19)N3—C101.344 (3)
Fe1—N12.2719 (19)C1—C21.493 (3)
Fe1—N1i2.2719 (19)C2—C31.380 (3)
O1—C11.244 (3)C3—C41.490 (3)
O2—C11.284 (3)C5—C61.469 (3)
O3—C41.289 (3)C6—C81.390 (3)
O3—H3A0.868 (10)C6—C71.405 (3)
O4—C41.234 (3)C7—H30.9500
O5—H5A0.8910C8—C91.390 (3)
O5—H5B0.8412C8—H40.9500
N1—C51.339 (3)C9—C101.390 (4)
N1—C21.378 (3)C9—H10.9500
N2—C51.364 (3)C10—H20.9500
O5i—Fe1—O5180.0O2—C1—C2118.6 (2)
O5i—Fe1—O1i90.33 (8)N1—C2—C3110.46 (19)
O5—Fe1—O1i89.67 (8)N1—C2—C1119.4 (2)
O5i—Fe1—O189.67 (8)C3—C2—C1130.1 (2)
O5—Fe1—O190.33 (8)N2—C3—C2105.0 (2)
O1i—Fe1—O1180.00 (9)N2—C3—C4121.4 (2)
O5i—Fe1—N189.91 (7)C2—C3—C4133.4 (2)
O5—Fe1—N190.09 (7)O4—C4—O3124.8 (2)
O1i—Fe1—N1103.66 (7)O4—C4—C3118.2 (2)
O1—Fe1—N176.34 (7)O3—C4—C3117.0 (2)
O5i—Fe1—N1i90.09 (7)N1—C5—N2110.1 (2)
O5—Fe1—N1i89.91 (7)N1—C5—C6126.8 (2)
O1i—Fe1—N1i76.34 (7)N2—C5—C6123.1 (2)
O1—Fe1—N1i103.66 (7)C8—C6—C7117.7 (2)
N1—Fe1—N1i180.000 (1)C8—C6—C5121.7 (2)
C1—O1—Fe1117.71 (15)C7—C6—C5120.7 (2)
C4—O3—H3A113 (2)N3—C7—C6123.6 (2)
Fe1—O5—H5A121.1N3—C7—H3118.2
Fe1—O5—H5B115.7C6—C7—H3118.2
H5A—O5—H5B115.2C9—C8—C6118.9 (2)
C5—N1—C2105.66 (18)C9—C8—H4120.5
C5—N1—Fe1145.46 (16)C6—C8—H4120.5
C2—N1—Fe1108.78 (13)C8—C9—C10119.5 (2)
C5—N2—C3108.75 (19)C8—C9—H1120.2
C5—N2—H2A126.9C10—C9—H1120.2
C3—N2—H2A123.4N3—C10—C9122.2 (2)
C7—N3—C10118.1 (2)N3—C10—H2118.9
O1—C1—O2123.7 (2)C9—C10—H2118.9
O1—C1—C2117.7 (2)
O5i—Fe1—O1—C187.8 (2)N1—C2—C3—N21.7 (3)
O5—Fe1—O1—C192.2 (2)C1—C2—C3—N2176.4 (3)
O1i—Fe1—O1—C1157 (100)N1—C2—C3—C4172.4 (3)
N1—Fe1—O1—C12.2 (2)C1—C2—C3—C49.5 (5)
N1i—Fe1—O1—C1177.8 (2)N2—C3—C4—O41.3 (4)
O5i—Fe1—N1—C595.8 (3)C2—C3—C4—O4172.0 (3)
O5—Fe1—N1—C584.2 (3)N2—C3—C4—O3179.7 (2)
O1i—Fe1—N1—C55.5 (3)C2—C3—C4—O37.0 (4)
O1—Fe1—N1—C5174.5 (3)C2—N1—C5—N20.0 (3)
N1i—Fe1—N1—C5141 (100)Fe1—N1—C5—N2175.5 (2)
O5i—Fe1—N1—C288.65 (16)C2—N1—C5—C6179.4 (2)
O5—Fe1—N1—C291.35 (16)Fe1—N1—C5—C63.8 (5)
O1i—Fe1—N1—C2178.96 (15)C3—N2—C5—N11.1 (3)
O1—Fe1—N1—C21.04 (15)C3—N2—C5—C6179.5 (2)
N1i—Fe1—N1—C234 (100)N1—C5—C6—C823.2 (4)
Fe1—O1—C1—O2177.8 (2)N2—C5—C6—C8157.6 (2)
Fe1—O1—C1—C22.8 (3)N1—C5—C6—C7157.2 (2)
C5—N1—C2—C31.0 (3)N2—C5—C6—C722.1 (4)
Fe1—N1—C2—C3178.39 (16)C10—N3—C7—C60.7 (4)
C5—N1—C2—C1177.3 (2)C8—C6—C7—N30.8 (4)
Fe1—N1—C2—C10.1 (3)C5—C6—C7—N3179.5 (2)
O1—C1—C2—N11.8 (4)C7—C6—C8—C91.9 (4)
O2—C1—C2—N1178.8 (2)C5—C6—C8—C9178.4 (2)
O1—C1—C2—C3176.1 (3)C6—C8—C9—C101.6 (4)
O2—C1—C2—C33.3 (4)C7—N3—C10—C91.1 (4)
C5—N2—C3—C21.7 (3)C8—C9—C10—N30.1 (4)
C5—N2—C3—C4173.3 (2)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O4ii0.832.092.852 (3)152
O5—H5A···O3iii0.892.032.899 (3)165
O5—H5B···N3iv0.842.012.780 (3)152
O3—H3A···O20.87 (1)1.61 (1)2.479 (3)176 (3)
Symmetry codes: (ii) x, y+2, z+1; (iii) x+1, y1, z; (iv) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Fe(C10H6N3O4)2(H2O)2]
Mr556.24
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)7.0100 (14), 8.6670 (17), 9.4110 (19)
α, β, γ (°)82.28 (3), 83.84 (3), 70.66 (3)
V3)533.41 (18)
Z1
Radiation typeMo Kα
µ (mm1)0.78
Crystal size (mm)0.29 × 0.24 × 0.19
Data collection
DiffractometerRigaku Mercury CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2000)
Tmin, Tmax0.826, 0.890
No. of measured, independent and
observed [I > 2σ(I)] reflections
4126, 2084, 1693
Rint0.023
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.105, 1.04
No. of reflections2084
No. of parameters172
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.47, 0.55

Computer programs: CrystalClear (Rigaku, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O4i0.832.092.852 (3)152.1
O5—H5A···O3ii0.892.032.899 (3)164.8
O5—H5B···N3iii0.842.012.780 (3)152.1
O3—H3A···O20.868 (10)1.613 (11)2.479 (3)176 (3)
Symmetry codes: (i) x, y+2, z+1; (ii) x+1, y1, z; (iii) x+1, y+1, z+1.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (20771094, 20671083), the Science and Technology Key Task of Henan Province (0524270061) and the China Postdoctoral Science Foundation (20070410877).

References

First citationGu, J. Z., Lu, W. G., Jiang, L., Zhou, H. C. & Lu, T. B. (2007). Inorg. Chem. 46, 5835–5837.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLiu, Y. L., Kravtsov, V., Walsh, R. D., Poddar, P., Srikanth, H. & Eddaoudi, M. (2004). Chem. Commun. pp. 2806–2807.  Web of Science CSD CrossRef Google Scholar
First citationMaji, T. K., Mostafa, G., Chang, H. C. & Kitagawa, S. (2005). Chem. Commun. pp. 2436–2438.  Web of Science CSD CrossRef Google Scholar
First citationRajendiran, T. M., Kirk, M. L., Setyawati, I. A., Caudle, M. T., Kampf, J. W. & Pecoraro, V. L. (2003). Chem. Commun. pp. 824–825.  Web of Science CSD CrossRef Google Scholar
First citationRigaku (2000). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, Y. Q., Zhang, J., Chen, Y. M. & Yang, G. Y. (2005). Angew. Chem. Int. Ed. 44, 5814–5817.  Web of Science CSD CrossRef CAS Google Scholar
First citationZou, R. Q., Jiang, L., Senoh, H., Takeichi, N. & Xu, Q. (2005). Chem. Commun. pp. 3526–3528.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages m938-m939
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds