organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(S)-2-[(S,E)-4-(4-Chloro­phen­yl)-1-nitro­but-3-en-2-yl]cyclo­hexa­none

aState Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China, and bDepartment of Pharmaceutical and Chemical Engineering, Taizhou College, Linhai, Zhejiang 317000, People's Republic of China
*Correspondence e-mail: boyzb@163.com

(Received 11 July 2009; accepted 23 July 2009; online 29 July 2009)

The title compound, C16H18ClNO3, was obtained by the organocatalytic asymmetric Michael addition of cyclo­hexa­none to 1-chloro-4-[(1E,3E)-4-nitro­buta-1,3-dien­yl]benzene. The double bond has an E configuration. The cyclo­hexa­none ring adopts a chair conformation. The conformation of the mol­ecule is stabilized by a weak intra­molecular C—H⋯O hydrogen bond.

Related literature

For asymmetric Michael addition reactions employing chiral organo­catalysts, see: Belot et al. (2008[Belot, S., Massaro, A., Tenti, A., Mordini, A. & Alexakis, A. (2008). Org. Lett. 10, 4557-4560.]); Dalko & Moisan (2004[Dalko, P. I. & Moisan, L. (2004). Angew. Chem. Int. Ed. 43, 5138-5175.]); Yu et al. (2009[Yu, Z., Liu, X., Zhou, L., Lin, L. & Feng, X. (2009). Angew. Chem. Int. Ed. 48, 5195-5198.]). For details of the synthesis, see: Xu et al. (2008[Xu, D., Yue, H., Luo, S., Xia, A., Zhang, S. & Xu, Z. (2008). Org. Biomol. Chem. 6, 2054-2057.]); For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C16H18ClNO3

  • Mr = 307.78

  • Orthorhombic, P 21 21 21

  • a = 5.5300 (3) Å

  • b = 8.5175 (6) Å

  • c = 34.0903 (18) Å

  • V = 1605.71 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 296 K

  • 0.48 × 0.32 × 0.28 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.879, Tmax = 0.933

  • 15644 measured reflections

  • 2148 independent reflections

  • 1391 reflections with F2 > 2σ(F2)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.124

  • S = 1.00

  • 2148 reflections

  • 192 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.27 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1486 Friedel pairs

  • Flack parameter: 0.27 (18)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H81⋯O1 0.97 2.37 3.020 (4) 124

Data collection: PROCESS-AUTO (Rigaku, 2006[Rigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku, 2007[Rigaku (2007). CrystalStructure. Rigaku Americas, The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Comment top

As one of the most important chiral carbon-carbon bond-forming processes in modern organic chemistry, the field of asymmetric Michael addition employing chiral organocatalysts has gained more and more attention and become the focus of intense research efforts (Dalko & Moisan, 2004; Belot et al., 2008; Yu et al., 2009). Consequently, we have synthesized a series of Michael adducts by employing cyclo-ketones to nitrodienes in our laboratory. We report here the crystal structure and the absolute configuration of the title compound, (I). The cyclohexanone ring adopts a chair conformation as shown by the Cremer & Pople (1975) puckering parameters [QT = 0.568 (4) Å , θ=3.9 (4)° , ϕ=355 (6) °]. The C1—C9—C10—C11 torsion angle of 175.2 (3) confirms the E configuration of the molecule with respect to the C9C10 bond. The conformation of (I) is stabilized by one weak intramolecular C—H···O hydrogen bond, Table 1, Fig 1.

Related literature top

For asymmetric Michael addition employing

chiral organocatalysts, see: Belot et al. (2008); Dalko & Moisan (2004); Yu et al. (2009). For details of the synthesis, see: Xu et al. (2008); For puckering parameters, see: Cremer & Pople (1975).

Experimental top

A 1,2-dichloroethane (0.5 ml) solution of cyclohexanone (0.25 mmol) and 1-chloro-4-((1E,3E)-4-nitrobuta-1,3-dienyl)benzene (0.25 mmol) in the presence of (S)-1-methyl-2-(pyrrolidin-2-ylmethylthio)-1H-imidazole (0.025 mmol) as amine catalyst and (R)-2-(3-(3,5-bis(trifluoromethyl)phenyl)thioureido)-2-phenylacetic acid (0.025 mmol) as acid module at room tempreture was stirred vigorously (Xu et al., 2008). After completion of the reaction, the resulted reaction mixture was purified directly by silica gel column chromatography (eluent: petroleum ether-EtOAc). Single crystals were obtained by slow evaporation of an ethanol-dichloromethane solution.

Refinement top

All carbon-bonded H atoms were placed in calculated positions with C—H = 0.93 Å (aromatic), C—H = 0.98 Å (sp2), C—H = 0.97 Å (sp3) and refined using a riding model, with Uiso(H)=1.2eq(C).

The absolute configuration of this compound is established from both the diffraction data and the absolute configuration of a similar compound reported in Xu et al. (2008), therein the organocatalyst has the same structure as in the title compound.

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 2006); cell refinement: PROCESS-AUTO (Rigaku, 2006); data reduction: CrystalStructure (Rigaku Americas, 2007); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: CrystalStructure (Rigaku Americas, 2007).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with the atomic labeling scheme; displacement ellipsoids are drawn at the 30% probability level. Dotted lines show hydrogen bonding.
(I) top
Crystal data top
C16H18ClNO3F(000) = 648.00
Mr = 307.78Dx = 1.273 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71075 Å
Hall symbol: P 2ac 2abCell parameters from 9533 reflections
a = 5.5300 (3) Åθ = 3.0–27.4°
b = 8.5175 (6) ŵ = 0.25 mm1
c = 34.0903 (18) ÅT = 296 K
V = 1605.71 (17) Å3Chunk, colourless
Z = 40.48 × 0.32 × 0.28 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1391 reflections with F2 > 2σ(F2)
Detector resolution: 10.00 pixels mm-1Rint = 0.034
ω scansθmax = 27.4°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 76
Tmin = 0.879, Tmax = 0.933k = 1111
15644 measured reflectionsl = 4344
2148 independent reflections
Refinement top
Refinement on F2(Δ/σ)max = 0.001
R[F2 > 2σ(F2)] = 0.044Δρmax = 0.22 e Å3
wR(F2) = 0.124Δρmin = 0.27 e Å3
S = 1.00Extinction correction: SHELXL97 (Sheldrick, 2008)
2148 reflectionsExtinction coefficient: 0.027 (2)
192 parametersAbsolute structure: Flack (1983), 1486 Friedel pairs
H-atom parameters constrainedAbsolute structure parameter: 0.27 (18)
w = 1/[σ2(Fo2) + (0.032P)2 + 1.2P]
where P = (Fo2 + 2Fc2)/3
Crystal data top
C16H18ClNO3V = 1605.71 (17) Å3
Mr = 307.78Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.5300 (3) ŵ = 0.25 mm1
b = 8.5175 (6) ÅT = 296 K
c = 34.0903 (18) Å0.48 × 0.32 × 0.28 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2148 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1391 reflections with F2 > 2σ(F2)
Tmin = 0.879, Tmax = 0.933Rint = 0.034
15644 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.124Δρmax = 0.22 e Å3
S = 1.00Δρmin = 0.27 e Å3
2148 reflectionsAbsolute structure: Flack (1983), 1486 Friedel pairs
192 parametersAbsolute structure parameter: 0.27 (18)
Special details top

Geometry. ENTER SPECIAL DETAILS OF THE MOLECULAR GEOMETRY

Refinement. Refinement using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.6163 (3)0.6280 (2)1.07164 (3)0.1211 (6)
O10.9458 (5)0.1436 (3)0.77121 (8)0.0735 (8)
O21.2699 (5)0.5169 (4)0.83637 (10)0.0841 (9)
O30.9882 (6)0.6855 (3)0.84395 (12)0.1019 (12)
N11.0607 (6)0.5581 (4)0.83299 (10)0.0633 (8)
C10.8554 (6)0.3047 (4)0.84336 (9)0.0497 (8)
C20.6749 (6)0.1873 (4)0.82559 (9)0.0486 (7)
C30.6291 (9)0.0456 (4)0.85244 (10)0.0705 (12)
C40.4412 (9)0.0647 (5)0.83580 (12)0.0801 (13)
C50.5077 (9)0.1218 (5)0.79532 (12)0.0764 (12)
C60.5632 (7)0.0143 (4)0.76796 (10)0.0643 (10)
C70.7474 (7)0.1200 (4)0.78612 (10)0.0532 (8)
C80.8838 (7)0.4463 (4)0.81622 (10)0.0562 (9)
C90.7707 (7)0.3624 (4)0.88279 (9)0.0552 (8)
C100.8919 (7)0.3590 (4)0.91561 (10)0.0601 (9)
C110.8194 (7)0.4250 (4)0.95375 (10)0.0596 (9)
C120.6144 (9)0.5173 (5)0.95838 (12)0.0754 (12)
C130.5508 (9)0.5783 (5)0.99460 (12)0.0809 (13)
C140.6932 (9)0.5491 (5)1.02636 (12)0.0754 (12)
C150.8973 (10)0.4591 (6)1.02286 (12)0.0837 (14)
C160.9577 (8)0.3972 (5)0.98675 (11)0.0726 (12)
H11.01270.25310.84640.060*
H20.52060.24210.82210.058*
H90.61590.40480.88390.066*
H101.04150.30920.91480.072*
H120.51770.53860.93670.090*
H130.41180.63890.99720.097*
H150.99430.43981.04460.100*
H161.09520.33500.98460.087*
H310.77950.01140.85580.085*
H320.57370.08330.87770.085*
H410.42590.15460.85310.096*
H420.28750.01010.83440.096*
H510.37370.18160.78470.092*
H520.64930.18860.79720.092*
H610.62550.02630.74340.077*
H620.41620.07320.76310.077*
H810.94030.41110.79080.067*
H820.72870.49810.81330.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1546 (14)0.1453 (13)0.0635 (6)0.0040 (13)0.0179 (8)0.0299 (7)
O10.0658 (17)0.0833 (19)0.0716 (16)0.0074 (17)0.0162 (14)0.0129 (15)
O20.0494 (16)0.086 (2)0.117 (2)0.0064 (16)0.0101 (17)0.006 (2)
O30.087 (2)0.0605 (17)0.158 (3)0.005 (2)0.018 (2)0.023 (2)
N10.0585 (19)0.0535 (18)0.078 (2)0.0089 (18)0.0045 (18)0.0029 (17)
C10.0521 (19)0.0498 (18)0.0472 (16)0.0037 (18)0.0020 (16)0.0009 (15)
C20.0516 (18)0.0480 (18)0.0462 (15)0.0035 (17)0.0013 (15)0.0015 (14)
C30.101 (3)0.061 (2)0.0486 (18)0.032 (2)0.001 (2)0.0005 (17)
C40.109 (3)0.067 (2)0.064 (2)0.037 (2)0.000 (2)0.003 (2)
C50.095 (3)0.058 (2)0.076 (2)0.010 (2)0.009 (2)0.009 (2)
C60.072 (2)0.068 (2)0.0534 (19)0.009 (2)0.0023 (19)0.0126 (18)
C70.057 (2)0.053 (2)0.0501 (17)0.0003 (19)0.0022 (17)0.0014 (16)
C80.060 (2)0.050 (2)0.0583 (19)0.014 (2)0.0097 (18)0.0038 (16)
C90.058 (2)0.055 (2)0.0526 (17)0.0046 (19)0.0029 (17)0.0023 (17)
C100.063 (2)0.064 (2)0.0537 (18)0.005 (2)0.0053 (18)0.0025 (17)
C110.064 (2)0.060 (2)0.0547 (19)0.005 (2)0.0032 (18)0.0040 (17)
C120.079 (2)0.089 (3)0.058 (2)0.010 (2)0.006 (2)0.006 (2)
C130.085 (3)0.089 (3)0.069 (2)0.014 (3)0.002 (2)0.012 (2)
C140.090 (3)0.079 (2)0.058 (2)0.012 (3)0.006 (2)0.007 (2)
C150.097 (3)0.101 (3)0.053 (2)0.006 (3)0.011 (2)0.005 (2)
C160.075 (2)0.085 (3)0.059 (2)0.004 (2)0.011 (2)0.003 (2)
Geometric parameters (Å, º) top
Cl1—C141.736 (4)C14—C151.370 (7)
O1—C71.226 (4)C15—C161.380 (5)
O2—N11.214 (4)C1—H10.980
O3—N11.216 (4)C2—H20.980
N1—C81.480 (5)C3—H310.970
C1—C21.537 (4)C3—H320.970
C1—C81.528 (4)C4—H410.970
C1—C91.506 (4)C4—H420.970
C2—C31.536 (5)C5—H510.970
C2—C71.516 (4)C5—H520.970
C3—C41.512 (6)C6—H610.970
C4—C51.509 (5)C6—H620.970
C5—C61.519 (5)C8—H810.970
C6—C71.494 (5)C8—H820.970
C9—C101.305 (4)C9—H90.930
C10—C111.472 (5)C10—H100.930
C11—C121.389 (6)C12—H120.930
C11—C161.381 (5)C13—H130.930
C12—C131.385 (6)C15—H150.930
C13—C141.362 (6)C16—H160.930
O2—N1—O3122.9 (3)C2—C3—H32108.8
O2—N1—C8118.7 (3)C4—C3—H31108.8
O3—N1—C8118.4 (3)C4—C3—H32108.8
C2—C1—C8110.0 (2)H31—C3—H32109.5
C2—C1—C9111.2 (2)C3—C4—H41108.8
C8—C1—C9108.3 (2)C3—C4—H42108.8
C1—C2—C3112.5 (2)C5—C4—H41108.8
C1—C2—C7115.1 (2)C5—C4—H42108.8
C3—C2—C7106.0 (2)H41—C4—H42109.5
C2—C3—C4112.2 (3)C4—C5—H51109.0
C3—C4—C5112.1 (3)C4—C5—H52109.0
C4—C5—C6111.4 (3)C6—C5—H51109.0
C5—C6—C7110.1 (3)C6—C5—H52109.0
O1—C7—C2122.9 (3)H51—C5—H52109.5
O1—C7—C6122.5 (3)C5—C6—H61109.3
C2—C7—C6114.5 (3)C5—C6—H62109.3
N1—C8—C1110.0 (2)C7—C6—H61109.3
C1—C9—C10126.8 (3)C7—C6—H62109.3
C9—C10—C11127.5 (3)H61—C6—H62109.5
C10—C11—C12122.6 (3)N1—C8—H81109.3
C10—C11—C16120.2 (3)N1—C8—H82109.3
C12—C11—C16117.2 (3)C1—C8—H81109.3
C11—C12—C13121.4 (4)C1—C8—H82109.3
C12—C13—C14119.6 (4)H81—C8—H82109.5
Cl1—C14—C13119.6 (3)C1—C9—H9116.6
Cl1—C14—C15119.7 (3)C10—C9—H9116.6
C13—C14—C15120.6 (4)C9—C10—H10116.2
C14—C15—C16119.4 (4)C11—C10—H10116.2
C11—C16—C15121.8 (4)C11—C12—H12119.3
C2—C1—H1109.1C13—C12—H12119.3
C8—C1—H1109.1C12—C13—H13120.2
C9—C1—H1109.1C14—C13—H13120.2
C1—C2—H2107.6C14—C15—H15120.3
C3—C2—H2107.6C16—C15—H15120.3
C7—C2—H2107.6C11—C16—H16119.1
C2—C3—H31108.8C15—C16—H16119.1
O2—N1—C8—C164.7 (4)C3—C4—C5—C652.9 (5)
O3—N1—C8—C1112.9 (3)C4—C5—C6—C752.5 (5)
C2—C1—C8—N1179.0 (2)C5—C6—C7—O1118.3 (4)
C8—C1—C2—C3177.3 (3)C5—C6—C7—C258.0 (4)
C8—C1—C2—C761.1 (3)C1—C9—C10—C11175.2 (3)
C2—C1—C9—C10126.2 (4)C9—C10—C11—C127.3 (6)
C9—C1—C2—C357.3 (4)C9—C10—C11—C16173.2 (4)
C9—C1—C2—C7178.8 (2)C10—C11—C12—C13179.8 (4)
C8—C1—C9—C10112.8 (4)C10—C11—C16—C15179.0 (4)
C9—C1—C8—N159.2 (3)C12—C11—C16—C150.6 (6)
C1—C2—C3—C4176.8 (3)C16—C11—C12—C130.2 (6)
C1—C2—C7—O17.5 (5)C11—C12—C13—C140.8 (7)
C1—C2—C7—C6176.2 (3)C12—C13—C14—Cl1179.0 (3)
C3—C2—C7—O1117.6 (4)C12—C13—C14—C150.5 (7)
C3—C2—C7—C658.7 (4)Cl1—C14—C15—C16179.8 (3)
C7—C2—C3—C456.6 (4)C13—C14—C15—C160.3 (6)
C2—C3—C4—C556.4 (4)C14—C15—C16—C110.8 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H81···O10.972.373.020 (4)124

Experimental details

Crystal data
Chemical formulaC16H18ClNO3
Mr307.78
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)5.5300 (3), 8.5175 (6), 34.0903 (18)
V3)1605.71 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.48 × 0.32 × 0.28
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.879, 0.933
No. of measured, independent and
observed [F2 > 2σ(F2)] reflections
15644, 2148, 1391
Rint0.034
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.124, 1.00
No. of reflections2148
No. of parameters192
No. of restraints?
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.27
Absolute structureFlack (1983), 1486 Friedel pairs
Absolute structure parameter0.27 (18)

Computer programs: PROCESS-AUTO (Rigaku, 2006), CrystalStructure (Rigaku Americas, 2007), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H81···O10.972.373.020 (4)124
 

Acknowledgements

We acknowledge the help of Professor Jianming Gu of Zhejiang University. We are also grateful for financial support by the Catalytic Hydrogenation Research Center of Zhejiang University of Technology.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBelot, S., Massaro, A., Tenti, A., Mordini, A. & Alexakis, A. (2008). Org. Lett. 10, 4557–4560.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDalko, P. I. & Moisan, L. (2004). Angew. Chem. Int. Ed. 43, 5138–5175.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2007). CrystalStructure. Rigaku Americas, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, D., Yue, H., Luo, S., Xia, A., Zhang, S. & Xu, Z. (2008). Org. Biomol. Chem. 6, 2054–2057.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYu, Z., Liu, X., Zhou, L., Lin, L. & Feng, X. (2009). Angew. Chem. Int. Ed. 48, 5195–5198.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds