metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages m867-m868

Tetra-μ-acetato-κ8O:O′-bis­­{[2-(2-fur­yl)-1-(2-furylmeth­yl)-1H-benzimidazole-κN3]copper(II)}

aCollege of Chemistry and Chemical Engineering, Ocean University of China, Shandong 266100, People's Republic of China, and bCollege of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China
*Correspondence e-mail: bicaifeng9999@163.com

(Received 12 March 2009; accepted 30 June 2009; online 4 July 2009)

The title complex, [Cu2(CH3COO)4(C16H12N2O2)2], forms a dimer of the paddle-wheel type located on a crystallographic inversion centre. The two CuII atoms [Cu⋯Cu = 2.7254 (11) Å] are bridged by four acetate anions. The geometry of the polyhedron around the metal centre can be described as tetra­gonal-pyramidal derived from the calculation of the value τ = 0.0018. The apical positions of the tetra­gonal-pyramidal copper coordination polyhedra are occupied by the N atoms of 2-(2-fur­yl)-1-(2-furylmeth­yl)-1H-benzimidazole ligands. In the crystal structure, mol­ecules are linked into a chain by inter­molecular C—H⋯O hydrogen bonds parallel to [010]. Two furan rings are disordered over two positions in ratios of 0.55:0.45 and 0.69:0.31.

Related literature

For general background, see: Solomon et al. (1992[Solomon, E. I., Baldwin, M. J. & Lowery, M. D. (1992). Chem. Rev. 92, 521-526.]). For the chemical, physical and structural properties of tripodal copper complexes, see: Malachowski et al. (1995[Malachowski, M. R., Huynh, H. B., Tomlinson, L. J., Kelly, R. S. & Furbee, J. W. Jr (1995). J. Chem. Soc. Dalton Trans. pp. 746-751.]); Mclachlan et al. (1995[Mclachlan, G. A., Fallon, G. D., Martin, R. L. & Spiccia, L. (1995). Inorg. Chem. 34, 254-258.]). For Cu—Cu distances in dimeric copper(II) carboxyl­ate complexes, see: Liu et al. (2007[Liu, F.-Q., Li, R.-X., Li, S.-X., Sun, L.-S. & Liu, G.-Y. (2007). Acta Cryst. E63, m2455.]). For the τ parameter, see: Addison et al. (1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C2H3O2)4(C16H12N2O2)2]

  • Mr = 891.81

  • Triclinic, [P \overline 1]

  • a = 9.6617 (15) Å

  • b = 11.2779 (19) Å

  • c = 19.233 (2) Å

  • α = 75.817 (1)°

  • β = 80.031 (2)°

  • γ = 76.168 (1)°

  • V = 1958.3 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.16 mm−1

  • T = 298 K

  • 0.48 × 0.23 × 0.12 mm

Data collection
  • Siemens SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.607, Tmax = 0.874

  • 10261 measured reflections

  • 6802 independent reflections

  • 4761 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.152

  • S = 1.02

  • 6802 reflections

  • 606 parameters

  • H-atom parameters constrained

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.62 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cu1—O4i 1.961 (3)
Cu1—O3 1.966 (3)
Cu1—O5 1.977 (3)
Cu1—O6i 1.989 (3)
Cu1—N1 2.233 (4)
O4i—Cu1—O3 165.00 (14)
O5—Cu1—O6i 165.11 (15)
Symmetry code: (i) -x+2, -y+2, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12B⋯O3ii 0.97 2.55 3.426 (7) 151
C31—H31⋯O6iii 0.93 2.54 3.44 (3) 166
C36—H36⋯O4i 0.93 2.50 3.371 (19) 157
Symmetry codes: (i) -x+2, -y+2, -z+1; (ii) -x+2, -y+1, -z+1; (iii) -x+1, -y+2, -z+1.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Investigations of the coordination chemistry of copper(II) continue to be stimulated by interest in developing models for copper proteins and in understanding the factors which give rise to the seemingly infinite variety of distortions from regular stereochemistry observed in CuII complexes (Solomon et al., 1992). Due to the unique coordination polyhedra and their ease of preparation, tripodal copper complexes have attracted much attention in addition to their special chemical, physical and structure properties (Malachowski et al., 1995; Mclachlan et al., 1995). We report here the synthesis and crystal structure of the title compound, a new binuclear copper(II) complex.

The molecular structure of the title complex is shown in Fig.1. The CuII atom is five-coordinated, with a coordination geometry that is best described as distorted square pyramidal. The Cu1—Cu1A distance is 2.7254 (11) Å, very similar to the values found in other dimeric copper(II) carboxylate complexes (Liu et al., 2007). The basal plane for a tetragonal-pyramidal geometry is defined by the atoms O3, O4, O5 and O6, their mean deviation from this plane is 0.0031 Å, and the Cu atom just out of this plane by 0.4762 Å. The axial position of the pyramid is occupied by atom N1. For this point of view, a geometry parameter τ, which is defined τ = (β - α)/60, applicable to 5-coordinate structures within the structural continuum between trigonal bipyramidal and tetragonal or rectangular pyramidal. For a perfect tetragonal symmetry τ is zero, and for a perfect trigonal-bipyramidal geometry τ becomes 1.0 (Addison et al. 1984). In the title compound, the largest angles within the four atoms O3, O4, O5, O6, are β = 165.11 (15)° for O5–Cu1–O6, and α = 165.00 (14)° for O3–Cu1–O4. Thus, τ is (165.11–165.00)/60 = 0.0018, indicating a 98% rectangular pyramidal geometry. The 2-(furan-2-yl)-1-((furan-2-yl)methyl) -1H-benzo[d]imidazole molecules are coordinated to CuII through their midazole N atom and occupy the axial position. Four acetate ligands act as bridges to connect the two CuII centers into a dinuclear complex across a crystallographic centre of inversion. In the ligand, the dihedral angle between furyl rings and phenyl ring are 24.50 (3)°, 55.22 (2)° and 30.84 (2) °. Selected bond distances and angles are presented in Table 1.

As seen in Fig. 2, the molecules are linked into a one-dimensional chain by intermolecular C—H···O hydrogen bonds. (Table 2).

Related literature top

For general background, see: Solomon et al. (1992). For the chemical, physical and structural properties of tripodal copper complexes, see: Malachowski et al. (1995); Mclachlan et al. (1995). For Cu—Cu distances in dimeric copper(II) carboxylate complexes, see: Liu et al. (2007). For the τ parameter, see: Addison et al. (1984).

Experimental top

furfuraldehyde (10 mmol, 960 mg) was added dropwise to a absolute ethanol (20 ml) of o-phenylenediamine (5 mmol, 547 mg). The mixture was heated under reflux with stirring for 2 h. An absolute ethanol solution (10 ml) of cupric acetate monohydrate (5 mmol, 850 mg) was then added dropwise, and the mixture was stirred at room temperature for another 20 h. The solution was filtered off, the filterate was kept at room temperature for about several weeks, after which the green crystals were obtained.

Refinement top

All H-atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.96 Å, with Uiso(H) =1.2Ueq(C).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title complex, showing 30% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal packing of the title complex, viewed approximately along the b axis.
Tetra-µ-acetato-κ8O:O'-bis{[2-(2-furyl)-1-(2-furylmethyl)- 1H-benzimidazole-κN3]copper(II)} top
Crystal data top
[Cu2(C2H3O2)4(C16H12N2O2)2]Z = 2
Mr = 891.81F(000) = 916
Triclinic, P1Dx = 1.512 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.6617 (15) ÅCell parameters from 2908 reflections
b = 11.2779 (19) Åθ = 2.4–24.7°
c = 19.233 (2) ŵ = 1.16 mm1
α = 75.817 (1)°T = 298 K
β = 80.031 (2)°Block, green
γ = 76.168 (1)°0.48 × 0.23 × 0.12 mm
V = 1958.3 (5) Å3
Data collection top
Siemens SMART CCD area-detector
diffractometer
6802 independent reflections
Radiation source: fine-focus sealed tube4761 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ϕ and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.607, Tmax = 0.874k = 1313
10261 measured reflectionsl = 1722
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.152H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0617P)2 + 4.0885P]
where P = (Fo2 + 2Fc2)/3
6802 reflections(Δ/σ)max = 0.001
606 parametersΔρmax = 0.59 e Å3
0 restraintsΔρmin = 0.62 e Å3
Crystal data top
[Cu2(C2H3O2)4(C16H12N2O2)2]γ = 76.168 (1)°
Mr = 891.81V = 1958.3 (5) Å3
Triclinic, P1Z = 2
a = 9.6617 (15) ÅMo Kα radiation
b = 11.2779 (19) ŵ = 1.16 mm1
c = 19.233 (2) ÅT = 298 K
α = 75.817 (1)°0.48 × 0.23 × 0.12 mm
β = 80.031 (2)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
6802 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4761 reflections with I > 2σ(I)
Tmin = 0.607, Tmax = 0.874Rint = 0.023
10261 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.152H-atom parameters constrained
S = 1.02Δρmax = 0.59 e Å3
6802 reflectionsΔρmin = 0.62 e Å3
606 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.99281 (6)0.89727 (5)0.47651 (3)0.03232 (18)
Cu20.53213 (7)0.60430 (6)0.01052 (3)0.0440 (2)
N10.9845 (4)0.7264 (4)0.4396 (2)0.0365 (9)
N20.9293 (5)0.5746 (4)0.3999 (2)0.0436 (10)
N30.5831 (5)0.7740 (4)0.0330 (3)0.0551 (12)
N40.6085 (6)0.9327 (5)0.0755 (3)0.0654 (14)
O10.6522 (4)0.7372 (4)0.3768 (2)0.0650 (11)
O20.9699 (6)0.4443 (5)0.2714 (3)0.0931 (16)
O31.1457 (4)0.8153 (3)0.53831 (19)0.0480 (9)
O41.1553 (4)0.9823 (3)0.57688 (19)0.0471 (9)
O50.8573 (4)0.8762 (3)0.56612 (19)0.0487 (9)
O60.8639 (4)1.0444 (3)0.60436 (19)0.0507 (9)
O70.3864 (18)0.8787 (16)0.1965 (9)0.072 (5)0.55 (3)
O80.7106 (13)1.0211 (14)0.2262 (8)0.083 (4)0.69 (3)
O7'0.3368 (18)0.7504 (16)0.1357 (12)0.076 (6)0.45 (3)
O8'0.752 (3)1.082 (3)0.1872 (18)0.076 (9)0.31 (3)
O90.7334 (4)0.5180 (4)0.0055 (2)0.0673 (12)
O100.6774 (5)0.3442 (4)0.0174 (2)0.0682 (12)
O110.5353 (5)0.6649 (4)0.0946 (2)0.0626 (11)
O120.4755 (5)0.4963 (4)0.1098 (2)0.0628 (11)
C10.8807 (6)0.6855 (5)0.4222 (3)0.0423 (12)
C21.0751 (6)0.5432 (5)0.4036 (3)0.0430 (12)
C31.1091 (5)0.6365 (4)0.4280 (3)0.0369 (11)
C41.2510 (5)0.6321 (5)0.4367 (3)0.0462 (13)
H41.27610.69460.45270.055*
C51.3516 (6)0.5306 (5)0.4203 (3)0.0541 (14)
H51.44710.52420.42560.065*
C61.3142 (7)0.4375 (5)0.3961 (3)0.0574 (16)
H61.38590.37080.38550.069*
C71.1777 (6)0.4401 (5)0.3875 (3)0.0522 (14)
H71.15340.37700.37170.063*
C80.7319 (6)0.7505 (5)0.4262 (3)0.0463 (13)
C90.6530 (6)0.8268 (5)0.4672 (3)0.0509 (14)
H90.68200.85060.50450.061*
C100.5158 (6)0.8650 (6)0.4429 (4)0.0658 (17)
H100.43690.91830.46160.079*
C110.5204 (7)0.8118 (7)0.3896 (4)0.0720 (19)
H110.44410.82310.36340.086*
C120.8467 (6)0.4934 (5)0.3834 (3)0.0528 (14)
H12A0.74830.51430.40540.063*
H12B0.88570.40750.40560.063*
C130.8457 (7)0.5017 (6)0.3052 (3)0.0614 (16)
C140.7492 (8)0.5439 (7)0.2608 (4)0.077 (2)
H140.65540.58560.27170.093*
C150.8107 (10)0.5159 (8)0.1935 (4)0.087 (2)
H150.76610.53600.15180.104*
C160.9412 (10)0.4566 (8)0.2008 (4)0.097 (3)
H161.00660.42640.16450.117*
C171.1925 (5)0.8705 (5)0.5751 (3)0.0408 (12)
C181.3045 (7)0.7915 (6)0.6228 (4)0.0682 (18)
H18A1.36640.84240.62880.102*
H18B1.36030.72480.60070.102*
H18C1.25790.75720.66910.102*
C190.8264 (5)0.9439 (5)0.6114 (3)0.0424 (12)
C200.7392 (7)0.8957 (6)0.6811 (3)0.0714 (19)
H20A0.78890.81450.70350.107*
H20B0.64730.88980.67120.107*
H20C0.72590.95200.71310.107*
C210.5397 (7)0.8363 (6)0.0854 (4)0.0631 (17)
C220.7013 (7)0.9309 (6)0.0141 (4)0.0654 (17)
C230.8006 (8)1.0051 (6)0.0221 (4)0.076 (2)
H230.81201.07100.00410.091*
C240.8779 (8)0.9787 (7)0.0827 (5)0.082 (2)
H240.94441.02710.10670.098*
C250.8630 (8)0.8812 (7)0.1118 (4)0.079 (2)
H250.91820.86680.15470.094*
C260.7671 (7)0.8059 (6)0.0773 (4)0.0671 (18)
H260.75630.74060.09610.081*
C270.6876 (7)0.8316 (5)0.0134 (4)0.0596 (16)
C280.4355 (8)0.8056 (6)0.1463 (4)0.0667 (17)
C290.371 (2)0.705 (2)0.1747 (15)0.078 (5)0.55 (3)
H290.39070.63450.15480.093*0.55 (3)
C300.275 (3)0.719 (3)0.2356 (16)0.073 (6)0.55 (3)
H300.21770.66460.26300.088*0.55 (3)
C310.285 (3)0.832 (3)0.2461 (15)0.072 (6)0.55 (3)
H310.23000.87090.28200.086*0.55 (3)
C29'0.421 (3)0.819 (3)0.2146 (16)0.069 (6)0.45 (3)
H29'0.47820.85460.23460.083*0.45 (3)
C30'0.306 (4)0.772 (3)0.2482 (18)0.073 (8)0.45 (3)
H30'0.26890.76600.29660.088*0.45 (3)
C31'0.255 (3)0.735 (2)0.198 (2)0.077 (7)0.45 (3)
H31'0.17230.70180.20690.093*0.45 (3)
C320.5972 (8)1.0210 (6)0.1213 (4)0.0725 (19)
H32A0.50051.03830.14600.087*0.69 (3)
H32B0.62021.09890.09260.087*0.69 (3)
H32C0.50671.02390.15260.087*0.31 (3)
H32D0.59501.10360.09080.087*0.31 (3)
C330.703 (11)0.960 (6)0.175 (5)0.069 (9)0.69 (3)
C340.808 (5)0.854 (3)0.1808 (18)0.070 (6)0.69 (3)
H340.82770.79620.15130.085*0.69 (3)
C350.879 (3)0.848 (2)0.2387 (14)0.072 (5)0.69 (3)
H350.95230.78390.25710.086*0.69 (3)
C360.821 (2)0.956 (2)0.2633 (13)0.071 (5)0.69 (3)
H360.85220.97970.29990.086*0.69 (3)
C33'0.72 (2)0.992 (14)0.166 (12)0.07 (2)0.31 (3)
C34'0.783 (10)0.881 (7)0.200 (4)0.073 (13)0.31 (3)
H34'0.77850.80340.19350.088*0.31 (3)
C35'0.861 (5)0.903 (5)0.246 (3)0.067 (13)0.31 (3)
H35'0.91580.84400.27860.081*0.31 (3)
C36'0.842 (3)1.028 (4)0.235 (2)0.074 (10)0.31 (3)
H36'0.88671.06950.25830.089*0.31 (3)
C370.7653 (7)0.4081 (6)0.0139 (4)0.0640 (17)
C380.9219 (7)0.3457 (7)0.0194 (5)0.099 (3)
H38A0.97870.40470.01910.149*
H38B0.94880.31590.06350.149*
H38C0.93800.27660.02100.149*
C390.5055 (7)0.6021 (6)0.1320 (3)0.0583 (15)
C400.5108 (9)0.6544 (8)0.2121 (3)0.093 (3)
H40A0.59170.60690.23690.140*
H40B0.51990.74010.22230.140*
H40C0.42400.64970.22830.140*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0369 (3)0.0277 (3)0.0352 (3)0.0056 (2)0.0076 (2)0.0107 (2)
Cu20.0564 (4)0.0363 (4)0.0446 (4)0.0141 (3)0.0139 (3)0.0089 (3)
N10.038 (2)0.037 (2)0.039 (2)0.0074 (18)0.0056 (18)0.0167 (18)
N20.055 (3)0.039 (2)0.045 (2)0.014 (2)0.009 (2)0.017 (2)
N30.071 (3)0.042 (3)0.064 (3)0.016 (2)0.025 (3)0.016 (2)
N40.086 (4)0.050 (3)0.073 (4)0.013 (3)0.035 (3)0.021 (3)
O10.063 (3)0.071 (3)0.070 (3)0.015 (2)0.020 (2)0.022 (2)
O20.107 (4)0.104 (4)0.070 (3)0.001 (3)0.024 (3)0.034 (3)
O30.054 (2)0.039 (2)0.054 (2)0.0039 (17)0.0209 (18)0.0181 (17)
O40.057 (2)0.037 (2)0.052 (2)0.0056 (17)0.0248 (18)0.0101 (17)
O50.054 (2)0.051 (2)0.047 (2)0.0209 (18)0.0022 (18)0.0164 (18)
O60.058 (2)0.047 (2)0.047 (2)0.0133 (18)0.0108 (18)0.0192 (18)
O70.091 (9)0.061 (9)0.073 (9)0.011 (7)0.019 (6)0.029 (7)
O80.106 (7)0.072 (7)0.079 (8)0.013 (6)0.026 (6)0.028 (6)
O7'0.094 (10)0.061 (9)0.076 (12)0.003 (7)0.023 (8)0.023 (8)
O8'0.094 (14)0.068 (15)0.078 (17)0.016 (11)0.026 (12)0.026 (14)
O90.065 (3)0.052 (3)0.083 (3)0.014 (2)0.011 (2)0.007 (2)
O100.065 (3)0.057 (3)0.085 (3)0.006 (2)0.014 (2)0.023 (2)
O110.084 (3)0.057 (3)0.056 (2)0.032 (2)0.022 (2)0.003 (2)
O120.087 (3)0.066 (3)0.045 (2)0.030 (2)0.020 (2)0.007 (2)
C10.050 (3)0.039 (3)0.045 (3)0.015 (2)0.007 (2)0.016 (2)
C20.053 (3)0.039 (3)0.038 (3)0.005 (2)0.008 (2)0.015 (2)
C30.040 (3)0.036 (3)0.037 (3)0.005 (2)0.004 (2)0.014 (2)
C40.045 (3)0.047 (3)0.048 (3)0.003 (2)0.007 (2)0.017 (3)
C50.047 (3)0.056 (4)0.055 (3)0.004 (3)0.010 (3)0.016 (3)
C60.063 (4)0.046 (3)0.056 (4)0.011 (3)0.005 (3)0.020 (3)
C70.062 (4)0.043 (3)0.052 (3)0.000 (3)0.008 (3)0.020 (3)
C80.046 (3)0.050 (3)0.053 (3)0.020 (3)0.015 (3)0.015 (3)
C90.047 (3)0.051 (3)0.062 (4)0.015 (3)0.006 (3)0.021 (3)
C100.044 (3)0.066 (4)0.084 (5)0.007 (3)0.002 (3)0.018 (4)
C110.049 (4)0.081 (5)0.087 (5)0.011 (3)0.023 (4)0.013 (4)
C120.068 (4)0.049 (3)0.054 (3)0.022 (3)0.014 (3)0.020 (3)
C130.077 (4)0.058 (4)0.060 (4)0.019 (3)0.017 (4)0.023 (3)
C140.088 (5)0.079 (5)0.073 (5)0.015 (4)0.026 (4)0.022 (4)
C150.106 (6)0.091 (6)0.073 (5)0.018 (5)0.031 (5)0.023 (4)
C160.119 (7)0.106 (7)0.068 (5)0.002 (6)0.018 (5)0.037 (5)
C170.040 (3)0.040 (3)0.043 (3)0.005 (2)0.009 (2)0.010 (2)
C180.067 (4)0.056 (4)0.082 (5)0.006 (3)0.041 (4)0.011 (3)
C190.043 (3)0.040 (3)0.043 (3)0.008 (2)0.002 (2)0.009 (2)
C200.081 (5)0.070 (4)0.054 (4)0.020 (4)0.021 (3)0.012 (3)
C210.080 (4)0.050 (4)0.071 (4)0.013 (3)0.032 (4)0.018 (3)
C220.081 (5)0.050 (4)0.076 (5)0.020 (3)0.036 (4)0.008 (3)
C230.090 (5)0.060 (4)0.088 (5)0.027 (4)0.034 (4)0.008 (4)
C240.089 (5)0.066 (5)0.093 (6)0.035 (4)0.026 (5)0.006 (4)
C250.085 (5)0.070 (5)0.082 (5)0.028 (4)0.024 (4)0.003 (4)
C260.079 (5)0.056 (4)0.073 (5)0.024 (3)0.025 (4)0.005 (3)
C270.073 (4)0.046 (3)0.070 (4)0.020 (3)0.031 (4)0.009 (3)
C280.085 (5)0.054 (4)0.068 (5)0.003 (4)0.026 (4)0.024 (4)
C290.098 (14)0.058 (10)0.076 (14)0.004 (9)0.016 (11)0.021 (10)
C300.095 (15)0.061 (15)0.068 (16)0.007 (10)0.018 (12)0.023 (12)
C310.090 (14)0.059 (15)0.072 (11)0.005 (13)0.020 (9)0.025 (13)
C29'0.085 (16)0.060 (15)0.071 (14)0.012 (13)0.026 (11)0.021 (12)
C30'0.091 (19)0.06 (2)0.072 (14)0.009 (18)0.018 (12)0.020 (19)
C31'0.088 (17)0.064 (12)0.08 (2)0.007 (11)0.026 (16)0.015 (14)
C320.093 (5)0.059 (4)0.079 (5)0.014 (4)0.032 (4)0.027 (4)
C330.088 (19)0.06 (3)0.07 (2)0.019 (19)0.028 (14)0.03 (2)
C340.090 (16)0.063 (14)0.070 (16)0.016 (11)0.026 (12)0.026 (8)
C350.084 (10)0.066 (14)0.071 (9)0.014 (11)0.022 (7)0.018 (11)
C360.090 (12)0.065 (16)0.071 (12)0.017 (10)0.027 (10)0.022 (10)
C33'0.09 (4)0.06 (6)0.07 (5)0.02 (4)0.03 (3)0.03 (5)
C34'0.09 (4)0.06 (4)0.07 (4)0.02 (3)0.03 (3)0.02 (2)
C35'0.08 (3)0.06 (4)0.07 (3)0.01 (3)0.02 (2)0.02 (3)
C36'0.09 (2)0.07 (2)0.07 (2)0.016 (17)0.027 (16)0.024 (17)
C370.065 (4)0.055 (4)0.069 (4)0.012 (3)0.007 (3)0.008 (3)
C380.062 (5)0.082 (6)0.141 (8)0.003 (4)0.014 (5)0.018 (5)
C390.071 (4)0.058 (4)0.052 (4)0.025 (3)0.016 (3)0.004 (3)
C400.136 (7)0.102 (6)0.047 (4)0.054 (5)0.020 (4)0.008 (4)
Geometric parameters (Å, º) top
Cu1—O4i1.961 (3)C12—H12B0.9700
Cu1—O31.966 (3)C13—C141.300 (9)
Cu1—O51.977 (3)C14—C151.403 (10)
Cu1—O6i1.989 (3)C14—H140.9300
Cu1—N12.233 (4)C15—C161.292 (10)
Cu1—Cu1i2.7254 (11)C15—H150.9300
Cu2—O10ii1.959 (4)C16—H160.9300
Cu2—O91.964 (4)C17—C181.512 (7)
Cu2—O111.966 (4)C18—H18A0.9600
Cu2—O12ii1.967 (4)C18—H18B0.9600
Cu2—N32.241 (4)C18—H18C0.9600
Cu2—Cu2ii2.7085 (12)C19—C201.508 (7)
N1—C11.320 (6)C20—H20A0.9600
N1—C31.401 (6)C20—H20B0.9600
N2—C11.371 (6)C20—H20C0.9600
N2—C21.377 (7)C21—C281.437 (10)
N2—C121.469 (6)C22—C271.392 (8)
N3—C211.321 (8)C22—C231.404 (9)
N3—C271.398 (8)C23—C241.330 (10)
N4—C221.355 (8)C23—H230.9300
N4—C211.364 (8)C24—C251.395 (10)
N4—C321.457 (7)C24—H240.9300
O1—C111.368 (7)C25—C261.381 (9)
O1—C81.378 (6)C25—H250.9300
O2—C131.359 (8)C26—C271.387 (9)
O2—C161.399 (8)C26—H260.9300
O3—C171.247 (6)C28—C29'1.34 (3)
O4—C171.233 (6)C28—C291.37 (2)
O4—Cu1i1.961 (3)C29—C301.38 (3)
O5—C191.248 (6)C29—H290.9300
O6—C191.240 (6)C30—C311.36 (4)
O6—Cu1i1.989 (3)C30—H300.9300
O7—C311.35 (3)C31—H310.9300
O7—C281.371 (15)C29'—C30'1.34 (5)
O8—C361.35 (2)C29'—H29'0.9300
O8—C331.35 (9)C30'—C31'1.34 (5)
O7'—C31'1.32 (3)C30'—H30'0.9300
O7'—C281.323 (15)C31'—H31'0.9300
O8'—C33'1.32 (15)C32—C33'1.5 (2)
O8'—C36'1.32 (3)C32—C331.50 (10)
O9—C371.247 (7)C32—H32A0.9700
O10—C371.257 (7)C32—H32B0.9700
O10—Cu2ii1.959 (4)C32—H32C0.9700
O11—C391.234 (7)C32—H32D0.9700
O12—C391.251 (7)C33—C341.37 (10)
O12—Cu2ii1.967 (4)C34—C351.39 (5)
C1—C81.447 (7)C34—H340.9300
C2—C31.377 (7)C35—C361.37 (2)
C2—C71.396 (7)C35—H350.9300
C3—C41.397 (7)C36—H360.9300
C4—C51.375 (7)C33'—C34'1.3 (2)
C4—H40.9300C34'—C35'1.35 (10)
C5—C61.388 (8)C34'—H34'0.9300
C5—H50.9300C35'—C36'1.34 (5)
C6—C71.350 (8)C35'—H35'0.9300
C6—H60.9300C36'—H36'0.9300
C7—H70.9300C37—C381.506 (9)
C8—C91.323 (7)C38—H38A0.9600
C9—C101.416 (8)C38—H38B0.9600
C9—H90.9300C38—H38C0.9600
C10—C111.298 (9)C39—C401.505 (8)
C10—H100.9300C40—H40A0.9600
C11—H110.9300C40—H40B0.9600
C12—C131.486 (8)C40—H40C0.9600
C12—H12A0.9700
O4i—Cu1—O3165.00 (14)C19—C20—H20A109.5
O4i—Cu1—O591.84 (16)C19—C20—H20B109.5
O3—Cu1—O586.28 (16)H20A—C20—H20B109.5
O4i—Cu1—O6i87.21 (16)C19—C20—H20C109.5
O3—Cu1—O6i90.80 (16)H20A—C20—H20C109.5
O5—Cu1—O6i165.11 (15)H20B—C20—H20C109.5
O4i—Cu1—N199.23 (14)N3—C21—N4111.6 (6)
O3—Cu1—N195.76 (14)N3—C21—C28124.7 (6)
O5—Cu1—N198.95 (14)N4—C21—C28123.7 (6)
O6i—Cu1—N195.87 (14)N4—C22—C27107.3 (6)
O4i—Cu1—Cu1i82.02 (10)N4—C22—C23133.0 (6)
O3—Cu1—Cu1i82.99 (10)C27—C22—C23119.7 (7)
O5—Cu1—Cu1i80.88 (10)C24—C23—C22118.4 (7)
O6i—Cu1—Cu1i84.27 (11)C24—C23—H23120.8
N1—Cu1—Cu1i178.75 (11)C22—C23—H23120.8
O10ii—Cu2—O9165.48 (18)C23—C24—C25122.5 (7)
O10ii—Cu2—O1187.25 (18)C23—C24—H24118.8
O9—Cu2—O1188.85 (19)C25—C24—H24118.8
O10ii—Cu2—O12ii92.30 (19)C26—C25—C24120.6 (7)
O9—Cu2—O12ii87.95 (18)C26—C25—H25119.7
O11—Cu2—O12ii165.31 (17)C24—C25—H25119.7
O10ii—Cu2—N399.22 (18)C25—C26—C27117.3 (7)
O9—Cu2—N395.11 (18)C25—C26—H26121.3
O11—Cu2—N396.54 (17)C27—C26—H26121.3
O12ii—Cu2—N398.02 (17)C26—C27—C22121.5 (6)
O10ii—Cu2—Cu2ii80.40 (13)C26—C27—N3130.8 (5)
O9—Cu2—Cu2ii85.37 (13)C22—C27—N3107.7 (6)
O11—Cu2—Cu2ii85.86 (12)O7'—C28—C29'112.0 (16)
O12ii—Cu2—Cu2ii79.60 (12)O7'—C28—O7112.9 (11)
N3—Cu2—Cu2ii177.56 (13)C29'—C28—O730.2 (9)
C1—N1—C3104.9 (4)O7'—C28—C2937.5 (7)
C1—N1—Cu1133.9 (3)C29'—C28—C2985.6 (15)
C3—N1—Cu1121.2 (3)O7—C28—C29102.8 (11)
C1—N2—C2106.3 (4)O7'—C28—C21116.4 (10)
C1—N2—C12129.1 (5)C29'—C28—C21131.5 (14)
C2—N2—C12124.2 (4)O7—C28—C21122.3 (9)
C21—N3—C27106.2 (5)C29—C28—C21134.6 (10)
C21—N3—Cu2134.3 (4)C28—C29—C30113.1 (16)
C27—N3—Cu2119.5 (4)C28—C29—H29123.4
C22—N4—C21107.3 (5)C30—C29—H29123.4
C22—N4—C32123.1 (6)C31—C30—C29103 (3)
C21—N4—C32129.5 (6)C31—C30—H30128.4
C11—O1—C8104.9 (5)C29—C30—H30128.4
C13—O2—C16104.8 (6)O7—C31—C30110 (2)
C17—O3—Cu1123.4 (3)O7—C31—H31125.0
C17—O4—Cu1i125.2 (3)C30—C31—H31125.0
C19—O5—Cu1126.7 (3)C28—C29'—C30'106 (2)
C19—O6—Cu1i122.0 (3)C28—C29'—H29'127.2
C31—O7—C28110.3 (14)C30'—C29'—H29'127.2
C36—O8—C33108 (4)C31'—C30'—C29'107 (3)
C31'—O7'—C28104.3 (15)C31'—C30'—H30'126.6
C33'—O8'—C36'107 (10)C29'—C30'—H30'126.6
C37—O9—Cu2121.2 (4)O7'—C31'—C30'111 (3)
C37—O10—Cu2ii127.4 (4)O7'—C31'—H31'124.4
C39—O11—Cu2120.7 (4)C30'—C31'—H31'124.4
C39—O12—Cu2ii127.9 (4)N4—C32—C33'115 (8)
N1—C1—N2112.6 (5)N4—C32—C33106 (3)
N1—C1—C8123.8 (4)C33'—C32—C3315 (5)
N2—C1—C8123.7 (4)N4—C32—H32A110.5
C3—C2—N2106.7 (4)C33'—C32—H32A116.2
C3—C2—C7122.6 (5)C33—C32—H32A110.5
N2—C2—C7130.7 (5)N4—C32—H32B110.5
C2—C3—C4120.5 (5)C33'—C32—H32B95.3
C2—C3—N1109.5 (4)C33—C32—H32B110.5
C4—C3—N1130.1 (4)H32A—C32—H32B108.7
C5—C4—C3116.6 (5)N4—C32—H32C108.9
C5—C4—H4121.7C33'—C32—H32C108.8
C3—C4—H4121.7C33—C32—H32C101.3
C4—C5—C6121.7 (5)H32A—C32—H32C10.9
C4—C5—H5119.1H32B—C32—H32C118.4
C6—C5—H5119.1N4—C32—H32D108.5
C7—C6—C5122.5 (5)C33'—C32—H32D108.5
C7—C6—H6118.7C33—C32—H32D123.7
C5—C6—H6118.7H32A—C32—H32D96.9
C6—C7—C2116.1 (5)H32B—C32—H32D14.5
C6—C7—H7121.9H32C—C32—H32D107.3
C2—C7—H7121.9O8—C33—C34108 (7)
C9—C8—O1110.2 (5)O8—C33—C32119 (6)
C9—C8—C1133.1 (5)C34—C33—C32133 (7)
O1—C8—C1116.6 (5)C33—C34—C35108 (4)
C8—C9—C10106.4 (5)C33—C34—H34126.2
C8—C9—H9126.8C35—C34—H34126.2
C10—C9—H9126.8C36—C35—C34106 (3)
C11—C10—C9107.4 (6)C36—C35—H35126.8
C11—C10—H10126.3C34—C35—H35126.8
C9—C10—H10126.3O8—C36—C35109 (2)
C10—C11—O1111.1 (6)O8—C36—H36125.5
C10—C11—H11124.4C35—C36—H36125.5
O1—C11—H11124.4O8'—C33'—C34'110 (10)
N2—C12—C13115.0 (5)O8'—C33'—C32121 (10)
N2—C12—H12A108.5C34'—C33'—C32129 (10)
C13—C12—H12A108.5C33'—C34'—C35'107 (9)
N2—C12—H12B108.5C33'—C34'—H34'126.6
C13—C12—H12B108.5C35'—C34'—H34'126.6
H12A—C12—H12B107.5C36'—C35'—C34'107 (5)
C14—C13—O2110.0 (6)C36'—C35'—H35'126.7
C14—C13—C12135.0 (7)C34'—C35'—H35'126.7
O2—C13—C12114.8 (6)O8'—C36'—C35'110 (3)
C13—C14—C15108.3 (7)O8'—C36'—H36'125.2
C13—C14—H14125.8C35'—C36'—H36'125.2
C15—C14—H14125.8O9—C37—O10125.5 (6)
C16—C15—C14106.8 (7)O9—C37—C38117.5 (6)
C16—C15—H15126.6O10—C37—C38117.0 (6)
C14—C15—H15126.6C37—C38—H38A109.5
C15—C16—O2110.1 (7)C37—C38—H38B109.5
C15—C16—H16124.9H38A—C38—H38B109.5
O2—C16—H16124.9C37—C38—H38C109.5
O4—C17—O3126.4 (5)H38A—C38—H38C109.5
O4—C17—C18117.2 (5)H38B—C38—H38C109.5
O3—C17—C18116.4 (5)O11—C39—O12125.9 (6)
C17—C18—H18A109.5O11—C39—C40117.6 (6)
C17—C18—H18B109.5O12—C39—C40116.5 (6)
H18A—C18—H18B109.5C39—C40—H40A109.5
C17—C18—H18C109.5C39—C40—H40B109.5
H18A—C18—H18C109.5H40A—C40—H40B109.5
H18B—C18—H18C109.5C39—C40—H40C109.5
O6—C19—O5125.7 (5)H40A—C40—H40C109.5
O6—C19—C20118.2 (5)H40B—C40—H40C109.5
O5—C19—C20116.1 (5)
Symmetry codes: (i) x+2, y+2, z+1; (ii) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12B···O3iii0.972.553.426 (7)151
C31—H31···O6iv0.932.543.44 (3)166
C36—H36···O4i0.932.503.371 (19)157
Symmetry codes: (i) x+2, y+2, z+1; (iii) x+2, y+1, z+1; (iv) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formula[Cu2(C2H3O2)4(C16H12N2O2)2]
Mr891.81
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)9.6617 (15), 11.2779 (19), 19.233 (2)
α, β, γ (°)75.817 (1), 80.031 (2), 76.168 (1)
V3)1958.3 (5)
Z2
Radiation typeMo Kα
µ (mm1)1.16
Crystal size (mm)0.48 × 0.23 × 0.12
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.607, 0.874
No. of measured, independent and
observed [I > 2σ(I)] reflections
10261, 6802, 4761
Rint0.023
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.152, 1.02
No. of reflections6802
No. of parameters606
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.59, 0.62

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Cu1—O4i1.961 (3)Cu1—O6i1.989 (3)
Cu1—O31.966 (3)Cu1—N12.233 (4)
Cu1—O51.977 (3)Cu1—Cu1i2.7254 (11)
O4i—Cu1—O3165.00 (14)O5—Cu1—O6i165.11 (15)
Symmetry code: (i) x+2, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12B···O3ii0.972.553.426 (7)150.6
C31—H31···O6iii0.932.543.44 (3)165.7
C36—H36···O4i0.932.503.371 (19)156.7
Symmetry codes: (i) x+2, y+2, z+1; (ii) x+2, y+1, z+1; (iii) x+1, y+2, z+1.
 

Acknowledgements

The authors thank the National Basic Science Personnel Training Fund, administered by the Oceanographic Base of Ocean University of China, for its financial support for this project (grant No. J0730530).

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationLiu, F.-Q., Li, R.-X., Li, S.-X., Sun, L.-S. & Liu, G.-Y. (2007). Acta Cryst. E63, m2455.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMalachowski, M. R., Huynh, H. B., Tomlinson, L. J., Kelly, R. S. & Furbee, J. W. Jr (1995). J. Chem. Soc. Dalton Trans. pp. 746–751.  Google Scholar
First citationMclachlan, G. A., Fallon, G. D., Martin, R. L. & Spiccia, L. (1995). Inorg. Chem. 34, 254–258.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSolomon, E. I., Baldwin, M. J. & Lowery, M. D. (1992). Chem. Rev. 92, 521–526.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages m867-m868
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds