organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

t-3-Ethyl-r-2,c-6-bis­­(4-meth­oxy­phen­yl)-1-nitro­sopiperidin-4-one

aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and bDepartment of Chemistry, Government Arts College (Autonomous), Coimbatore 641 018, Tamilnadu, India
*Correspondence e-mail: mnpsy2004@yahoo.com

(Received 20 May 2009; accepted 28 June 2009; online 4 July 2009)

In the title mol­ecule, C21H24N2O4, the piperidine ring adopts a distorted boat conformation with the ethyl substituent in the axial position. The dihedral angle between the two benzene rings is 70.25 (9)°. An intra­molecular C—H⋯O inter­action is observed. In the crystal, mol­ecules are linked into a chain along the c axis by C—H⋯O hydrogen bonds and the chains are linked via weak C—H⋯π inter­actions.

Related literature

For general background to 4-piperidones, see: Wang et al. (1992[Wang, C.-L. & Wuorola, M. A. (1992). Org. Prep. Proceed. Int. 24, 585-621.]); Grishina et al. (1994[Grishina, G. V., Gaidarova, E. L. & Zefirov, N. S. (1994). Chem. Heterocycl. Compd, 30, 1401-1426.]). For ring conformational analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C21H24N2O4

  • Mr = 368.42

  • Orthorhombic, P 21 21 21

  • a = 7.2742 (4) Å

  • b = 15.8459 (7) Å

  • c = 16.4800 (7) Å

  • V = 1899.59 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.25 × 0.20 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001[Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.]) Tmin = 0.978, Tmax = 0.982

  • 15051 measured reflections

  • 3334 independent reflections

  • 2550 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.107

  • S = 1.02

  • 3334 reflections

  • 244 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15C⋯O1 0.96 2.56 3.163 (4) 121
C18—H18⋯O1i 0.93 2.56 3.472 (3) 167
C23—H23BCg1ii 0.96 2.89 3.718 (2) 144
Symmetry codes: (i) [-x+{\script{5\over 2}}, -y, z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]. Cg1 is the centroid of the C16–C21 ring.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Piperidine derivatives, namely 4-piperidones, are synthetic intermediates in the preparation of various alkaloids and pharmaceutical products (Wang et al., 1992; Grishina et al., 1994).

The piperidine ring adopts a distorted boat conformation, with the ethyl substituent at C3 position in the axial orientation. The puckering parameters for the piperidine ring are q2 = 0.591 (2) Å, q3 = 0.097 (2) Å, QT = 0.599 (2) Å and ϕ2 = 73.2 (2)° (Cremer & Pople, 1975). The dihedral angle between the two benzene rings is 70.25 (9)°. The sum of the bond angles around N1 (359°) indicates sp2 hybridization. An intramolecular C—H···O interaction is observed.

The crystal structure is stabilized by intermolecular C—H···O hydrogen bonds (Table 1) which link the molecules into a chain along the c axis. The chains are linked via C—H···π interactions involving the C16-C21 ring.

Related literature top

For general background to 4-piperidones, see: Wang et al. (1992); Grishina et al. (1994). For ring conformational analysis, see: Cremer & Pople (1975). Cg1 is the centroid of the C16–C21 ring.

Experimental top

To a solution of t-3-ethyl-r-2,c-6-bis(4-methoxyphenyl)piperidin-4-one (1.69 g, 5 mmol) in chloroform (10 ml) was added conc. HCl (1.5 ml) and water (1.5 ml) and while stirring, solid NaNO2 (0.84 g,12 mmol) was added in portions during 0.5 h. The solution was stirred at room temperature for another 0.5 h. The organic layer was washed with water, saturated aqueous NaHCO3 and dried over anhydrous Na2SO4. The resulting solution was concentrated and the residue was crystallized from ethanol.

Refinement top

H atoms were positioned geometrically (C-H = 0.93–0.98 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2-1.5Ueq(C). In the absence of significant anomalous scattering effects, the Fridel pairs were averaged.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. The molecular packing of the title compound, viewed approximately along the a axis. Dashed lines indicate hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted.
t-3-Ethyl-r-2,c-6-bis(4-methoxyphenyl)-1-nitrosopiperidin-4-one top
Crystal data top
C21H24N2O4F(000) = 784
Mr = 368.42Dx = 1.288 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3334 reflections
a = 7.2742 (4) Åθ = 2.5–31.8°
b = 15.8459 (7) ŵ = 0.09 mm1
c = 16.4800 (7) ÅT = 293 K
V = 1899.59 (16) Å3Block, colourless
Z = 40.25 × 0.20 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
3334 independent reflections
Radiation source: fine-focus sealed tube2550 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω scansθmax = 31.8°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 1010
Tmin = 0.978, Tmax = 0.982k = 2316
15051 measured reflectionsl = 1524
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0555P)2 + 0.1347P]
where P = (Fo2 + 2Fc2)/3
3334 reflections(Δ/σ)max = 0.001
244 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C21H24N2O4V = 1899.59 (16) Å3
Mr = 368.42Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.2742 (4) ŵ = 0.09 mm1
b = 15.8459 (7) ÅT = 293 K
c = 16.4800 (7) Å0.25 × 0.20 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
3334 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
2550 reflections with I > 2σ(I)
Tmin = 0.978, Tmax = 0.982Rint = 0.026
15051 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 1.02Δρmax = 0.20 e Å3
3334 reflectionsΔρmin = 0.17 e Å3
244 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.2631 (2)0.06968 (12)0.09708 (10)0.0722 (5)
O20.56881 (19)0.08201 (12)0.27581 (11)0.0648 (4)
O31.2829 (2)0.26039 (11)0.42094 (11)0.0677 (5)
O40.96286 (19)0.17870 (9)0.59490 (8)0.0480 (3)
N10.82220 (18)0.02169 (10)0.24151 (9)0.0379 (3)
C20.9060 (2)0.04979 (11)0.19832 (11)0.0394 (4)
H20.80440.08520.17920.047*
C31.0038 (3)0.01651 (12)0.12220 (12)0.0431 (4)
H31.06930.06330.09620.052*
C41.1403 (3)0.05176 (12)0.14271 (12)0.0439 (4)
C51.1176 (2)0.09628 (12)0.22290 (12)0.0406 (4)
H5A1.16240.15360.21660.049*
H5B1.19670.06860.26210.049*
C60.9234 (2)0.10068 (11)0.25901 (11)0.0361 (4)
H60.85830.14690.23190.043*
N70.6402 (2)0.01792 (13)0.24877 (11)0.0523 (4)
C81.0192 (2)0.10403 (10)0.25549 (12)0.0383 (4)
C91.2088 (3)0.11160 (12)0.25259 (13)0.0452 (4)
H91.27470.08220.21340.054*
C101.3015 (3)0.16248 (13)0.30744 (13)0.0496 (5)
H101.42900.16640.30510.060*
C111.2061 (3)0.20718 (12)0.36542 (13)0.0484 (5)
C121.0155 (3)0.20026 (13)0.36894 (14)0.0516 (5)
H120.94960.23030.40770.062*
C130.9252 (3)0.14900 (12)0.31510 (13)0.0473 (5)
H130.79800.14410.31840.057*
C160.9304 (2)0.12116 (10)0.34877 (11)0.0351 (4)
C171.0182 (2)0.06863 (11)0.40442 (12)0.0407 (4)
H171.07120.01860.38650.049*
C181.0279 (2)0.08954 (12)0.48551 (11)0.0411 (4)
H181.08710.05370.52180.049*
C190.9491 (2)0.16428 (11)0.51316 (11)0.0373 (4)
C200.8647 (3)0.21793 (12)0.45857 (11)0.0415 (4)
H200.81420.26860.47620.050*
C210.8557 (2)0.19574 (11)0.37750 (12)0.0402 (4)
H210.79770.23200.34120.048*
C221.4718 (4)0.28172 (19)0.41023 (18)0.0810 (8)
H22A1.50950.31960.45250.122*
H22B1.54510.23140.41250.122*
H22C1.48810.30850.35850.122*
C230.8815 (3)0.25378 (15)0.62544 (14)0.0602 (6)
H23A0.89980.25670.68310.090*
H23B0.75210.25350.61390.090*
H23C0.93750.30190.60000.090*
C140.8639 (4)0.02004 (17)0.06142 (14)0.0644 (6)
H14A0.75620.01600.06040.077*
H14B0.82550.07530.08020.077*
C150.9381 (5)0.0281 (2)0.02394 (16)0.0977 (10)
H15A0.84460.05120.05860.147*
H15B0.97370.02650.04360.147*
H15C1.04300.06490.02380.147*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0685 (10)0.0868 (12)0.0614 (10)0.0296 (9)0.0256 (9)0.0182 (9)
O20.0365 (7)0.0822 (10)0.0758 (11)0.0125 (7)0.0027 (7)0.0142 (10)
O30.0698 (10)0.0673 (10)0.0660 (10)0.0246 (8)0.0030 (9)0.0130 (9)
O40.0508 (8)0.0563 (8)0.0369 (7)0.0020 (6)0.0037 (6)0.0045 (6)
N10.0286 (6)0.0435 (7)0.0416 (8)0.0018 (6)0.0024 (6)0.0043 (7)
C20.0366 (8)0.0379 (8)0.0436 (10)0.0058 (7)0.0018 (7)0.0076 (8)
C30.0489 (10)0.0419 (8)0.0386 (10)0.0050 (8)0.0007 (8)0.0061 (8)
C40.0426 (9)0.0461 (9)0.0429 (10)0.0062 (8)0.0033 (8)0.0022 (9)
C50.0368 (8)0.0413 (9)0.0437 (10)0.0063 (7)0.0010 (7)0.0054 (8)
C60.0340 (7)0.0357 (8)0.0384 (10)0.0006 (6)0.0017 (7)0.0023 (8)
N70.0310 (7)0.0675 (11)0.0585 (11)0.0007 (8)0.0035 (7)0.0043 (9)
C80.0381 (8)0.0340 (8)0.0427 (10)0.0032 (6)0.0031 (7)0.0075 (8)
C90.0404 (9)0.0447 (10)0.0505 (11)0.0009 (7)0.0062 (8)0.0027 (9)
C100.0394 (9)0.0521 (10)0.0574 (13)0.0091 (8)0.0038 (9)0.0057 (10)
C110.0527 (11)0.0431 (9)0.0495 (12)0.0111 (8)0.0008 (9)0.0020 (10)
C120.0532 (11)0.0494 (10)0.0521 (12)0.0015 (9)0.0085 (10)0.0030 (10)
C130.0387 (9)0.0458 (10)0.0573 (13)0.0034 (8)0.0039 (9)0.0017 (10)
C160.0296 (7)0.0377 (8)0.0381 (9)0.0008 (6)0.0025 (6)0.0011 (8)
C170.0403 (9)0.0364 (8)0.0455 (10)0.0067 (7)0.0038 (8)0.0025 (8)
C180.0395 (9)0.0412 (9)0.0426 (10)0.0027 (7)0.0063 (7)0.0049 (8)
C190.0309 (7)0.0441 (9)0.0369 (9)0.0032 (7)0.0008 (7)0.0033 (8)
C200.0413 (9)0.0393 (8)0.0439 (10)0.0085 (7)0.0012 (8)0.0052 (8)
C210.0381 (9)0.0403 (8)0.0422 (10)0.0093 (7)0.0046 (7)0.0011 (8)
C220.0746 (17)0.0949 (19)0.0736 (17)0.0407 (15)0.0056 (14)0.0020 (16)
C230.0586 (12)0.0756 (14)0.0465 (12)0.0077 (11)0.0004 (10)0.0187 (12)
C140.0659 (13)0.0755 (15)0.0517 (13)0.0138 (12)0.0142 (11)0.0046 (12)
C150.117 (3)0.129 (3)0.0469 (15)0.005 (2)0.0102 (16)0.0193 (18)
Geometric parameters (Å, º) top
O1—C41.202 (2)C11—C121.392 (3)
O2—N71.225 (2)C12—C131.370 (3)
O3—C111.364 (3)C12—H120.93
O3—C221.426 (3)C13—H130.93
O4—C191.370 (2)C16—C211.384 (2)
O4—C231.421 (2)C16—C171.394 (2)
N1—N71.331 (2)C17—C181.379 (3)
N1—C21.470 (2)C17—H170.93
N1—C61.481 (2)C18—C191.392 (3)
C2—C81.518 (3)C18—H180.93
C2—C31.536 (3)C19—C201.382 (3)
C2—H20.98C20—C211.383 (3)
C3—C41.506 (3)C20—H200.93
C3—C141.541 (3)C21—H210.93
C3—H30.98C22—H22A0.96
C4—C51.507 (3)C22—H22B0.96
C5—C61.535 (2)C22—H22C0.96
C5—H5A0.97C23—H23A0.96
C5—H5B0.97C23—H23B0.96
C6—C161.515 (3)C23—H23C0.96
C6—H60.98C14—C151.512 (4)
C8—C91.385 (3)C14—H14A0.97
C8—C131.393 (3)C14—H14B0.97
C9—C101.386 (3)C15—H15A0.96
C9—H90.93C15—H15B0.96
C10—C111.377 (3)C15—H15C0.96
C10—H100.93
C11—O3—C22117.3 (2)C11—C12—H12120.1
C19—O4—C23117.23 (16)C12—C13—C8121.65 (18)
N7—N1—C2114.93 (15)C12—C13—H13119.2
N7—N1—C6121.01 (16)C8—C13—H13119.2
C2—N1—C6122.65 (13)C21—C16—C17117.70 (17)
N1—C2—C8111.15 (14)C21—C16—C6120.23 (15)
N1—C2—C3108.85 (14)C17—C16—C6122.00 (15)
C8—C2—C3116.74 (15)C18—C17—C16121.19 (16)
N1—C2—H2106.5C18—C17—H17119.4
C8—C2—H2106.5C16—C17—H17119.4
C3—C2—H2106.5C17—C18—C19120.04 (17)
C4—C3—C2111.62 (15)C17—C18—H18120.0
C4—C3—C14108.13 (17)C19—C18—H18120.0
C2—C3—C14110.74 (17)O4—C19—C20124.75 (17)
C4—C3—H3108.8O4—C19—C18115.70 (16)
C2—C3—H3108.8C20—C19—C18119.55 (17)
C14—C3—H3108.8C19—C20—C21119.58 (16)
O1—C4—C3121.27 (18)C19—C20—H20120.2
O1—C4—C5121.28 (17)C21—C20—H20120.2
C3—C4—C5117.44 (16)C20—C21—C16121.92 (17)
C4—C5—C6117.51 (15)C20—C21—H21119.0
C4—C5—H5A107.9C16—C21—H21119.0
C6—C5—H5A107.9O3—C22—H22A109.5
C4—C5—H5B107.9O3—C22—H22B109.5
C6—C5—H5B107.9H22A—C22—H22B109.5
H5A—C5—H5B107.2O3—C22—H22C109.5
N1—C6—C16112.83 (15)H22A—C22—H22C109.5
N1—C6—C5110.11 (14)H22B—C22—H22C109.5
C16—C6—C5110.94 (14)O4—C23—H23A109.5
N1—C6—H6107.6O4—C23—H23B109.5
C16—C6—H6107.6H23A—C23—H23B109.5
C5—C6—H6107.6O4—C23—H23C109.5
O2—N7—N1114.66 (17)H23A—C23—H23C109.5
C9—C8—C13117.96 (18)H23B—C23—H23C109.5
C9—C8—C2124.60 (17)C15—C14—C3113.7 (2)
C13—C8—C2117.44 (16)C15—C14—H14A108.8
C8—C9—C10120.83 (19)C3—C14—H14A108.8
C8—C9—H9119.6C15—C14—H14B108.8
C10—C9—H9119.6C3—C14—H14B108.8
C11—C10—C9120.40 (18)H14A—C14—H14B107.7
C11—C10—H10119.8C14—C15—H15A109.5
C9—C10—H10119.8C14—C15—H15B109.5
O3—C11—C10125.24 (18)H15A—C15—H15B109.5
O3—C11—C12115.4 (2)C14—C15—H15C109.5
C10—C11—C12119.37 (19)H15A—C15—H15C109.5
C13—C12—C11119.8 (2)H15B—C15—H15C109.5
C13—C12—H12120.1
N7—N1—C2—C8111.25 (18)C8—C9—C10—C110.7 (3)
C6—N1—C2—C882.2 (2)C22—O3—C11—C1010.4 (3)
N7—N1—C2—C3118.82 (18)C22—O3—C11—C12168.6 (2)
C6—N1—C2—C347.7 (2)C9—C10—C11—O3178.42 (19)
N1—C2—C3—C454.76 (19)C9—C10—C11—C120.6 (3)
C8—C2—C3—C472.04 (19)O3—C11—C12—C13179.33 (18)
N1—C2—C3—C1465.78 (19)C10—C11—C12—C130.2 (3)
C8—C2—C3—C14167.43 (16)C11—C12—C13—C81.0 (3)
C2—C3—C4—O1159.7 (2)C9—C8—C13—C120.9 (3)
C14—C3—C4—O178.2 (3)C2—C8—C13—C12179.36 (17)
C2—C3—C4—C519.8 (2)N1—C6—C16—C21119.97 (17)
C14—C3—C4—C5102.2 (2)C5—C6—C16—C21115.94 (18)
O1—C4—C5—C6153.2 (2)N1—C6—C16—C1763.0 (2)
C3—C4—C5—C627.2 (2)C5—C6—C16—C1761.1 (2)
N7—N1—C6—C1672.0 (2)C21—C16—C17—C181.0 (3)
C2—N1—C6—C16122.28 (17)C6—C16—C17—C18178.05 (17)
N7—N1—C6—C5163.49 (17)C16—C17—C18—C190.0 (3)
C2—N1—C6—C52.3 (2)C23—O4—C19—C201.0 (3)
C4—C5—C6—N136.3 (2)C23—O4—C19—C18179.06 (16)
C4—C5—C6—C16161.94 (15)C17—C18—C19—O4178.80 (17)
C2—N1—N7—O2171.53 (17)C17—C18—C19—C201.3 (3)
C6—N1—N7—O24.7 (3)O4—C19—C20—C21178.57 (18)
N1—C2—C8—C9112.31 (19)C18—C19—C20—C211.5 (3)
C3—C2—C8—C913.3 (3)C19—C20—C21—C160.5 (3)
N1—C2—C8—C1367.46 (19)C17—C16—C21—C200.7 (3)
C3—C2—C8—C13166.89 (16)C6—C16—C21—C20177.86 (17)
C13—C8—C9—C100.0 (3)C4—C3—C14—C1575.9 (3)
C2—C8—C9—C10179.80 (17)C2—C3—C14—C15161.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15C···O10.962.563.163 (4)121
C18—H18···O1i0.932.563.472 (3)167
C23—H23B···Cg1ii0.962.893.718 (2)144
Symmetry codes: (i) x+5/2, y, z+1/2; (ii) x1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC21H24N2O4
Mr368.42
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)7.2742 (4), 15.8459 (7), 16.4800 (7)
V3)1899.59 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.25 × 0.20 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.978, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
15051, 3334, 2550
Rint0.026
(sin θ/λ)max1)0.741
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.107, 1.02
No. of reflections3334
No. of parameters244
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.17

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15C···O10.962.563.163 (4)121
C18—H18···O1i0.932.563.472 (3)167
C23—H23B···Cg1ii0.962.893.718 (2)144
Symmetry codes: (i) x+5/2, y, z+1/2; (ii) x1/2, y+1/2, z+1.
 

Acknowledgements

TK thanks Dr Babu Varghese, SAIF, IIT-Madras, Chennai, India, for his help with the data collection. SP thanks the UGC, India, for financial support.

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGrishina, G. V., Gaidarova, E. L. & Zefirov, N. S. (1994). Chem. Heterocycl. Compd, 30, 1401–1426.  CrossRef Google Scholar
First citationSheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, C.-L. & Wuorola, M. A. (1992). Org. Prep. Proceed. Int. 24, 585–621.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds