organic compounds
3-Carboxyanilinium hemioxalate
aLaboratoire de Chimie Moléculaire, du Contrôle, de l'Environnement et des Mesures Physico-Chimiques, Faculté des Sciences Exactes, Département de Chimie, Université Mentouri de Constantine, 25000 Constantine, Algeria
*Correspondence e-mail: lamiabendjeddou@yahoo.fr
In the title compound, C7H8NO2+·0.5C2O42−, the consists of an 3-carboxyanilinium cation, and one-half of an oxalate anion, which lies on a twofold rotation axis. The crystal packing is consolidated by intermolecular N—H⋯O and O—H⋯O hydrogen bonds. The structure is built from infinite chains of cations and oxalate anions extending parallel to the b and c axes. The crystal studied was a non-merohedral twin. The ratio of the twin components refined to 0.335 (3):0.665 (3).
Related literature
Packing motifs, common patterns and hydrogen-bond networks in pure amino acids and in their crystals with organic acids are interesting for crystal engineering and for understanding structure–property relationships, see: Vijayan (1998); Nangia & Desiraju (1998); Desiraju (1997). For the structures of amino acid–carboxylic acid complexes, see: Bendjeddou et al. (2003); Cherouana et al. (2002). For bond-length data, see: Allen et al. (1987). For a description of the Cambridge Structural Database, see: Allen (2002). For graph-set motifs, see: Bernstein et al. (1995).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: KappaCCD Reference Manual (Nonius, 1998); cell DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999), PARST97 (Nardelli, 1995), Mercury (Macrae et al., 2006), POVRay (Persistence of Vision Team, 2004) and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536809026427/bx2219sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809026427/bx2219Isup2.hkl
Brown needle-shaped single crystals of (I) were grown from a saturated aqueous solution containing m-aminobenzoic and oxalic acid in a 2:1 stoichiometric ratio.
All H atoms attached to C, N and O atom were fixed geometrically and treated as riding with C—H = 0.93 Å, N—H = 0.89Å and O—H = 0.82 Å with Uiso(H) = 1.2Ueq(C,N) or Uiso(H) = 1.5Ueq(O).
Owing to the initial poor
the search for the possibility of a non-merohedral was carried out using the TwinRotMat procedure within PLATON (Spek, 2009). The crystal appears to be twinned about (1 0 0) with the rotation matrix: 1 0 1.516 0 - 1 0 0 0 - 1 The ratio of the two twin components was refined to 0.335 (3):0.665 (3).Data collection: KappaCCD Reference Manual (Nonius, 1998); cell
DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999), PARST97 (Nardelli, 1995), Mercury (Macrae et al., 2006), POVRay (Persistence of Vision Team, 2004) and PLATON (Spek, 2009).C7H8NO2+·0.5C2O42− | F(000) = 760 |
Mr = 182.15 | Dx = 1.501 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 6947 reflections |
a = 22.034 (3) Å | θ = 1.0–27.5° |
b = 10.779 (2) Å | µ = 0.12 mm−1 |
c = 6.9927 (10) Å | T = 298 K |
β = 103.918 (4)° | Prism, brown |
V = 1612.0 (4) Å3 | 0.3 × 0.1 × 0.09 mm |
Z = 8 |
Nonius KappaCCD diffractometer | 1305 reflections with > 2σ |
Radiation source: fine-focus sealed tube | Rint = 0.056 |
Graphite monochromator | θmax = 27.5°, θmin = 5.1° |
ω scans | h = −28→27 |
8434 measured reflections | k = −14→14 |
1836 independent reflections | l = −8→9 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.050 | w = 1/[σ2(Fo2) + (0.06P)2 + 0.8696P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.127 | (Δ/σ)max < 0.001 |
S = 1.02 | Δρmax = 0.23 e Å−3 |
1836 reflections | Δρmin = −0.30 e Å−3 |
119 parameters |
C7H8NO2+·0.5C2O42− | V = 1612.0 (4) Å3 |
Mr = 182.15 | Z = 8 |
Monoclinic, C2/c | Mo Kα radiation |
a = 22.034 (3) Å | µ = 0.12 mm−1 |
b = 10.779 (2) Å | T = 298 K |
c = 6.9927 (10) Å | 0.3 × 0.1 × 0.09 mm |
β = 103.918 (4)° |
Nonius KappaCCD diffractometer | 1305 reflections with > 2σ |
8434 measured reflections | Rint = 0.056 |
1836 independent reflections |
R[F2 > 2σ(F2)] = 0.050 | 0 restraints |
wR(F2) = 0.127 | H-atom parameters constrained |
S = 1.02 | Δρmax = 0.23 e Å−3 |
1836 reflections | Δρmin = −0.30 e Å−3 |
119 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1C | 0.19114 (6) | 0.20422 (15) | 0.7825 (2) | 0.0416 (4) | |
H1C | 0.1543 | 0.1925 | 0.7822 | 0.062* | |
O2C | 0.18039 (7) | 0.02007 (15) | 0.6332 (3) | 0.0454 (4) | |
O1 | 0.47841 (6) | 0.34729 (17) | 0.4737 (2) | 0.0444 (5) | |
O2 | 0.41945 (6) | 0.32562 (19) | 0.1690 (2) | 0.0511 (5) | |
N1 | 0.40615 (7) | 0.35616 (16) | 0.7510 (2) | 0.0311 (4) | |
H1N | 0.4405 | 0.3469 | 0.8473 | 0.037* | |
H2N | 0.3819 | 0.4139 | 0.7851 | 0.037* | |
H3N | 0.4167 | 0.3793 | 0.6412 | 0.037* | |
C2 | 0.27904 (9) | 0.1208 (2) | 0.6919 (3) | 0.0298 (5) | |
C6 | 0.37088 (10) | 0.0240 (2) | 0.6326 (3) | 0.0419 (6) | |
H6 | 0.3912 | −0.0462 | 0.6022 | 0.050* | |
C7 | 0.30879 (10) | 0.0167 (2) | 0.6429 (3) | 0.0363 (5) | |
H7 | 0.2873 | −0.0580 | 0.6169 | 0.044* | |
C3 | 0.31077 (8) | 0.2324 (2) | 0.7322 (3) | 0.0286 (5) | |
H3 | 0.2911 | 0.3018 | 0.7686 | 0.034* | |
C4 | 0.37232 (8) | 0.2388 (2) | 0.7174 (3) | 0.0283 (5) | |
C8 | 0.47040 (9) | 0.3362 (2) | 0.2924 (3) | 0.0299 (5) | |
C5 | 0.40230 (10) | 0.1354 (2) | 0.6675 (3) | 0.0378 (5) | |
H5 | 0.4435 | 0.1410 | 0.6575 | 0.045* | |
C1 | 0.21199 (9) | 0.1102 (2) | 0.7004 (3) | 0.0321 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1C | 0.0238 (7) | 0.0494 (10) | 0.0560 (10) | −0.0059 (6) | 0.0181 (7) | −0.0094 (8) |
O2C | 0.0338 (8) | 0.0464 (10) | 0.0578 (10) | −0.0126 (7) | 0.0145 (8) | −0.0077 (8) |
O1 | 0.0245 (7) | 0.0812 (13) | 0.0303 (8) | −0.0043 (7) | 0.0121 (6) | −0.0032 (8) |
O2 | 0.0201 (7) | 0.0984 (15) | 0.0351 (8) | −0.0040 (8) | 0.0073 (6) | −0.0016 (9) |
N1 | 0.0200 (8) | 0.0438 (11) | 0.0302 (9) | −0.0009 (7) | 0.0075 (7) | 0.0004 (8) |
C2 | 0.0244 (10) | 0.0378 (12) | 0.0278 (10) | −0.0007 (8) | 0.0072 (8) | 0.0020 (9) |
C6 | 0.0366 (12) | 0.0437 (14) | 0.0483 (13) | 0.0077 (10) | 0.0159 (11) | −0.0037 (11) |
C7 | 0.0367 (11) | 0.0375 (13) | 0.0363 (11) | −0.0045 (10) | 0.0119 (9) | −0.0022 (10) |
C3 | 0.0231 (9) | 0.0363 (12) | 0.0276 (10) | 0.0022 (8) | 0.0082 (8) | 0.0002 (9) |
C4 | 0.0218 (10) | 0.0389 (12) | 0.0237 (9) | −0.0017 (8) | 0.0045 (7) | 0.0014 (8) |
C8 | 0.0208 (10) | 0.0406 (12) | 0.0298 (10) | 0.0004 (8) | 0.0091 (8) | 0.0002 (9) |
C5 | 0.0234 (10) | 0.0525 (15) | 0.0393 (12) | 0.0020 (10) | 0.0113 (9) | −0.0004 (11) |
C1 | 0.0269 (10) | 0.0400 (13) | 0.0299 (10) | −0.0040 (9) | 0.0076 (8) | 0.0058 (10) |
O1C—C1 | 1.302 (3) | C2—C1 | 1.497 (3) |
O1C—H1C | 0.8200 | C6—C5 | 1.378 (3) |
O2C—C1 | 1.222 (2) | C6—C7 | 1.389 (3) |
O1—C8 | 1.244 (3) | C6—H6 | 0.9300 |
O2—C8 | 1.245 (2) | C7—H7 | 0.9300 |
N1—C4 | 1.459 (3) | C3—C4 | 1.386 (3) |
N1—H1N | 0.8900 | C3—H3 | 0.9300 |
N1—H2N | 0.8900 | C4—C5 | 1.382 (3) |
N1—H3N | 0.8900 | C8—C8i | 1.557 (4) |
C2—C7 | 1.384 (3) | C5—H5 | 0.9300 |
C2—C3 | 1.385 (3) | ||
C1—O1C—H1C | 109.5 | C2—C3—C4 | 118.88 (19) |
C4—N1—H1N | 109.5 | C2—C3—H3 | 120.6 |
C4—N1—H2N | 109.5 | C4—C3—H3 | 120.6 |
H1N—N1—H2N | 109.5 | C5—C4—C3 | 120.95 (19) |
C4—N1—H3N | 109.5 | C5—C4—N1 | 118.88 (17) |
H1N—N1—H3N | 109.5 | C3—C4—N1 | 120.16 (18) |
H2N—N1—H3N | 109.5 | O1—C8—O2 | 126.74 (19) |
C7—C2—C3 | 120.55 (18) | O1—C8—C8i | 117.5 (2) |
C7—C2—C1 | 118.60 (19) | O2—C8—C8i | 115.8 (2) |
C3—C2—C1 | 120.85 (18) | C6—C5—C4 | 119.77 (19) |
C5—C6—C7 | 120.0 (2) | C6—C5—H5 | 120.1 |
C5—C6—H6 | 120.0 | C4—C5—H5 | 120.1 |
C7—C6—H6 | 120.0 | O2C—C1—O1C | 124.04 (19) |
C2—C7—C6 | 119.9 (2) | O2C—C1—C2 | 121.5 (2) |
C2—C7—H7 | 120.1 | O1C—C1—C2 | 114.49 (17) |
C6—C7—H7 | 120.1 | ||
O1C—C1—C2—C3 | −12.3 (3) | C2—C3—C4—C5 | −1.3 (3) |
O1C—C1—C2—C7 | 167.71 (18) | N1—C4—C5—C6 | −179.12 (19) |
O2C—C1—C2—C3 | 167.2 (2) | C3—C4—C5—C6 | −0.3 (3) |
O2C—C1—C2—C7 | −12.9 (3) | C4—C5—C6—C7 | 1.6 (3) |
C1—C2—C3—C4 | −178.32 (19) | C5—C6—C7—C2 | −1.2 (3) |
C7—C2—C3—C4 | 1.7 (3) | O1—C8—C8i—O1i | −167.6 (2) |
C1—C2—C7—C6 | 179.58 (19) | O1—C8—C8i—O2i | 12.1 (3) |
C3—C2—C7—C6 | −0.4 (3) | O2—C8—C8i—O1i | 12.1 (3) |
C2—C3—C4—N1 | 177.46 (19) | O2—C8—C8i—O2i | −168.3 (2) |
Symmetry code: (i) −x+1, y, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1C—H1C···O2ii | 0.82 | 1.75 | 2.560 (4) | 169 |
N1—H1N···O1iii | 0.89 | 1.92 | 2.798 (2) | 169 |
N1—H2N···O2Civ | 0.89 | 1.97 | 2.856 (2) | 171 |
N1—H3N···O1 | 0.89 | 2.03 | 2.791 (2) | 143 |
Symmetry codes: (ii) −x+1/2, −y+1/2, −z+1; (iii) −x+1, y, −z+3/2; (iv) −x+1/2, y+1/2, −z+3/2. |
Experimental details
Crystal data | |
Chemical formula | C7H8NO2+·0.5C2O42− |
Mr | 182.15 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 298 |
a, b, c (Å) | 22.034 (3), 10.779 (2), 6.9927 (10) |
β (°) | 103.918 (4) |
V (Å3) | 1612.0 (4) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.12 |
Crystal size (mm) | 0.3 × 0.1 × 0.09 |
Data collection | |
Diffractometer | Nonius KappaCCD diffractometer |
Absorption correction | – |
No. of measured, independent and observed ( > 2σ) reflections | 8434, 1836, 1305 |
Rint | 0.056 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.050, 0.127, 1.02 |
No. of reflections | 1836 |
No. of parameters | 119 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.23, −0.30 |
Computer programs: KappaCCD Reference Manual (Nonius, 1998), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999), PARST97 (Nardelli, 1995), Mercury (Macrae et al., 2006), POVRay (Persistence of Vision Team, 2004) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
O1C—H1C···O2i | 0.8200 | 1.7500 | 2.560 (4) | 169.00 |
N1—H1N···O1ii | 0.8900 | 1.9200 | 2.798 (2) | 169.00 |
N1—H2N···O2Ciii | 0.8900 | 1.9700 | 2.856 (2) | 171.00 |
N1—H3N···O1 | 0.8900 | 2.0300 | 2.791 (2) | 143.00 |
Symmetry codes: (i) −x+1/2, −y+1/2, −z+1; (ii) −x+1, y, −z+3/2; (iii) −x+1/2, y+1/2, −z+3/2. |
Acknowledgements
The authors thank Dr Jean-Claude Daran of L3C for helpful discussions.
References
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L. & Orpen, A. G. (1987). J. Chem. Soc. Perkin Trans 2, pp. S1–19. CrossRef Google Scholar
Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350. CrossRef Web of Science IUCr Journals Google Scholar
Bendjeddou, L., Cherouana, A., Dahaoui, S., Benali-Cherif, N. & Lecomte, C. (2003). Acta Cryst. E59, o649–o651. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Cherouana, A., Benali-Cherif, N., Bendjeddou, L. & Merazig, H. (2002). Acta Cryst. E58, o1351–o1353. CSD CrossRef IUCr Journals Google Scholar
Desiraju, G. R. (1997). J. Chem. Soc. Chem. Commun. pp. 1475–1482. CrossRef Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Nangia, A. & Desiraju, G. R. (1998). Acta Cryst. A54, 934–944. Web of Science CrossRef CAS IUCr Journals Google Scholar
Nardelli, M. (1995). J. Appl. Cryst. 28, 659. CrossRef IUCr Journals Google Scholar
Nonius (1998). KappaCCD Reference Manual. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Persistence of Vision Team (2004). POV-RAY. Persistence of Vision Raytracer Pty Ltd, Victoria, Australia. URL: http://www.povray.org/ . Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Vijayan, M. (1998). Prog. Biophys. Mol. Biol. 52, 71–99. CrossRef Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
A comparative study of the packing motifs, common patterns and the hydrogen-bond networks in crystals of pure amino acids and in their crystals with organic acids is interesting for crystal engineering and for understanding structure-property relation ships (Vijayan (1998), Nangia & Desiraju (1998), Desiraju (1997)). Amino acids crystallize easily with organic acids in general and with oxalic acid in particular. These systems are interesting as molecular materials which exhibit nonlinear optical properties.
The present study, which reports the crystal structure of 3-carboxyanilinium acid with oxalic acid, (I), forms part of a series of X-ray investigations being carried out in our laboratory on amino acid-carboxylic acid complexes. The X-ray investigations on these complexes have revealed interesting and useful data regarding the ionization states of individual molecules, their stoichiometry and intermolecular aggregation patterns (Bendjeddou et al., 2003, Cherouana et al., 2002).
Fig. 1 shows the molecular structure of (I). The amino acid molecule exists in the cationic form with a positively charged amino group and uncharged carboxylic acid group. The oxalate anion is flat and completely deprotonated and lies across a crystallographic rotation axis 2. The bond lengths and angles are all normal for their types (Allen et al., 1987).
In the title compound the ions are connected via a three-dimensional N—H···O and O—H···O hydrogen bonds network (Table 1). Unexpectedly, there are no centrosymmetric hydrogen bonded dimers between the carboxylic acid groups of adjacent 3-carboxyanilinium cations which is a characteristic feature found in most salts of 3- and 4-aminobenzoic acid (Cambridge Structural Database, Version 5.29; Allen, 2002). All ammonium H atoms are involved in hydrogen bonds with two different anions and one cation. Two of these interactions link the anions and cations in an alternating fashion into extended rings along the [001] direction, which can be described by the graph-set motif R21(5) (Bernstein et al., 1995). The combination of each N—H1N···O1 and N—H3N···O1 hydrogen bonds, with the only O—H···O which is a finit chain with a D(4) motif, generates two centrosymmetric fused rings a long [001] direction which can be described by the graph-set motif R44 (22) (Fig.2). The third interaction link the cations with the carbonyl O atom into zigzag chains along the [010] direction, which can be described by the graph-set motif C(7) (Fig.3).