organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(4-Chloro­phen­yl)succinamic acid

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 7 July 2009; accepted 7 July 2009; online 11 July 2009)

In the title compound, C10H10ClNO3, the conformation of the amide O atom and the carbonyl O atom of the acid segment are anti to each other and further, they are anti to the H atoms of their adjacent –CH2 groups. The C=O and O—H bonds of the acid group are in the syn position relative to each other. In the crystal, mol­ecules are packed into infinite chains through inter­molecular N—H⋯O and O—H⋯O hydrogen bonds.

Related literature

For our study of the effect of ring and side-chain substitution on the solid-state geometry of anilides, see: Gowda et al. (2009a[Gowda, B. T., Foro, S., Saraswathi, B. S., Terao, H. & Fuess, H. (2009a). Acta Cryst. E65, o388.],b[Gowda, B. T., Foro, S., Saraswathi, B. S., Terao, H. & Fuess, H. (2009b). Acta Cryst. E65, o399.],c[Gowda, B. T., Foro, S., Saraswathi, B. S., Terao, H. & Fuess, H. (2009c). Acta Cryst. E65, o873.]). For the modes of inter­linking carboxylic acids by hydrogen bonds, see: Leiserowitz (1976[Leiserowitz, L. (1976). Acta Cryst. B32, 775-802.]). The packing of mol­ecules involving dimeric hydrogen-bonded association of each carboxyl group with a centrosymmetrically related neighbor has also been observed, see: Jagannathan et al. (1994[Jagannathan, N. R., Rajan, S. S. & Subramanian, E. (1994). J. Chem. Crystallogr. 24, 75-78.]).

[Scheme 1]

Experimental

Crystal data
  • C10H10ClNO3

  • Mr = 227.64

  • Monoclinic, P 21 /c

  • a = 15.908 (1) Å

  • b = 4.8778 (4) Å

  • c = 14.286 (1) Å

  • β = 109.787 (6)°

  • V = 1043.09 (13) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 3.16 mm−1

  • T = 299 K

  • 0.55 × 0.43 × 0.15 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.265, Tmax = 0.623

  • 3006 measured reflections

  • 1837 independent reflections

  • 1643 reflections with I > 2σ(I)

  • Rint = 0.026

  • 3 standard reflections frequency: 120 min intensity decay: 1.0%

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.121

  • S = 1.04

  • 1837 reflections

  • 143 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.819 (17) 2.117 (17) 2.931 (2) 173 (2)
O2—H2O⋯O3ii 0.85 (3) 1.85 (3) 2.693 (2) 179 (3)
Symmetry codes: (i) x, y+1, z; (ii) -x+2, -y+1, -z+3.

Data collection: CAD-4-PC (Enraf–Nonius, 1996[Enraf-Nonius (1996). CAD-4-PC. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4-PC; data reduction: REDU4 (Stoe & Cie, 1987[Stoe & Cie (1987). REDU4. Stoe & Cie GmbH, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As a part of studying the effect of ring and side chain substitutions on the solid state geometry of anilides (Gowda et al., 2009a,b,c), we report herein the crystal structure of N-(4-chlorophenyl)succinamic acid (I). The conformations of N—H and C=O bonds in the amide segment are anti to each other and the conformation of the amide oxygen and the carbonyl oxygen of the acid segment are also anti to each other and further, they are anti to the H atoms of their adjacent –CH2 groups (Fig. 1), similar to that observed in N-(4-chlorophenyl)succinamate (Gowda et al., 2009a) and N-(2-chlorophenyl)succinamic acid (Gowda et al., 2009b). The C=O and O—H bonds of the acid group are in syn position to each other. The N—H···O and O—H···O intermolecular hydrogen bonds pack the mpolecules into infinite chains in the structure (Table 1, Fig.2).

The modes of interlinking carboxylic acids by hydrogen bonds is described elsewhere (Leiserowitz, 1976). The packing of molecules involving dimeric hydrogen bonded association of each carboxyl group with a centrosymmetrically related neighbor has also been observed (Jagannathan et al., 1994).

Related literature top

For ourstudy of the effect of ring and side-chain substitution on the solid-state geometry of anilides, see: Gowda et al. (2009a,b,c). For the modes of interlinking carboxylic acids by hydrogen bonds, see: Leiserowitz (1976). The packing of molecules involving dimeric hydrogen-bonded association of each carboxyl group with a centrosymmetrically related neighbor has also been observed, see: Jagannathan et al. (1994).

Experimental top

The solution of succinic anhydride (2.5 g) in toluene (25 cc) was treated dropwise with the solution of 4-chloroaniline (2.5 g) also in toluene (20 cc) with constant stirring. The resulting mixture was stirred for about one hour and set aside for an additional hour at room temperature for completion of the reaction. The mixture was then treated with dilute hydrochloric acid to remove the unreacted 4-chloroaniline. The resultant solid N-(4-chlorophenyl)succinamic acid was filtered under suction and washed thoroughly with water to remove the unreacted succinic anhydride and succinic acid. It was recrystallized to constant melting point from ethanol. The purity of the compound was checked by elemental analysis and characterized by its infrared and NMR spectra. The single crystals used in X-ray diffraction studies were grown in ethanolic solution by slow evaporation at room temperature.

Refinement top

The H atom of the OH group was located in a diffrerence map and its position refined [O—H = 0.85 (3) Å]. The N-bound H atom was located in difference map and refined with restrained geometry to 0.86 (2) Å. The other H atoms were positioned with idealized geometry using a riding model [C—H = 0.93–0.97 Å]. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Computing details top

Data collection: CAD-4-PC (Enraf–Nonius, 1996); cell refinement: CAD-4-PC (Enraf–Nonius, 1996); data reduction: REDU4 (Stoe & Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing the atom labelling scheme. The displacement ellipsoids are drawn at the 50% probability level. The H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Molecular packing of (I) with hydrogen bonding shown as dashed lines.
N-(4-Chlorophenyl)succinamic acid top
Crystal data top
C10H10ClNO3F(000) = 472
Mr = 227.64Dx = 1.450 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54180 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 15.908 (1) Åθ = 6.6–18.1°
b = 4.8778 (4) ŵ = 3.16 mm1
c = 14.286 (1) ÅT = 299 K
β = 109.787 (6)°Prism, colourless
V = 1043.09 (13) Å30.55 × 0.43 × 0.15 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
1643 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.026
Graphite monochromatorθmax = 67.0°, θmin = 3.0°
ω/2θ scansh = 1818
Absorption correction: ψ scan
(North et al., 1968)
k = 05
Tmin = 0.265, Tmax = 0.623l = 178
3006 measured reflections3 standard reflections every 120 min
1837 independent reflections intensity decay: 1.0%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.121 w = 1/[σ2(Fo2) + (0.0621P)2 + 0.4605P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.004
1837 reflectionsΔρmax = 0.30 e Å3
143 parametersΔρmin = 0.26 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0090 (10)
Crystal data top
C10H10ClNO3V = 1043.09 (13) Å3
Mr = 227.64Z = 4
Monoclinic, P21/cCu Kα radiation
a = 15.908 (1) ŵ = 3.16 mm1
b = 4.8778 (4) ÅT = 299 K
c = 14.286 (1) Å0.55 × 0.43 × 0.15 mm
β = 109.787 (6)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1643 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.026
Tmin = 0.265, Tmax = 0.6233 standard reflections every 120 min
3006 measured reflections intensity decay: 1.0%
1837 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0421 restraint
wR(F2) = 0.121H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.30 e Å3
1837 reflectionsΔρmin = 0.26 e Å3
143 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.71205 (12)0.4065 (4)0.91702 (13)0.0401 (4)
C20.72512 (14)0.5563 (4)0.84114 (15)0.0508 (5)
H20.76750.69580.85600.061*
C30.67546 (16)0.4998 (5)0.74299 (15)0.0572 (6)
H30.68340.60280.69190.069*
C40.61449 (13)0.2907 (5)0.72194 (14)0.0498 (5)
C50.60089 (14)0.1398 (5)0.79657 (15)0.0524 (5)
H50.55910.00130.78130.063*
C60.64971 (14)0.1987 (4)0.89477 (15)0.0478 (5)
H60.64040.09810.94570.057*
C70.79738 (13)0.3002 (4)1.09135 (13)0.0410 (4)
C80.83960 (13)0.4299 (4)1.19225 (13)0.0439 (5)
H8A0.86610.60371.18440.053*
H8B0.79360.46691.22100.053*
C90.91033 (14)0.2509 (4)1.26240 (14)0.0453 (5)
H9A0.88480.07201.26550.054*
H9B0.95840.22611.23580.054*
C100.94834 (12)0.3632 (4)1.36527 (14)0.0422 (4)
N10.76140 (12)0.4779 (3)1.01677 (11)0.0448 (4)
H1N0.7718 (15)0.641 (4)1.0297 (17)0.054*
O10.79464 (12)0.0511 (3)1.08006 (11)0.0594 (5)
O21.01272 (13)0.2126 (4)1.42350 (12)0.0704 (6)
H2O1.032 (2)0.281 (6)1.481 (2)0.084*
O30.92375 (12)0.5735 (4)1.39202 (10)0.0695 (5)
Cl10.55277 (5)0.21449 (18)0.59903 (4)0.0831 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0446 (9)0.0350 (10)0.0343 (9)0.0029 (8)0.0052 (7)0.0037 (7)
C20.0572 (12)0.0453 (12)0.0449 (11)0.0117 (10)0.0109 (9)0.0018 (9)
C30.0683 (13)0.0631 (14)0.0383 (10)0.0065 (11)0.0158 (9)0.0009 (10)
C40.0457 (10)0.0640 (14)0.0353 (10)0.0035 (10)0.0081 (8)0.0096 (9)
C50.0463 (10)0.0561 (13)0.0480 (11)0.0113 (10)0.0071 (9)0.0092 (10)
C60.0508 (11)0.0496 (12)0.0382 (10)0.0095 (9)0.0089 (8)0.0018 (8)
C70.0493 (10)0.0305 (10)0.0361 (9)0.0018 (8)0.0053 (8)0.0045 (7)
C80.0554 (11)0.0318 (10)0.0348 (9)0.0005 (8)0.0024 (8)0.0044 (7)
C90.0522 (11)0.0385 (10)0.0370 (10)0.0028 (8)0.0045 (8)0.0046 (8)
C100.0461 (10)0.0382 (10)0.0367 (9)0.0020 (8)0.0068 (8)0.0002 (8)
N10.0583 (10)0.0279 (8)0.0369 (8)0.0039 (7)0.0011 (7)0.0042 (6)
O10.0879 (11)0.0271 (8)0.0449 (8)0.0005 (7)0.0014 (7)0.0053 (6)
O20.0840 (12)0.0641 (11)0.0407 (8)0.0300 (9)0.0082 (8)0.0093 (7)
O30.0830 (11)0.0628 (11)0.0412 (8)0.0300 (9)0.0070 (7)0.0147 (7)
Cl10.0851 (5)0.1153 (7)0.0360 (3)0.0133 (4)0.0037 (3)0.0179 (3)
Geometric parameters (Å, º) top
C1—C61.378 (3)C7—N11.342 (2)
C1—C21.380 (3)C7—C81.508 (2)
C1—N11.418 (2)C8—C91.506 (3)
C2—C31.384 (3)C8—H8A0.9700
C2—H20.9300C8—H8B0.9700
C3—C41.369 (3)C9—C101.491 (3)
C3—H30.9300C9—H9A0.9700
C4—C51.372 (3)C9—H9B0.9700
C4—Cl11.7373 (19)C10—O31.205 (2)
C5—C61.384 (3)C10—O21.305 (2)
C5—H50.9300N1—H1N0.819 (17)
C6—H60.9300O2—H2O0.85 (3)
C7—O11.225 (2)
C6—C1—C2119.75 (18)N1—C7—C8114.84 (15)
C6—C1—N1121.52 (18)C9—C8—C7112.54 (16)
C2—C1—N1118.68 (18)C9—C8—H8A109.1
C1—C2—C3120.3 (2)C7—C8—H8A109.1
C1—C2—H2119.9C9—C8—H8B109.1
C3—C2—H2119.9C7—C8—H8B109.1
C4—C3—C2119.3 (2)H8A—C8—H8B107.8
C4—C3—H3120.3C10—C9—C8113.89 (16)
C2—C3—H3120.3C10—C9—H9A108.8
C3—C4—C5121.03 (19)C8—C9—H9A108.8
C3—C4—Cl1119.83 (17)C10—C9—H9B108.8
C5—C4—Cl1119.14 (17)C8—C9—H9B108.8
C4—C5—C6119.6 (2)H9A—C9—H9B107.7
C4—C5—H5120.2O3—C10—O2123.09 (18)
C6—C5—H5120.2O3—C10—C9123.94 (17)
C1—C6—C5119.98 (19)O2—C10—C9112.96 (17)
C1—C6—H6120.0C7—N1—C1125.55 (16)
C5—C6—H6120.0C7—N1—H1N116.6 (17)
O1—C7—N1123.35 (17)C1—N1—H1N117.8 (17)
O1—C7—C8121.79 (17)C10—O2—H2O110 (2)
C6—C1—C2—C30.4 (3)O1—C7—C8—C926.2 (3)
N1—C1—C2—C3177.3 (2)N1—C7—C8—C9155.58 (18)
C1—C2—C3—C41.2 (4)C7—C8—C9—C10175.40 (17)
C2—C3—C4—C51.1 (4)C8—C9—C10—O32.1 (3)
C2—C3—C4—Cl1179.15 (18)C8—C9—C10—O2176.62 (19)
C3—C4—C5—C60.2 (3)O1—C7—N1—C13.3 (3)
Cl1—C4—C5—C6180.00 (17)C8—C7—N1—C1174.84 (18)
C2—C1—C6—C50.4 (3)C6—C1—N1—C742.0 (3)
N1—C1—C6—C5178.14 (19)C2—C1—N1—C7140.3 (2)
C4—C5—C6—C10.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.82 (2)2.12 (2)2.931 (2)173 (2)
O2—H2O···O3ii0.85 (3)1.85 (3)2.693 (2)179 (3)
Symmetry codes: (i) x, y+1, z; (ii) x+2, y+1, z+3.

Experimental details

Crystal data
Chemical formulaC10H10ClNO3
Mr227.64
Crystal system, space groupMonoclinic, P21/c
Temperature (K)299
a, b, c (Å)15.908 (1), 4.8778 (4), 14.286 (1)
β (°) 109.787 (6)
V3)1043.09 (13)
Z4
Radiation typeCu Kα
µ (mm1)3.16
Crystal size (mm)0.55 × 0.43 × 0.15
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.265, 0.623
No. of measured, independent and
observed [I > 2σ(I)] reflections
3006, 1837, 1643
Rint0.026
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.121, 1.04
No. of reflections1837
No. of parameters143
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.26

Computer programs: CAD-4-PC (Enraf–Nonius, 1996), REDU4 (Stoe & Cie, 1987), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.819 (17)2.117 (17)2.931 (2)173 (2)
O2—H2O···O3ii0.85 (3)1.85 (3)2.693 (2)179 (3)
Symmetry codes: (i) x, y+1, z; (ii) x+2, y+1, z+3.
 

Acknowledgements

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for extensions of his research fellowship.

References

First citationEnraf–Nonius (1996). CAD-4-PC. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationGowda, B. T., Foro, S., Saraswathi, B. S., Terao, H. & Fuess, H. (2009a). Acta Cryst. E65, o388.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Saraswathi, B. S., Terao, H. & Fuess, H. (2009b). Acta Cryst. E65, o399.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Saraswathi, B. S., Terao, H. & Fuess, H. (2009c). Acta Cryst. E65, o873.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJagannathan, N. R., Rajan, S. S. & Subramanian, E. (1994). J. Chem. Crystallogr. 24, 75–78.  CSD CrossRef CAS Web of Science Google Scholar
First citationLeiserowitz, L. (1976). Acta Cryst. B32, 775–802.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1987). REDU4. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds