organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[2-Benzoyl-3,3-bis­­(methyl­sulfan­yl)prop-2-enyl­­idene]malono­nitrile

aSchool of Pure and Applied Physics, Mahatma Gandhi University, Kottayam, Kerala, India, and bSchool of Chemical Sciences, Mahatma Gandhi University, Kottayam, Kerala, India
*Correspondence e-mail: csudarsan1@sify.com

(Received 2 June 2009; accepted 26 June 2009; online 1 July 2009)

The title compound, C15H12N2OS2, is an example of a push–pull butadiene in which the electron-releasing methyl­sulfanyl groups and electron-withdrawing nitrile groups on either end of the butadiene chain enhance the conjugation in the system. Short intra­molecular C—H⋯S inter­actions are observed. In the crystal structure, an O⋯C short contact of 2.917 (3) Å is observed.

Related literature

The title compound was obtained during the synthesis of pyr­idene derivatives, see: Anabha & Asokan (2006[Anabha, E. R. & Asokan, C. V. (2006). Synthesis, pp. 151-155.]). In push–pull butadienes, the C=C double bonds usually become more polarized due to π-electron delocalization (Dahne, 1978[Dahne, S. (1978). Science, 199, 1163-1167.]; Michalik et al., 2002[Michalik, M., Freier, T., Reinke, H. & Peseke, K. (2002). J. Chem. Soc. Perkin Trans. 2, pp. 114-119.]). For related structures, see: Dastidar et al. (1993[Dastidar, P., Guru Row, T. N. & Venkatesan, K. (1993). Acta Cryst. B49, 900-905.]); Freier et al. (1999[Freier, T., Michalik, M. & Peseke, K. (1999). J. Chem. Soc. Perkin Trans. 2, pp. 1265-1271.]); Homrighausen & Krause Bauer (2004[Homrighausen, C. L. & Krause Bauer, J. A. (2004). Acta Cryst. E60, o1828-o1829.]).

[Scheme 1]

Experimental

Crystal data
  • C15H12N2OS2

  • Mr = 300.39

  • Monoclinic, P 21 /c

  • a = 5.6557 (2) Å

  • b = 8.5153 (3) Å

  • c = 31.4726 (11) Å

  • β = 90.106 (2)°

  • V = 1515.72 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 298 K

  • 0.40 × 0.35 × 0.30 mm

Data collection
  • MacScience DIPLabo 32001 diffractometer

  • Absorption correction: none

  • 9663 measured reflections

  • 2816 independent reflections

  • 2338 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.128

  • S = 1.13

  • 2816 reflections

  • 183 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10A⋯S1 0.96 2.82 3.360 (3) 116
C12—H12⋯S1 0.93 2.66 3.040 (2) 105

Data collection: XPRESS (MacScience, 2002[MacScience (2002). XPRESS. MacScience Co. Ltd, Yokohama, Japan.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97 and PLATON.

Supporting information


Comment top

The title compound belongs to the class of push-pull butadiene as they have electron releasing methyl sulfanyl groups and electron withdrawing nitrile groups attached to the terminal carbon atoms of the butadiene moiety. The butadiene molecules are characterized by significant π-electron interactions between donor and acceptor groups and the diene double bond system. Usually CC double bonds become more polarized due to π-electron delocalization (Dahne, 1978; Michalik et al., 2002). They are important as pivots for the synthesis of heterocycles especially pyridine derivatives. The title compound was obtained during the synthesis of pyridene derivatives (Anabha et al., 2006) and its crystal and molecular structure was determined to study the influence of aroyl group on the steriochemistry of the butadiene molecule.

A perspective view of the title molecule is shown in Fig.1. The two double bonds in the butadiene moiety are arranged in a transoid manner. The lengths of the C8—C9 [1.366 (3) Å] and C13—C12 [1.352 (3) Å] double bonds and C8—C12 [1.439 (3) Å] single bond indicate conjugation. The butadiene unit is almost planar as evidenced by the torsion angles C9—C8—C12—C13, C8—C12—C13—C14 and C12—C8—C9—S1 of -167.0 (2)°, 6.1 (4)° and 17.8 (3)°, respectively. The two methylsulfanyl groups (–SCH3) are oriented in such a way as to avoid the interaction between them as is evident from the torsion angles C10—S2—C9—C8 of -129.17 (19)° and C11—S1—C9—C8 of -148.69 (19)°. Crystal structures of other butadiene compounds reported also show similar geometric parameters (Dastidar et al.., 1993; Michalik et al., 2002; Freier et al.,1999; Homrighausen et al., 2004).

Weak intramolecular C—H···S interactions are observed (Table 1). In the crystal structure a O1···C14(1-x, y, z) short contact [2.917 (3) Å] is observed.

Related literature top

The title compound was obtained during the synthesis of pyridene derivatives, see: Anabha & Asokan (2006). In push–pull butadienes, the CC double bonds usually become more polarized due to π-electron delocalization (Dahne, 1978; Michalik et al., 2002). For related structures, see: Dastidar et al. (1993); Freier et al. (1999); Homrighausen & Krause Bauer (2004).

Experimental top

2-Benzoyl-2-[3,3-bis(methylsulfanyl)-2-propylidene]malononitrile was synthesized as follows: A mixture of malononitrile (500 mg, 7.5 mmol), ammonium acetate (1.5 g, 20 mmol) and acetic acid (5 ml) was heated to 343 K and then 2-benzoyl-3,3-bis(methylsulfanyl)acrylaldehyde (5 mmol) was added. The reaction mixture was stirred for 5 minutes at the same temperature, cooled to room temperature and then poured into ice-cold water. The solid separated was filtered, dissolved in chloroform, dried over anhydrous sodium sulfate and then the solvent was evaporated. The crude product obtained was recrystallized from hexane-ethyl acetate solvent mixture.

Refinement top

All H atoms were positioned geometrically and allowed to ride with parent atoms, with C-H distances of 0.93 or 0.96 A. Their isotropic displacement parameters were defined as Uiso = 1.5Ueq(C) for the methyl H atoms and Uiso = 1.2Ueq(C) for all other atoms.

Computing details top

Data collection: XPRESS (MacScience, 2002); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. An ORTEPII (Johnson, 1976) view of the title compound, showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.
2-[2-Benzoyl-3,3-bis(methylsulfanyl)prop-2-enylidene]malononitrile top
Crystal data top
C15H12N2OS2F(000) = 624
Mr = 300.39Dx = 1.316 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9663 reflections
a = 5.6557 (2) Åθ = 1.3–25.5°
b = 8.5153 (3) ŵ = 0.35 mm1
c = 31.4726 (11) ÅT = 298 K
β = 90.106 (2)°Block, pale yellow
V = 1515.72 (9) Å30.40 × 0.35 × 0.30 mm
Z = 4
Data collection top
MacScience DIPLabo 32001
diffractometer
2338 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.024
Graphite monochromatorθmax = 25.5°, θmin = 1.3°
Detector resolution: 10.0 pixels mm-1h = 66
ω scansk = 108
9663 measured reflectionsl = 3238
2816 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.0656P)2 + 0.4642P]
where P = (Fo2 + 2Fc2)/3
2816 reflections(Δ/σ)max = 0.001
183 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C15H12N2OS2V = 1515.72 (9) Å3
Mr = 300.39Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.6557 (2) ŵ = 0.35 mm1
b = 8.5153 (3) ÅT = 298 K
c = 31.4726 (11) Å0.40 × 0.35 × 0.30 mm
β = 90.106 (2)°
Data collection top
MacScience DIPLabo 32001
diffractometer
2338 reflections with I > 2σ(I)
9663 measured reflectionsRint = 0.024
2816 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.128H-atom parameters constrained
S = 1.13Δρmax = 0.26 e Å3
2816 reflectionsΔρmin = 0.25 e Å3
183 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.00111 (11)0.11114 (7)0.06548 (2)0.0548 (2)
S20.42287 (10)0.19748 (8)0.11875 (2)0.0644 (2)
C130.1963 (4)0.6023 (2)0.06658 (7)0.0428 (5)
C80.0899 (3)0.4037 (2)0.09460 (6)0.0416 (5)
O10.3112 (3)0.6304 (2)0.11057 (6)0.0612 (5)
C140.1880 (4)0.7065 (3)0.10221 (8)0.0476 (5)
C70.2105 (3)0.5153 (3)0.12490 (7)0.0442 (5)
C40.2015 (4)0.4849 (3)0.17132 (7)0.0471 (5)
C90.1611 (4)0.2504 (3)0.09308 (6)0.0433 (5)
N10.1825 (4)0.7886 (3)0.13089 (8)0.0688 (6)
N20.4570 (5)0.6939 (3)0.00423 (8)0.0775 (7)
C120.0782 (4)0.4644 (3)0.06452 (7)0.0436 (5)
H120.10910.40170.04100.052*
C150.3442 (4)0.6523 (3)0.03182 (8)0.0531 (6)
C30.0286 (5)0.3946 (3)0.18964 (8)0.0632 (7)
H30.08840.34890.17300.076*
C110.2165 (5)0.0279 (3)0.04676 (9)0.0673 (7)
H11A0.26670.09310.06990.101*
H11B0.14830.09230.02490.101*
H11C0.35020.02770.03540.101*
C100.3350 (6)0.0311 (4)0.15069 (10)0.0833 (9)
H10A0.22720.03330.13490.125*
H10B0.47220.02930.15810.125*
H10C0.25880.06750.17610.125*
C50.3728 (5)0.5550 (4)0.19670 (8)0.0672 (7)
H50.48620.62000.18450.081*
C10.2049 (7)0.4371 (5)0.25760 (9)0.0886 (10)
H10.20810.41900.28670.106*
C60.3743 (6)0.5282 (5)0.23948 (10)0.0907 (10)
H60.49180.57260.25630.109*
C20.0300 (7)0.3719 (4)0.23359 (10)0.0841 (9)
H20.08810.31240.24650.101*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0588 (4)0.0489 (4)0.0568 (4)0.0146 (3)0.0101 (3)0.0086 (3)
S20.0452 (3)0.0742 (5)0.0739 (5)0.0231 (3)0.0133 (3)0.0116 (3)
C130.0436 (11)0.0424 (11)0.0423 (11)0.0046 (9)0.0006 (8)0.0003 (9)
C80.0394 (10)0.0470 (11)0.0384 (11)0.0078 (9)0.0043 (8)0.0007 (9)
O10.0509 (9)0.0683 (11)0.0644 (11)0.0137 (8)0.0015 (8)0.0101 (9)
C140.0399 (11)0.0470 (12)0.0560 (14)0.0030 (9)0.0046 (9)0.0036 (11)
C70.0329 (9)0.0503 (12)0.0493 (12)0.0041 (9)0.0017 (8)0.0002 (10)
C40.0448 (11)0.0511 (12)0.0453 (12)0.0066 (9)0.0003 (9)0.0023 (10)
C90.0411 (10)0.0502 (12)0.0384 (11)0.0111 (9)0.0021 (8)0.0014 (9)
N10.0609 (13)0.0696 (14)0.0758 (15)0.0004 (10)0.0015 (11)0.0257 (13)
N20.0999 (18)0.0699 (15)0.0628 (14)0.0293 (13)0.0150 (13)0.0073 (12)
C120.0479 (11)0.0463 (12)0.0367 (11)0.0061 (9)0.0003 (8)0.0033 (9)
C150.0646 (14)0.0431 (12)0.0517 (14)0.0139 (11)0.0008 (11)0.0007 (11)
C30.0706 (16)0.0651 (16)0.0538 (15)0.0063 (13)0.0092 (12)0.0026 (12)
C110.0893 (18)0.0542 (14)0.0584 (15)0.0278 (13)0.0043 (13)0.0119 (12)
C100.109 (2)0.081 (2)0.0601 (17)0.0354 (18)0.0254 (16)0.0058 (15)
C50.0591 (14)0.0854 (19)0.0571 (16)0.0016 (14)0.0114 (12)0.0041 (14)
C10.116 (3)0.107 (3)0.0429 (15)0.017 (2)0.0079 (16)0.0082 (17)
C60.088 (2)0.130 (3)0.0549 (18)0.003 (2)0.0176 (16)0.0021 (19)
C20.104 (2)0.084 (2)0.0641 (19)0.0032 (18)0.0244 (17)0.0116 (16)
Geometric parameters (Å, º) top
S1—C91.734 (2)C12—H120.93
S1—C111.806 (2)C3—C21.397 (4)
S2—C91.747 (2)C3—H30.93
S2—C101.806 (3)C11—H11A0.96
C13—C121.352 (3)C11—H11B0.96
C13—C141.431 (3)C11—H11C0.96
C13—C151.443 (3)C10—H10A0.96
C8—C91.366 (3)C10—H10B0.96
C8—C121.439 (3)C10—H10C0.96
C8—C71.510 (3)C5—C61.365 (4)
O1—C71.220 (3)C5—H50.93
C14—N11.142 (3)C1—C61.358 (5)
C7—C41.485 (3)C1—C21.364 (5)
C4—C31.371 (3)C1—H10.93
C4—C51.391 (3)C6—H60.93
N2—C151.135 (3)C2—H20.93
C9—S1—C11104.55 (12)S1—C11—H11A109.5
C9—S2—C10103.13 (13)S1—C11—H11B109.5
C12—C13—C14124.00 (19)H11A—C11—H11B109.5
C12—C13—C15120.4 (2)S1—C11—H11C109.5
C14—C13—C15115.56 (19)H11A—C11—H11C109.5
C9—C8—C12121.01 (19)H11B—C11—H11C109.5
C9—C8—C7119.33 (18)S2—C10—H10A109.5
C12—C8—C7119.26 (18)S2—C10—H10B109.5
N1—C14—C13179.3 (2)H10A—C10—H10B109.5
O1—C7—C4121.3 (2)S2—C10—H10C109.5
O1—C7—C8118.9 (2)H10A—C10—H10C109.5
C4—C7—C8119.80 (19)H10B—C10—H10C109.5
C3—C4—C5119.8 (2)C6—C5—C4120.0 (3)
C3—C4—C7122.3 (2)C6—C5—H5120.0
C5—C4—C7117.9 (2)C4—C5—H5120.0
C8—C9—S1120.97 (16)C6—C1—C2120.8 (3)
C8—C9—S2118.70 (17)C6—C1—H1119.6
S1—C9—S2120.31 (12)C2—C1—H1119.6
C13—C12—C8127.4 (2)C1—C6—C5120.3 (3)
C13—C12—H12116.3C1—C6—H6119.9
C8—C12—H12116.3C5—C6—H6119.9
N2—C15—C13178.5 (3)C1—C2—C3119.9 (3)
C4—C3—C2119.3 (3)C1—C2—H2120.1
C4—C3—H3120.4C3—C2—H2120.1
C2—C3—H3120.4
C9—C8—C7—O1119.9 (2)C10—S2—C9—C8129.17 (19)
C12—C8—C7—O153.0 (3)C10—S2—C9—S151.99 (17)
C9—C8—C7—C461.1 (3)C14—C13—C12—C86.1 (4)
C12—C8—C7—C4126.1 (2)C15—C13—C12—C8174.6 (2)
O1—C7—C4—C3156.3 (2)C9—C8—C12—C13167.0 (2)
C8—C7—C4—C322.7 (3)C7—C8—C12—C1320.3 (3)
O1—C7—C4—C522.0 (3)C5—C4—C3—C21.2 (4)
C8—C7—C4—C5159.0 (2)C7—C4—C3—C2179.5 (2)
C12—C8—C9—S117.8 (3)C3—C4—C5—C62.8 (4)
C7—C8—C9—S1169.48 (15)C7—C4—C5—C6178.8 (3)
C12—C8—C9—S2161.03 (16)C2—C1—C6—C50.5 (6)
C7—C8—C9—S211.7 (3)C4—C5—C6—C12.0 (5)
C11—S1—C9—C8148.69 (19)C6—C1—C2—C32.1 (6)
C11—S1—C9—S230.13 (17)C4—C3—C2—C11.2 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10A···S10.962.823.360 (3)116
C12—H12···S10.932.663.040 (2)105

Experimental details

Crystal data
Chemical formulaC15H12N2OS2
Mr300.39
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)5.6557 (2), 8.5153 (3), 31.4726 (11)
β (°) 90.106 (2)
V3)1515.72 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.35
Crystal size (mm)0.40 × 0.35 × 0.30
Data collection
DiffractometerMacScience DIPLabo 32001
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
9663, 2816, 2338
Rint0.024
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.128, 1.13
No. of reflections2816
No. of parameters183
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.25

Computer programs: XPRESS (MacScience, 2002), SCALEPACK (Otwinowski & Minor, 1997), SCALEPACK and DENZO (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), PLATON (Spek, 2009) and ORTEPII (Johnson, 1976), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10A···S10.962.823.360 (3)116
C12—H12···S10.932.663.040 (2)105
 

Acknowledgements

The authors are indebted to the late Dr C. V. Asokan for all the help received, especially in the synthesis of the compound. The authors acknowledge the National Single Crystal Diffractometer Facility, Department of Studies in Physics, University of Mysore, Manasagangothri, for help with the data collection. NJ is grateful to the UGC, New Delhi, Government of India, for providing a teaching fellowship.

References

First citationAnabha, E. R. & Asokan, C. V. (2006). Synthesis, pp. 151–155.  Google Scholar
First citationDahne, S. (1978). Science, 199, 1163–1167.  CrossRef PubMed CAS Web of Science Google Scholar
First citationDastidar, P., Guru Row, T. N. & Venkatesan, K. (1993). Acta Cryst. B49, 900–905.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFreier, T., Michalik, M. & Peseke, K. (1999). J. Chem. Soc. Perkin Trans. 2, pp. 1265–1271.  CSD CrossRef Google Scholar
First citationHomrighausen, C. L. & Krause Bauer, J. A. (2004). Acta Cryst. E60, o1828–o1829.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationMacScience (2002). XPRESS. MacScience Co. Ltd, Yokohama, Japan.  Google Scholar
First citationMichalik, M., Freier, T., Reinke, H. & Peseke, K. (2002). J. Chem. Soc. Perkin Trans. 2, pp. 114–119.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds