metal-organic compounds
Triaquadichlorido[5-(4-pyridinio)tetrazolato-κN2]cobalt(II) monohydrate
aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: fudavid88@yahoo.com.cn
The title compound, [CoCl2(C6H5N5)(H2O)3]·H2O, was synthesized by hydrothermal reaction of CoCl2 with 4-(2H-tetrazol-5-yl)pyridine. The CoII cation is coordinated by two Cl− ions, one N atom from the 5-(4-pyridinio)tetrazolate zwitterion and three O atoms from three water molecules in a distorted octahedral geometry. In the crystal, molecules are linked into a three-dimensional network by N—H⋯Cl hydrogen bonds and O—H⋯O/N/Cl hydrogen bonds involving both coordinated and uncoordinated water molecules. Strong π–π stacking is present between parallel pyridinium and tetrazolate rings [centroid–centroid distances = 3.411 (2) and 3.436 (2) Å].
Related literature
For general background to the chemistry of tetrazole derivatives, see: Fu et al. (2007, 2008); Huang et al. (1999); Liu et al. (1999); Wang et al. (2005). For the crystal structures of related compounds, see: Dai & Fu (2008); Wen (2008); Wittenberger & Donner (1993).
Experimental
Crystal data
|
Refinement
|
Data collection: CrystalClear (Rigaku, 2005); cell CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536809024337/ci2831sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809024337/ci2831Isup2.hkl
A mixture of 4-(2H-tetrazol-5-yl)pyridine (0.2 mmol), CoCl2 (0.4 mmol), distilled water (1 ml) and a few drops of HCl (6 mol/L) was sealed in a glass tube and maintained at 333 K. Pink block-shaped crystals suitable for X-ray analysis were obtained after 3 d.
H atoms of water molecules were located in difference Fourier maps and in the final stages of
they were treated as riding on the parent O atom with Uiso(H) = 1.5Ueq(O). The remaining H atoms were positioned geometrically and treated as riding, with C-H = 0.93 Å, N-H = 0.86 Å, and with Uiso(H) = 1.2Ueq(C,N).Data collection: CrystalClear (Rigaku, 2005); cell
CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The molecular structure of the title compound, with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. | |
Fig. 2. The crystal packing of the title compound, viewed along the a axis, showing the three dimensionnal hydrogen-bonded network. H atoms not involved in hydrogen bonding (dashed line) have been omitted for clarity. |
[CoCl2(C6H5N5)(H2O)3]·H2O | Z = 2 |
Mr = 349.04 | F(000) = 354 |
Triclinic, P1 | Dx = 1.869 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 6.4900 (13) Å | Cell parameters from 2619 reflections |
b = 9.842 (2) Å | θ = 3.4–27.5° |
c = 11.159 (2) Å | µ = 1.83 mm−1 |
α = 110.72 (3)° | T = 298 K |
β = 97.05 (3)° | Block, pink |
γ = 106.27 (3)° | 0.15 × 0.15 × 0.10 mm |
V = 620.1 (3) Å3 |
Rigaku Mercury2 diffractometer | 2842 independent reflections |
Radiation source: fine-focus sealed tube | 2619 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.019 |
Detector resolution: 13.6612 pixels mm-1 | θmax = 27.5°, θmin = 3.4° |
CCD profile fitting scans | h = −8→8 |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) | k = −12→12 |
Tmin = 0.762, Tmax = 0.841 | l = −14→14 |
6551 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.026 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.080 | H-atom parameters constrained |
S = 1.18 | w = 1/[σ2(Fo2) + (0.0344P)2 + 0.391P] where P = (Fo2 + 2Fc2)/3 |
2842 reflections | (Δ/σ)max = 0.001 |
163 parameters | Δρmax = 0.34 e Å−3 |
0 restraints | Δρmin = −0.49 e Å−3 |
[CoCl2(C6H5N5)(H2O)3]·H2O | γ = 106.27 (3)° |
Mr = 349.04 | V = 620.1 (3) Å3 |
Triclinic, P1 | Z = 2 |
a = 6.4900 (13) Å | Mo Kα radiation |
b = 9.842 (2) Å | µ = 1.83 mm−1 |
c = 11.159 (2) Å | T = 298 K |
α = 110.72 (3)° | 0.15 × 0.15 × 0.10 mm |
β = 97.05 (3)° |
Rigaku Mercury2 diffractometer | 2842 independent reflections |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) | 2619 reflections with I > 2σ(I) |
Tmin = 0.762, Tmax = 0.841 | Rint = 0.019 |
6551 measured reflections |
R[F2 > 2σ(F2)] = 0.026 | 0 restraints |
wR(F2) = 0.080 | H-atom parameters constrained |
S = 1.18 | Δρmax = 0.34 e Å−3 |
2842 reflections | Δρmin = −0.49 e Å−3 |
163 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N5 | 0.6736 (3) | 0.84317 (19) | 0.28889 (17) | 0.0224 (4) | |
C6 | 0.6810 (3) | 0.8500 (2) | 0.41148 (19) | 0.0188 (4) | |
N1 | 0.8708 (3) | 1.2651 (2) | 0.74897 (19) | 0.0281 (4) | |
H1A | 0.9098 | 1.3503 | 0.8183 | 0.034* | |
N2 | 0.6143 (3) | 0.70917 (18) | 0.41274 (16) | 0.0192 (3) | |
N4 | 0.5984 (3) | 0.69178 (19) | 0.21085 (16) | 0.0224 (4) | |
C3 | 0.7487 (3) | 0.9955 (2) | 0.52968 (19) | 0.0183 (4) | |
C5 | 0.8008 (4) | 1.1310 (3) | 0.7624 (2) | 0.0301 (5) | |
H5 | 0.7952 | 1.1308 | 0.8452 | 0.036* | |
N3 | 0.5635 (3) | 0.61292 (18) | 0.28545 (16) | 0.0197 (3) | |
C2 | 0.8224 (3) | 1.1378 (2) | 0.5204 (2) | 0.0243 (4) | |
H2 | 0.8309 | 1.1419 | 0.4391 | 0.029* | |
C4 | 0.7372 (4) | 0.9933 (2) | 0.6525 (2) | 0.0253 (4) | |
H4 | 0.6868 | 0.8994 | 0.6605 | 0.030* | |
C1 | 0.8826 (4) | 1.2725 (2) | 0.6330 (2) | 0.0282 (5) | |
H1 | 0.9312 | 1.3682 | 0.6280 | 0.034* | |
Co1A | 0.41776 (4) | 0.36866 (3) | 0.20745 (2) | 0.01763 (9) | |
Cl2 | 0.08900 (9) | 0.38823 (6) | 0.08079 (5) | 0.02643 (13) | |
Cl1 | 0.73776 (8) | 0.35040 (6) | 0.33499 (5) | 0.02677 (13) | |
O1W | 0.5652 (3) | 0.33958 (19) | 0.04986 (14) | 0.0285 (3) | |
H1WA | 0.7173 | 0.3570 | 0.0656 | 0.043* | |
H1WB | 0.5254 | 0.3583 | −0.0197 | 0.043* | |
O2W | 0.2585 (3) | 0.37067 (19) | 0.35990 (15) | 0.0296 (3) | |
H2WA | 0.3037 | 0.3809 | 0.4362 | 0.044* | |
H2WB | 0.1266 | 0.3867 | 0.3566 | 0.044* | |
O3W | 0.2553 (3) | 0.12646 (16) | 0.12299 (15) | 0.0266 (3) | |
H3WA | 0.1036 | 0.0973 | 0.1231 | 0.040* | |
H3WB | 0.2462 | 0.0857 | 0.0400 | 0.040* | |
O4W | 0.1925 (3) | 0.96192 (19) | 0.85528 (16) | 0.0363 (4) | |
H4WA | 0.2306 | 1.0107 | 0.8093 | 0.054* | |
H4WB | 0.2283 | 0.8803 | 0.8140 | 0.054* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N5 | 0.0273 (9) | 0.0172 (8) | 0.0214 (8) | 0.0062 (7) | 0.0062 (7) | 0.0075 (7) |
C6 | 0.0169 (9) | 0.0168 (9) | 0.0209 (9) | 0.0050 (7) | 0.0041 (7) | 0.0066 (7) |
N1 | 0.0271 (9) | 0.0175 (8) | 0.0273 (9) | 0.0062 (7) | 0.0015 (7) | −0.0020 (7) |
N2 | 0.0221 (8) | 0.0155 (7) | 0.0161 (8) | 0.0052 (6) | 0.0026 (6) | 0.0040 (6) |
N4 | 0.0280 (9) | 0.0182 (8) | 0.0191 (8) | 0.0063 (7) | 0.0049 (7) | 0.0071 (7) |
C3 | 0.0140 (8) | 0.0161 (9) | 0.0216 (9) | 0.0056 (7) | 0.0001 (7) | 0.0053 (7) |
C5 | 0.0356 (12) | 0.0251 (11) | 0.0225 (10) | 0.0083 (9) | 0.0043 (9) | 0.0045 (9) |
N3 | 0.0235 (8) | 0.0161 (8) | 0.0173 (8) | 0.0058 (7) | 0.0045 (7) | 0.0054 (6) |
C2 | 0.0254 (10) | 0.0200 (10) | 0.0282 (11) | 0.0077 (8) | 0.0066 (8) | 0.0107 (8) |
C4 | 0.0319 (11) | 0.0189 (9) | 0.0231 (10) | 0.0082 (8) | 0.0042 (8) | 0.0075 (8) |
C1 | 0.0247 (10) | 0.0163 (9) | 0.0405 (13) | 0.0064 (8) | 0.0065 (9) | 0.0093 (9) |
Co1A | 0.02082 (15) | 0.01475 (14) | 0.01550 (15) | 0.00521 (11) | 0.00386 (11) | 0.00507 (11) |
Cl2 | 0.0265 (3) | 0.0249 (3) | 0.0237 (3) | 0.0102 (2) | −0.0001 (2) | 0.0064 (2) |
Cl1 | 0.0260 (3) | 0.0286 (3) | 0.0274 (3) | 0.0105 (2) | 0.0033 (2) | 0.0135 (2) |
O1W | 0.0259 (8) | 0.0419 (9) | 0.0191 (7) | 0.0127 (7) | 0.0067 (6) | 0.0131 (7) |
O2W | 0.0331 (9) | 0.0381 (9) | 0.0230 (8) | 0.0158 (7) | 0.0124 (7) | 0.0140 (7) |
O3W | 0.0318 (8) | 0.0187 (7) | 0.0218 (7) | 0.0030 (6) | 0.0043 (6) | 0.0050 (6) |
O4W | 0.0518 (11) | 0.0262 (8) | 0.0300 (9) | 0.0106 (8) | 0.0174 (8) | 0.0104 (7) |
N5—N4 | 1.337 (2) | C4—H4 | 0.93 |
N5—C6 | 1.340 (3) | C1—H1 | 0.93 |
C6—N2 | 1.337 (2) | Co1A—O1W | 2.0738 (16) |
C6—C3 | 1.467 (3) | Co1A—O2W | 2.0933 (16) |
N1—C1 | 1.332 (3) | Co1A—O3W | 2.1071 (17) |
N1—C5 | 1.339 (3) | Co1A—Cl1 | 2.4568 (9) |
N1—H1A | 0.86 | Co1A—Cl2 | 2.5041 (9) |
N2—N3 | 1.335 (2) | O1W—H1WA | 0.94 |
N4—N3 | 1.323 (2) | O1W—H1WB | 0.88 |
C3—C4 | 1.389 (3) | O2W—H2WA | 0.83 |
C3—C2 | 1.393 (3) | O2W—H2WB | 0.91 |
C5—C4 | 1.377 (3) | O3W—H3WA | 0.94 |
C5—H5 | 0.93 | O3W—H3WB | 0.86 |
N3—Co1A | 2.1153 (18) | O4W—H4WA | 0.83 |
C2—C1 | 1.379 (3) | O4W—H4WB | 0.88 |
C2—H2 | 0.93 | ||
N4—N5—C6 | 104.78 (16) | C2—C1—H1 | 120.1 |
N2—C6—N5 | 112.14 (17) | O1W—Co1A—O2W | 173.47 (6) |
N2—C6—C3 | 124.23 (18) | O1W—Co1A—O3W | 87.50 (7) |
N5—C6—C3 | 123.61 (17) | O2W—Co1A—O3W | 86.15 (7) |
C1—N1—C5 | 122.93 (19) | O1W—Co1A—N3 | 92.57 (7) |
C1—N1—H1A | 118.5 | O2W—Co1A—N3 | 93.86 (7) |
C5—N1—H1A | 118.5 | O3W—Co1A—N3 | 176.39 (6) |
N3—N2—C6 | 103.82 (16) | O1W—Co1A—Cl1 | 89.28 (5) |
N3—N4—N5 | 108.68 (16) | O2W—Co1A—Cl1 | 89.42 (5) |
C4—C3—C2 | 118.98 (19) | O3W—Co1A—Cl1 | 92.27 (6) |
C4—C3—C6 | 120.36 (18) | N3—Co1A—Cl1 | 91.34 (6) |
C2—C3—C6 | 120.65 (19) | O1W—Co1A—Cl2 | 91.67 (5) |
N1—C5—C4 | 119.4 (2) | O2W—Co1A—Cl2 | 89.64 (5) |
N1—C5—H5 | 120.3 | O3W—Co1A—Cl2 | 87.85 (6) |
C4—C5—H5 | 120.3 | N3—Co1A—Cl2 | 88.54 (6) |
N4—N3—N2 | 110.58 (15) | Cl1—Co1A—Cl2 | 179.04 (2) |
N4—N3—Co1A | 123.34 (12) | Co1A—O1W—H1WA | 118.8 |
N2—N3—Co1A | 125.83 (13) | Co1A—O1W—H1WB | 125.5 |
C1—C2—C3 | 119.3 (2) | H1WA—O1W—H1WB | 108.6 |
C1—C2—H2 | 120.4 | Co1A—O2W—H2WA | 131.9 |
C3—C2—H2 | 120.4 | Co1A—O2W—H2WB | 120.0 |
C5—C4—C3 | 119.6 (2) | H2WA—O2W—H2WB | 106.3 |
C5—C4—H4 | 120.2 | Co1A—O3W—H3WA | 112.7 |
C3—C4—H4 | 120.2 | Co1A—O3W—H3WB | 112.6 |
N1—C1—C2 | 119.8 (2) | H3WA—O3W—H3WB | 100.6 |
N1—C1—H1 | 120.1 | H4WA—O4W—H4WB | 98.3 |
D—H···A | D—H | H···A | D···A | D—H···A |
O3W—H3WA···O4Wi | 0.95 | 1.92 | 2.858 (3) | 173 |
O3W—H3WB···O4Wii | 0.86 | 1.91 | 2.761 (2) | 170 |
O1W—H1WB···N4iii | 0.88 | 2.01 | 2.848 (2) | 157 |
O2W—H2WA···N2iv | 0.83 | 2.24 | 2.999 (2) | 153 |
O4W—H4WA···N5v | 0.83 | 2.11 | 2.935 (3) | 173 |
N1—H1A···Cl2v | 0.86 | 2.41 | 3.180 (2) | 149 |
O1W—H1WA···Cl2vi | 0.94 | 2.32 | 3.254 (2) | 174 |
O2W—H2WB···Cl1vii | 0.91 | 2.42 | 3.300 (2) | 163 |
O4W—H4WB···Cl1iv | 0.88 | 2.38 | 3.249 (2) | 168 |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) x, y−1, z−1; (iii) −x+1, −y+1, −z; (iv) −x+1, −y+1, −z+1; (v) −x+1, −y+2, −z+1; (vi) x+1, y, z; (vii) x−1, y, z. |
Experimental details
Crystal data | |
Chemical formula | [CoCl2(C6H5N5)(H2O)3]·H2O |
Mr | 349.04 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 298 |
a, b, c (Å) | 6.4900 (13), 9.842 (2), 11.159 (2) |
α, β, γ (°) | 110.72 (3), 97.05 (3), 106.27 (3) |
V (Å3) | 620.1 (3) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.83 |
Crystal size (mm) | 0.15 × 0.15 × 0.10 |
Data collection | |
Diffractometer | Rigaku Mercury2 diffractometer |
Absorption correction | Multi-scan (CrystalClear; Rigaku, 2005) |
Tmin, Tmax | 0.762, 0.841 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6551, 2842, 2619 |
Rint | 0.019 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.026, 0.080, 1.18 |
No. of reflections | 2842 |
No. of parameters | 163 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.34, −0.49 |
Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O3W—H3WA···O4Wi | 0.95 | 1.92 | 2.858 (3) | 173 |
O3W—H3WB···O4Wii | 0.86 | 1.91 | 2.761 (2) | 170 |
O1W—H1WB···N4iii | 0.88 | 2.01 | 2.848 (2) | 157 |
O2W—H2WA···N2iv | 0.83 | 2.24 | 2.999 (2) | 153 |
O4W—H4WA···N5v | 0.83 | 2.11 | 2.935 (3) | 173 |
N1—H1A···Cl2v | 0.86 | 2.41 | 3.180 (2) | 149 |
O1W—H1WA···Cl2vi | 0.94 | 2.32 | 3.254 (2) | 174 |
O2W—H2WB···Cl1vii | 0.91 | 2.42 | 3.300 (2) | 163 |
O4W—H4WB···Cl1iv | 0.88 | 2.38 | 3.249 (2) | 168 |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) x, y−1, z−1; (iii) −x+1, −y+1, −z; (iv) −x+1, −y+1, −z+1; (v) −x+1, −y+2, −z+1; (vi) x+1, y, z; (vii) x−1, y, z. |
Acknowledgements
This work was supported by a start-up grant from Southeast University to Professor Ren-Gen Xiong.
References
Dai, W. & Fu, D.-W. (2008). Acta Cryst. E64, o1444. Web of Science CSD CrossRef IUCr Journals Google Scholar
Fu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q., Xiong, R.-G., Akutagawa, T., Nakamura, T., Chan, P. W. H. & Huang, S.-P. (2007). J. Am. Chem. Soc. 129, 5346–5347. Web of Science CSD CrossRef PubMed CAS Google Scholar
Fu, D.-W., Zhang, W. & Xiong, R.-G. (2008). Cryst. Growth Des. 8, 3461–3464. Web of Science CSD CrossRef CAS Google Scholar
Huang, S.-P.-D., Xiong, R.-G., Han, J.-D. & Weiner, B. R. (1999). Inorg. Chim. Acta, 294, 95-98. Web of Science CSD CrossRef CAS Google Scholar
Liu, C.-M., Yu, Z., Xiong, R.-G., Liu, K. & You, X.-Z. (1999). Inorg. Chem. Commun. 2, 31–34. Web of Science CSD CrossRef CAS Google Scholar
Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wang, X.-S., Tang, Y.-Z., Huang, X.-F., Qu, Z.-R., Che, C.-M., Chan, C. W. H. & Xiong, R.-G. (2005). Inorg. Chem. 44, 5278–5285. Web of Science CSD CrossRef PubMed CAS Google Scholar
Wen, X.-C. (2008). Acta Cryst. E64, m768. Web of Science CSD CrossRef IUCr Journals Google Scholar
Wittenberger, S. J. & Donner, B. G. (1993). J. Org. Chem. 58, 4139–4141. CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The tetrazole functional group has found a wide range of applications in coordination chemistry as a ligand, in medicinal chemistry as a metabolically stable surrogate for the carboxylic acid group, and in materials science as a high density energy materials, dielectric and luminescence materials (Wang et al., 2005; Fu et al., 2008; Fu et al., 2007; Huang et al., 1999; Liu et al., 1999; Wittenberger et al.,1993). We report here the crystal structure of the title compound, triaqua-dichloro-[4-(2H-tetrazol)pyridinum]cobalt(II) monohydrate.
The CoII cation is coordinated by two Cl- ions, one N atom from the pyridinio-4-(2H-tetrazolate) zwitterion and three O atoms from three water molecules in a distorted octahedral geometry. The pyridine N atom of the organic ligand is protonated. The pyridinium and tetrazolate rings are almost coplanar, with a dihedral angle of 3.7 (1)°. The geometric parameters of the tetrazolate ring are comparable to those in related molecules (Wittenberger et al., 1993; Dai & Fu 2008; Wen 2008).
The molecules are linked into a three-dimensional network by intermolecular O—H···O, O—H···N, N—H···Cl and O—H···Cl hydrogen bonds (Table 1 and Fig.2).