metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[di­propyl­ammonium [[bis­­(benzotriazolato-κN1)zinc(II)]-μ-benzotriazolato-κ2N1:N3]]

aCollege of Science and Information, Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang, Qingdao 266109, People's Republic of China
*Correspondence e-mail: xu_li_ping@yeah.net

(Received 8 June 2009; accepted 2 July 2009; online 8 July 2009)

In the title compound, {(C6H16N)[Zn(C6H4N3)3]}n, the ZnII atom has a distorted tetra­hedral geometry defined by four N atoms from four benzotriazolate (BTA) ligands. The compound is composed of extended polymeric chains in which two BTA N atoms bridge [Zn(BTA)2] fragments along [001]. Cations and anions are linked by N—H⋯N hydrogen-bond inter­actions along [010].

Related literature

For background information on the design and synthesis of supra­molecular complexes: see Yaghi et al. (1998[Yaghi, O. M., Li, H., David, C., Richardson, D. & Groy, T. L. (1998). Acc. Chem. Res. 31, 474-484.]); Shao et al. (2008[Shao, K. Z., Zhao, Y. H., Xing, Y., Lan, Y. Q., Wang, X. L., Su, Z. M. & Wang, R. S. (2008). Cryst. Growth Des. 8, 2986-2989.]).

[Scheme 1]

Experimental

Crystal data
  • (C6H16N)[Zn(C6H4N3)3]

  • Mr = 521.93

  • Monoclinic, P 21 /c

  • a = 11.9439 (15) Å

  • b = 9.8058 (13) Å

  • c = 21.585 (3) Å

  • β = 104.212 (2)°

  • V = 2450.7 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.04 mm−1

  • T = 293 K

  • 0.35 × 0.20 × 0.06 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.286, Tmax = 0.322 (expected range = 0.835–0.940)

  • 11639 measured reflections

  • 4107 independent reflections

  • 2645 reflections with I > 2σ(I)

  • Rint = 0.075

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.095

  • S = 0.96

  • 4107 reflections

  • 316 parameters

  • H-atom parameters constrained

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.54 e Å−3

Table 1
Selected geometric parameters (Å, °)

N1—Zn1i 2.000 (3)
N3—Zn1 1.990 (3)
N6—Zn1 1.982 (3)
Zn1—N1ii 2.000 (3)
N6—Zn1—N1ii 106.15 (12)
N9—Zn1—N1ii 111.79 (12)
N3—Zn1—N1ii 113.61 (12)
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N10—H27⋯N7 0.90 1.96 2.824 (4) 160
N10—H27⋯N8 0.90 2.42 3.052 (4) 127
N10—H26⋯N4iii 0.90 1.93 2.821 (4) 171
Symmetry code: (iii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the research of supramolecular chemistry, a great interest has recently been focused on the crystal engineering of coordination frameworks due to their intriguing architectures, new topologies, intertwining phenomena and potential applications in microelectronics, nonlinear optics, ion exchange, molecular selection, molecular separation and recognition (Yaghi et al., 1998). Shao et al. report the first example of chiral [Zn(BTA)2] with a bikitaite (BIK) zeolitic topology, was successfully isolated under hydrothermal conditions (Shao et al., 2008). Here, we report the crystal and molecular structure of {[DPAH][Zn(BTA)3]}n , (I), Fig. 1 (DPAH=dipropylammonium, BTA = benzotriazolate).The Zn atom has a distorted tetrahedral geometry, defined by four N atoms from four BTA ligands. The BTA behaves as a monodentate ligand.The material is composed of one-dimensional extended polymeric chains in which two N atoms from benzotriazolate anion bridges fragment of Zn(BTA)2 in [0 0 1] direction. The cations and anions are linked by N-H···N hydrogen bond interaction in the [0 1 0 ] direction.

Related literature top

For background information on the design and synthesis of supramolecular complexes: see Yaghi et al. (1998); Shao et al. (2008).

Experimental top

A mixture of Zn(NO3)2. 6H2O (0.149 g, 0.5 mmol), BTAH (0.119 g, 1.0 mmol) in 3.0 ml DPA solution was stirred for 30 min in a 17.0 ml Teflon-lined stainless steel. The vessel was sealed and heated at 190 °C for one week. The orange block crystals were isolated by washing with ethanol and water.

Refinement top

Hydrogen atoms were placed at calculated positions (0.90–0.97 Å) and were treated as riding on their parent atoms, with U(H) set to 1.2Ueq(C/N).

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of I. Displacement ellipsoids are drawn at the 30% probability level and all H atoms have been omitted for clarity.
catena-Poly[dipropylammonium [[bis(benzotriazolato-κN1)zinc(II)]-µ- benzotriazolato-κ2N1:N3]] top
Crystal data top
(C6H16N)[Zn(C6H4N3)3]F(000) = 1088
Mr = 521.93Dx = 1.415 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 12055 reflections
a = 11.9439 (15) Åθ = 2.0–24.6°
b = 9.8058 (13) ŵ = 1.04 mm1
c = 21.585 (3) ÅT = 293 K
β = 104.212 (2)°Plate, white
V = 2450.7 (5) Å30.35 × 0.2 × 0.06 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4107 independent reflections
Radiation source: fine-focus sealed tube2645 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.075
ω scansθmax = 24.6°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1313
Tmin = 0.286, Tmax = 0.322k = 1111
11639 measured reflectionsl = 1425
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H-atom parameters constrained
S = 0.96 w = 1/[σ2(Fo2) + (0.0376P)2]
where P = (Fo2 + 2Fc2)/3
4107 reflections(Δ/σ)max = 0.001
316 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = 0.54 e Å3
Crystal data top
(C6H16N)[Zn(C6H4N3)3]V = 2450.7 (5) Å3
Mr = 521.93Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.9439 (15) ŵ = 1.04 mm1
b = 9.8058 (13) ÅT = 293 K
c = 21.585 (3) Å0.35 × 0.2 × 0.06 mm
β = 104.212 (2)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4107 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2645 reflections with I > 2σ(I)
Tmin = 0.286, Tmax = 0.322Rint = 0.075
11639 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.095H-atom parameters constrained
S = 0.96Δρmax = 0.53 e Å3
4107 reflectionsΔρmin = 0.54 e Å3
316 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6479 (3)0.3188 (4)0.83315 (16)0.0186 (9)
C20.7447 (3)0.3069 (4)0.88465 (17)0.0261 (10)
H20.78560.22560.89360.031*
C30.7760 (4)0.4204 (4)0.92092 (18)0.0299 (10)
H30.84020.41660.95540.036*
C40.7145 (3)0.5429 (4)0.90794 (17)0.0315 (10)
H40.73870.61790.93420.038*
C50.6201 (3)0.5554 (4)0.85786 (17)0.0279 (10)
H50.57930.63680.84930.033*
C60.5877 (3)0.4396 (4)0.81994 (17)0.0199 (9)
C70.1821 (3)0.4217 (3)0.60887 (17)0.0204 (9)
C80.0800 (4)0.4131 (4)0.6293 (2)0.0325 (10)
H80.07730.43880.67040.039*
C90.0156 (4)0.3656 (4)0.5864 (2)0.0380 (11)
H90.08460.35800.59880.046*
C100.0127 (4)0.3280 (4)0.5245 (2)0.0388 (11)
H100.08000.29680.49660.047*
C110.0852 (4)0.3356 (4)0.50407 (19)0.0333 (11)
H110.08660.31000.46280.040*
C120.1840 (3)0.3832 (4)0.54704 (17)0.0242 (9)
C130.1248 (3)0.4877 (4)0.83554 (17)0.0255 (10)
C140.1554 (3)0.5604 (4)0.78660 (17)0.0244 (10)
C150.0800 (4)0.6553 (4)0.75005 (18)0.0314 (10)
H150.10030.70540.71790.038*
C160.0249 (4)0.6710 (4)0.7637 (2)0.0400 (12)
H160.07740.73300.74020.048*
C170.0556 (4)0.5959 (5)0.8124 (2)0.0418 (12)
H170.12840.60870.81980.050*
C180.0170 (3)0.5059 (4)0.84886 (19)0.0346 (11)
H180.00370.45790.88150.042*
C190.2867 (4)0.0562 (4)0.8168 (2)0.0502 (13)
H200.21700.10890.80470.075*
H210.35140.11610.83130.075*
H190.29680.00510.78060.075*
C200.2788 (3)0.0409 (4)0.86994 (18)0.0338 (10)
H230.21280.10060.85520.041*
H220.26640.01090.90600.041*
C210.3860 (3)0.1259 (4)0.89145 (18)0.0282 (10)
H240.45180.06730.90850.034*
H250.40060.17560.85540.034*
C220.4728 (3)0.3076 (4)0.97182 (18)0.0310 (10)
H280.44870.37920.99670.037*
H290.50270.35060.93880.037*
C230.5670 (4)0.2259 (4)1.0144 (2)0.0379 (11)
H310.60290.16760.98850.045*
H300.53430.16811.04190.045*
C240.6569 (4)0.3179 (4)1.0548 (2)0.0414 (12)
H330.71610.26361.08180.062*
H320.62150.37511.08070.062*
H340.69050.37381.02750.062*
N10.5952 (3)0.2264 (3)0.78762 (14)0.0210 (7)
N20.5060 (3)0.2896 (3)0.74886 (15)0.0219 (7)
N30.5003 (3)0.4185 (3)0.76708 (14)0.0211 (8)
N40.2938 (3)0.4007 (3)0.54137 (14)0.0290 (8)
N50.3569 (3)0.4464 (3)0.59662 (15)0.0283 (8)
N60.2912 (2)0.4601 (3)0.63867 (13)0.0214 (7)
N70.2144 (3)0.4034 (3)0.86208 (15)0.0284 (8)
N80.2947 (3)0.4209 (3)0.82976 (14)0.0279 (8)
N90.2615 (3)0.5154 (3)0.78374 (14)0.0229 (7)
N100.3708 (3)0.2231 (3)0.94134 (14)0.0259 (8)
H260.34950.17550.97220.031*
H270.31220.27950.92380.031*
Zn10.36481 (4)0.53198 (4)0.72486 (2)0.02055 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.023 (2)0.019 (2)0.014 (2)0.0020 (18)0.0035 (17)0.0010 (17)
C20.032 (2)0.023 (2)0.020 (2)0.005 (2)0.0017 (19)0.0009 (18)
C30.035 (3)0.028 (2)0.021 (2)0.004 (2)0.004 (2)0.0037 (19)
C40.041 (3)0.028 (2)0.020 (2)0.006 (2)0.002 (2)0.005 (2)
C50.032 (2)0.025 (3)0.025 (2)0.001 (2)0.0039 (19)0.0051 (19)
C60.024 (2)0.019 (2)0.014 (2)0.0004 (18)0.0005 (17)0.0008 (16)
C70.026 (2)0.017 (2)0.015 (2)0.0019 (18)0.0014 (18)0.0017 (16)
C80.036 (3)0.032 (3)0.028 (2)0.004 (2)0.005 (2)0.0056 (19)
C90.023 (3)0.045 (3)0.044 (3)0.006 (2)0.003 (2)0.004 (2)
C100.035 (3)0.034 (3)0.035 (3)0.006 (2)0.015 (2)0.009 (2)
C110.043 (3)0.030 (3)0.020 (2)0.001 (2)0.006 (2)0.0049 (19)
C120.030 (3)0.019 (2)0.020 (2)0.0021 (19)0.0008 (19)0.0009 (18)
C130.031 (2)0.021 (2)0.024 (2)0.0039 (19)0.0065 (19)0.0049 (18)
C140.029 (2)0.024 (2)0.018 (2)0.0020 (19)0.0011 (19)0.0032 (17)
C150.039 (3)0.035 (3)0.019 (2)0.002 (2)0.006 (2)0.0032 (19)
C160.038 (3)0.042 (3)0.035 (3)0.008 (2)0.001 (2)0.003 (2)
C170.032 (3)0.047 (3)0.047 (3)0.004 (2)0.011 (2)0.010 (2)
C180.036 (3)0.040 (3)0.033 (3)0.000 (2)0.016 (2)0.002 (2)
C190.054 (3)0.056 (3)0.042 (3)0.000 (3)0.015 (3)0.010 (3)
C200.036 (3)0.041 (3)0.024 (2)0.002 (2)0.007 (2)0.007 (2)
C210.034 (3)0.031 (2)0.022 (2)0.006 (2)0.010 (2)0.0035 (19)
C220.037 (3)0.028 (2)0.028 (2)0.005 (2)0.007 (2)0.001 (2)
C230.036 (3)0.035 (3)0.039 (3)0.004 (2)0.002 (2)0.002 (2)
C240.040 (3)0.044 (3)0.037 (3)0.005 (2)0.002 (2)0.001 (2)
N10.0237 (19)0.0212 (18)0.0172 (18)0.0012 (15)0.0033 (15)0.0035 (14)
N20.0254 (18)0.0170 (17)0.0217 (17)0.0012 (14)0.0028 (14)0.0005 (14)
N30.028 (2)0.0172 (18)0.0177 (18)0.0031 (15)0.0058 (15)0.0024 (14)
N40.038 (2)0.032 (2)0.0156 (18)0.0014 (17)0.0039 (17)0.0031 (15)
N50.030 (2)0.033 (2)0.0221 (18)0.0009 (17)0.0077 (16)0.0014 (16)
N60.0252 (18)0.0213 (17)0.0174 (17)0.0031 (16)0.0047 (14)0.0004 (15)
N70.035 (2)0.029 (2)0.0232 (19)0.0002 (17)0.0106 (17)0.0042 (16)
N80.034 (2)0.030 (2)0.0195 (18)0.0002 (16)0.0051 (16)0.0053 (15)
N90.0264 (19)0.0230 (18)0.0184 (17)0.0024 (16)0.0038 (14)0.0006 (15)
N100.031 (2)0.0256 (19)0.0213 (19)0.0012 (16)0.0062 (16)0.0054 (15)
Zn10.0255 (3)0.0186 (2)0.0158 (2)0.0003 (2)0.00162 (18)0.0001 (2)
Geometric parameters (Å, º) top
C1—N11.370 (4)C19—H200.9600
C1—C61.379 (5)C19—H210.9600
C1—C21.398 (5)C19—H190.9600
C2—C31.359 (5)C20—C211.503 (5)
C2—H20.9300C20—H230.9700
C3—C41.400 (5)C20—H220.9700
C3—H30.9300C21—N101.482 (4)
C4—C51.362 (5)C21—H240.9700
C4—H40.9300C21—H250.9700
C5—C61.398 (5)C22—N101.486 (4)
C5—H50.9300C22—C231.498 (5)
C6—N31.360 (4)C22—H280.9700
C7—N61.357 (4)C22—H290.9700
C7—C121.392 (5)C23—C241.505 (5)
C7—C81.398 (5)C23—H310.9700
C8—C91.362 (5)C23—H300.9700
C8—H80.9300C24—H330.9600
C9—C101.396 (5)C24—H320.9600
C9—H90.9300C24—H340.9600
C10—C111.350 (6)N1—N21.334 (4)
C10—H100.9300N1—Zn1i2.000 (3)
C11—C121.390 (5)N2—N31.331 (4)
C11—H110.9300N3—Zn11.990 (3)
C12—N41.357 (5)N4—N51.323 (4)
C13—N71.362 (5)N5—N61.345 (4)
C13—N71.362 (5)N6—Zn11.982 (3)
C13—C141.396 (5)N7—N70.000 (7)
C13—C181.398 (5)N7—N81.327 (4)
C14—N91.358 (4)N7—N81.327 (4)
C14—C151.397 (5)N8—N80.000 (9)
C15—C161.364 (5)N8—N71.327 (4)
C15—H150.9300N8—N91.345 (4)
C16—C171.404 (6)N9—N81.345 (4)
C16—H160.9300N9—Zn11.983 (3)
C17—C181.347 (5)N10—H260.9000
C17—H170.9300N10—H270.9000
C18—H180.9300Zn1—N1ii2.000 (3)
C19—C201.512 (5)
N1—C1—C6107.2 (3)H23—C20—H22107.9
N1—C1—C2131.3 (3)N10—C21—C20109.5 (3)
C6—C1—C2121.6 (4)N10—C21—H24109.8
C3—C2—C1116.5 (4)C20—C21—H24109.8
C3—C2—H2121.7N10—C21—H25109.8
C1—C2—H2121.7C20—C21—H25109.8
C2—C3—C4122.1 (4)H24—C21—H25108.2
C2—C3—H3119.0N10—C22—C23112.6 (3)
C4—C3—H3119.0N10—C22—H28109.1
C5—C4—C3121.8 (4)C23—C22—H28109.1
C5—C4—H4119.1N10—C22—H29109.1
C3—C4—H4119.1C23—C22—H29109.1
C4—C5—C6116.6 (4)H28—C22—H29107.8
C4—C5—H5121.7C22—C23—C24110.9 (4)
C6—C5—H5121.7C22—C23—H31109.5
N3—C6—C1107.3 (3)C24—C23—H31109.5
N3—C6—C5131.3 (3)C22—C23—H30109.5
C1—C6—C5121.4 (4)C24—C23—H30109.5
N6—C7—C12106.9 (3)H31—C23—H30108.1
N6—C7—C8132.7 (3)C23—C24—H33109.5
C12—C7—C8120.4 (4)C23—C24—H32109.5
C9—C8—C7117.2 (4)H33—C24—H32109.5
C9—C8—H8121.4C23—C24—H34109.5
C7—C8—H8121.4H33—C24—H34109.5
C8—C9—C10121.8 (4)H32—C24—H34109.5
C8—C9—H9119.1N2—N1—C1107.3 (3)
C10—C9—H9119.1N2—N1—Zn1i122.6 (2)
C11—C10—C9121.7 (4)C1—N1—Zn1i130.1 (2)
C11—C10—H10119.2N3—N2—N1110.3 (3)
C9—C10—H10119.2N2—N3—C6107.9 (3)
C10—C11—C12117.6 (4)N2—N3—Zn1119.4 (2)
C10—C11—H11121.2C6—N3—Zn1132.0 (2)
C12—C11—H11121.2N5—N4—C12108.1 (3)
N4—C12—C11131.5 (4)N4—N5—N6110.2 (3)
N4—C12—C7107.2 (3)N5—N6—C7107.7 (3)
C11—C12—C7121.3 (4)N5—N6—Zn1118.1 (2)
N7—C13—N70.0 (3)C7—N6—Zn1134.2 (2)
N7—C13—C14107.7 (3)N7—N7—N80 (10)
N7—C13—C14107.7 (3)N7—N7—N80 (10)
N7—C13—C18131.2 (4)N8—N7—N80.00 (19)
N7—C13—C18131.2 (4)N7—N7—C130 (10)
C14—C13—C18121.1 (4)N8—N7—C13107.1 (3)
N9—C14—C13106.8 (3)N8—N7—C13107.1 (3)
N9—C14—C15132.2 (4)N8—N8—N70 (10)
C13—C14—C15121.0 (4)N8—N8—N70 (10)
C16—C15—C14116.9 (4)N7—N8—N70.0 (3)
C16—C15—H15121.5N8—N8—N90 (10)
C14—C15—H15121.5N7—N8—N9110.9 (3)
C15—C16—C17121.7 (4)N7—N8—N9110.9 (3)
C15—C16—H16119.2N8—N9—N80.0 (3)
C17—C16—H16119.2N8—N9—C14107.4 (3)
C18—C17—C16122.1 (4)N8—N9—C14107.4 (3)
C18—C17—H17118.9N8—N9—Zn1114.4 (2)
C16—C17—H17118.9N8—N9—Zn1114.4 (2)
C17—C18—C13117.2 (4)C14—N9—Zn1137.5 (3)
C17—C18—H18121.4C21—N10—C22116.5 (3)
C13—C18—H18121.4C21—N10—H26108.2
C20—C19—H20109.5C22—N10—H26108.2
C20—C19—H21109.5C21—N10—H27108.2
H20—C19—H21109.5C22—N10—H27108.2
C20—C19—H19109.5H26—N10—H27107.3
H20—C19—H19109.5N6—Zn1—N9111.71 (12)
H21—C19—H19109.5N6—Zn1—N3110.77 (12)
C21—C20—C19112.1 (3)N9—Zn1—N3102.96 (12)
C21—C20—H23109.2N6—Zn1—N1ii106.15 (12)
C19—C20—H23109.2N9—Zn1—N1ii111.79 (12)
C21—C20—H22109.2N3—Zn1—N1ii113.61 (12)
C19—C20—H22109.2
N1—C1—C2—C3179.1 (4)C8—C7—N6—N5178.8 (4)
C6—C1—C2—C30.2 (5)C12—C7—N6—Zn1178.4 (3)
C1—C2—C3—C40.4 (6)C8—C7—N6—Zn13.1 (6)
C2—C3—C4—C50.4 (6)C14—C13—N7—N70.0 (5)
C3—C4—C5—C60.1 (6)C18—C13—N7—N70.0 (5)
N1—C1—C6—N30.0 (4)N7—C13—N7—N80 (100)
C2—C1—C6—N3179.2 (3)C14—C13—N7—N81.7 (4)
N1—C1—C6—C5179.8 (3)C18—C13—N7—N8176.8 (4)
C2—C1—C6—C50.6 (6)N7—C13—N7—N80 (100)
C4—C5—C6—N3179.2 (4)C14—C13—N7—N81.7 (4)
C4—C5—C6—C10.6 (5)C18—C13—N7—N8176.8 (4)
N6—C7—C8—C9178.1 (4)N7—N7—N8—N80.0
C12—C7—C8—C90.3 (6)C13—N7—N8—N80.0 (9)
C7—C8—C9—C100.6 (6)N8—N7—N8—N70 (100)
C8—C9—C10—C110.6 (7)C13—N7—N8—N70 (100)
C9—C10—C11—C120.3 (6)N7—N7—N8—N90.0 (10)
C10—C11—C12—N4179.0 (4)N8—N7—N8—N90 (100)
C10—C11—C12—C70.0 (6)C13—N7—N8—N91.1 (4)
N6—C7—C12—N40.5 (4)N7—N8—N9—N80 (100)
C8—C7—C12—N4179.2 (3)N7—N8—N9—N80 (100)
N6—C7—C12—C11178.8 (3)N8—N8—N9—C140.0 (9)
C8—C7—C12—C110.0 (6)N7—N8—N9—C140.1 (4)
N7—C13—C14—N91.7 (4)N7—N8—N9—C140.1 (4)
N7—C13—C14—N91.7 (4)N8—N8—N9—Zn10.0 (9)
C18—C13—C14—N9177.0 (3)N7—N8—N9—Zn1172.1 (2)
N7—C13—C14—C15179.7 (3)N7—N8—N9—Zn1172.1 (2)
N7—C13—C14—C15179.7 (3)C13—C14—N9—N81.0 (4)
C18—C13—C14—C151.0 (6)C15—C14—N9—N8178.7 (4)
N9—C14—C15—C16176.2 (4)C13—C14—N9—N81.0 (4)
C13—C14—C15—C161.2 (6)C15—C14—N9—N8178.7 (4)
C14—C15—C16—C170.3 (6)C13—C14—N9—Zn1168.3 (3)
C15—C16—C17—C180.9 (7)C15—C14—N9—Zn19.5 (7)
C16—C17—C18—C131.2 (6)C20—C21—N10—C22175.1 (3)
N7—C13—C18—C17178.1 (4)C23—C22—N10—C2170.4 (4)
N7—C13—C18—C17178.1 (4)N5—N6—Zn1—N9170.4 (2)
C14—C13—C18—C170.2 (6)C7—N6—Zn1—N911.7 (4)
C19—C20—C21—N10177.4 (3)N5—N6—Zn1—N356.3 (3)
N10—C22—C23—C24168.0 (3)C7—N6—Zn1—N3125.8 (3)
C6—C1—N1—N20.5 (4)N5—N6—Zn1—N1ii67.5 (3)
C2—C1—N1—N2179.5 (4)C7—N6—Zn1—N1ii110.4 (3)
C6—C1—N1—Zn1i179.0 (2)N8—N9—Zn1—N6109.2 (2)
C2—C1—N1—Zn1i0.1 (6)N8—N9—Zn1—N6109.2 (2)
C1—N1—N2—N30.8 (4)C14—N9—Zn1—N659.6 (4)
Zn1i—N1—N2—N3178.7 (2)N8—N9—Zn1—N39.7 (3)
N1—N2—N3—C60.8 (4)N8—N9—Zn1—N39.7 (3)
N1—N2—N3—Zn1172.5 (2)C14—N9—Zn1—N3178.5 (4)
C1—C6—N3—N20.5 (4)N8—N9—Zn1—N1ii132.0 (2)
C5—C6—N3—N2179.7 (4)N8—N9—Zn1—N1ii132.0 (2)
C1—C6—N3—Zn1170.8 (2)C14—N9—Zn1—N1ii59.2 (4)
C5—C6—N3—Zn19.4 (6)N2—N3—Zn1—N623.7 (3)
C11—C12—N4—N5178.7 (4)C6—N3—Zn1—N6166.9 (3)
C7—C12—N4—N50.5 (4)N2—N3—Zn1—N995.9 (3)
C12—N4—N5—N60.3 (4)C6—N3—Zn1—N973.5 (3)
N4—N5—N6—C70.0 (4)N2—N3—Zn1—N1ii143.0 (2)
N4—N5—N6—Zn1178.4 (2)C6—N3—Zn1—N1ii47.6 (3)
C12—C7—N6—N50.3 (4)
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x+1, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N10—H27···N70.901.962.824 (4)160
N10—H27···N80.902.423.052 (4)127
N10—H26···N4iii0.901.932.821 (4)171
Symmetry code: (iii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula(C6H16N)[Zn(C6H4N3)3]
Mr521.93
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)11.9439 (15), 9.8058 (13), 21.585 (3)
β (°) 104.212 (2)
V3)2450.7 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.04
Crystal size (mm)0.35 × 0.2 × 0.06
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.286, 0.322
No. of measured, independent and
observed [I > 2σ(I)] reflections
11639, 4107, 2645
Rint0.075
(sin θ/λ)max1)0.586
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.095, 0.96
No. of reflections4107
No. of parameters316
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.53, 0.54

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL-Plus (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
N1—Zn1i2.000 (3)N6—Zn11.982 (3)
N3—Zn11.990 (3)Zn1—N1ii2.000 (3)
N6—Zn1—N1ii106.15 (12)N3—Zn1—N1ii113.61 (12)
N9—Zn1—N1ii111.79 (12)
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x+1, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N10—H27···N70.901.962.824 (4)159.7
N10—H27···N80.902.423.052 (4)127.0
N10—H26···N4iii0.901.932.821 (4)171.2
Symmetry code: (iii) x, y+1/2, z+1/2.
 

References

First citationBruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationShao, K. Z., Zhao, Y. H., Xing, Y., Lan, Y. Q., Wang, X. L., Su, Z. M. & Wang, R. S. (2008). Cryst. Growth Des. 8, 2986–2989.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYaghi, O. M., Li, H., David, C., Richardson, D. & Groy, T. L. (1998). Acc. Chem. Res. 31, 474–484.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds