organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,5-Di­phenyl-2-p-tolyl-1H-imidazol-3-ium perchlorate

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: fudavid88@yahoo.com.cn

(Received 22 June 2009; accepted 24 June 2009; online 4 July 2009)

In the title compound, C22H19N2+·ClO4, the three pendant aromatic rings are twisted from the plane of the imidazolium ring by dihedral angles of 17.3 (2), 65.7 (2) and 3.4 (2)°. In the crystal structure, N—H⋯O and N—H⋯(O,O) hydrogen bonds link the ions, forming a ribbon-like structure along the a axis.

Related literature

For general background to imidazole derivatives, see: Fu & Xiong (2008[Fu, D.-W. & Xiong, R.-G. (2008). Dalton Trans. pp. 3946-3948.]); Huang et al. (2008[Huang, X.-F., Fu, D.-W. & Xiong, R.-G. (2008). Cryst. Growth. Des. 8, 1795-1797.]). For applications of metal-organic coordination compounds, see: Fu et al. (2007[Fu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q., Xiong, R.-G., Akutagawa, T., Nakamura, T., Chan, P. W. H. & Huang, S. D. (2007). J. Am. Chem. Soc. 129, 5346-5347.], 2008[Fu, D.-W., Zhang, W. & Xiong, R.-G. (2008). Cryst. Growth Des. 8, 3461-3464.]); Huang et al. (1999[Huang, S.-P.-D., Xiong, R.-G., Han, J.-D. & Weiner, B. R. (1999). Inorg. Chim. Acta, 294, 95-98.]); Liu et al. (1999[Liu, C.-M., Yu, Z., Xiong, R.-G., Liu, K. & You, X.-Z. (1999). Inorg. Chem. Commun. 2, 31-34.]); Xie et al. (2003[Xie, Y.-R., Zhao, H., Wang, X.-S., Qu, Z.-R., Xiong, R.-G., Xue, X.-A., Xue, Z.-L. & You, X.-Z. (2003). Eur. J. Inorg. Chem. 20, 3712-3715.]); Zhang et al. (2000[Zhang, J., Xiong, R.-G., Zuo, J.-L. & You, X.-Z. (2000). Chem. Commun. 16, 1495-1496.], 2001[Zhang, J., Xiong, R.-G., Chen, X.-T., Che, C.-M., Xue, Z.-L. & You, X.-Z. (2001). Organometallics, 20, 4118-4121.]).

[Scheme 1]

Experimental

Crystal data
  • C22H19N2+·ClO4

  • Mr = 410.84

  • Monoclinic, P 21 /c

  • a = 9.1964 (18) Å

  • b = 9.921 (2) Å

  • c = 21.489 (4) Å

  • β = 94.16 (3)°

  • V = 1955.4 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 298 K

  • 0.45 × 0.40 × 0.25 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.945, Tmax = 1.000 (expected range = 0.893–0.945)

  • 19242 measured reflections

  • 4474 independent reflections

  • 2602 reflections with I > 2σ(I)

  • Rint = 0.070

Refinement
  • R[F2 > 2σ(F2)] = 0.072

  • wR(F2) = 0.214

  • S = 1.04

  • 4474 reflections

  • 271 parameters

  • 24 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O3i 0.89 (4) 2.05 (4) 2.943 (4) 175 (3)
N2—H2⋯O1ii 0.81 (4) 2.33 (4) 3.037 (5) 146 (3)
N2—H2⋯O1iii 0.81 (4) 2.50 (4) 3.196 (5) 145 (3)
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The construction of metal-organic coordination compounds has attracted much attention owing to potential functions such as permittivity, fluorescence, magnetism and optical properties (Fu et al., 2007, 2008; Huang et al., 1999; Liu et al., 1999; Xie et al., 2003; Zhang et al., 2000, 2001). Imidazole derivatives are a class of excellent ligands because of their multiple coordination modes as ligands to metal ions and for the construction of novel metal-organic frameworks (Huang et al. 2008; Fu & Xiong 2008). We report here the crystal structure of the title compound, 4,5-diphenyl-2-p-tolyl-1H-imidazolium perchlorate.

The title compound contains an organic cation and a ClO4- anion in the asymmetric unit. The imidazole N atom in the 3-position is protonated. The C1-C6, C9-C14 and C17-C22 benzene rings form dihedral angles of 17.3 (2)°, 65.7 (2)° and 3.4 (2)°, respectively, with the imidazolium ring.

The crystal packing is stabilized by N—H···O hydrogen bonds which form a ribbon-like structure extending along the a axis (Table 1 and Fig. 2).

Related literature top

For general background to imidazole derivatives, see: Fu & Xiong (2008); Huang et al. (2008). For applications of metal-organic coordination compounds, see: Fu et al. (2007, 2008); Huang et al. (1999); Liu et al. (1999); Xie et al. (2003); Zhang et al. (2000, 2001).

Experimental top

1,2-Diphenyl-ethane-1,2-dione (20 mmol), 4-methylbenzaldehyde (20 mmol) and amine acetate (50 mmol) were dissolved in 60 ml of HOAc under nitrogen protection. The mixture was stirred at 383 K for 20 h. The resulting solution was poured into ice water (200 ml) and after neutralizing the mixture with NaOH (6 mol/L) a white solid was obtained. The crude product was filtered and washed with distilled water. The crude product was dissolved in ethanol (150 ml)-perchloric acid (1 ml) and recrystallized to yield colourless block-shaped crystals of the title compound.

Refinement top

H atoms attached to N atoms were located in a difference Fourier map and refined freely. H atoms attached to C atoms were positioned geometrically and treated as riding, with C–H = 0.93 Å (aromatic) or 0.96 Å (methyl) and Uiso(H) = 1.2-1.5Ueq(C). The displacement parameters of O atoms were restrained to an approximate isotropic behaviour.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atomic numbering scheme. Displacement ellipsoids were drawn at the 30% probability level.
[Figure 2] Fig. 2. A hydrogen-bonded (dashed lines) ribbon in the title compound. H atoms not involved in hydrogen bonding have been omitted for clarity.
4,5-Diphenyl-2-p-tolyl-1H-imidazol-3-ium perchlorate top
Crystal data top
C22H19N2+·ClO4F(000) = 856
Mr = 410.84Dx = 1.396 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2602 reflections
a = 9.1964 (18) Åθ = 3.0–27.5°
b = 9.921 (2) ŵ = 0.23 mm1
c = 21.489 (4) ÅT = 298 K
β = 94.16 (3)°Block, colourless
V = 1955.4 (7) Å30.45 × 0.40 × 0.25 mm
Z = 4
Data collection top
Rigaku Mercury2
diffractometer
4474 independent reflections
Radiation source: fine-focus sealed tube2602 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.070
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.0°
CCD profile fitting scansh = 1111
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1212
Tmin = 0.945, Tmax = 1.000l = 2727
19242 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.072Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.214H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.103P)2 + 0.7747P]
where P = (Fo2 + 2Fc2)/3
4474 reflections(Δ/σ)max = 0.001
271 parametersΔρmax = 0.54 e Å3
24 restraintsΔρmin = 0.35 e Å3
Crystal data top
C22H19N2+·ClO4V = 1955.4 (7) Å3
Mr = 410.84Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.1964 (18) ŵ = 0.23 mm1
b = 9.921 (2) ÅT = 298 K
c = 21.489 (4) Å0.45 × 0.40 × 0.25 mm
β = 94.16 (3)°
Data collection top
Rigaku Mercury2
diffractometer
4474 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2602 reflections with I > 2σ(I)
Tmin = 0.945, Tmax = 1.000Rint = 0.070
19242 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.07224 restraints
wR(F2) = 0.214H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.54 e Å3
4474 reflectionsΔρmin = 0.35 e Å3
271 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.4669 (3)0.2183 (3)0.48657 (13)0.0395 (7)
H10.549 (4)0.216 (3)0.4671 (16)0.042 (9)*
N20.2652 (3)0.1423 (3)0.51476 (13)0.0438 (7)
H20.186 (4)0.106 (4)0.5140 (16)0.045 (11)*
C10.3452 (3)0.0484 (3)0.41492 (15)0.0396 (8)
C20.4283 (4)0.0746 (4)0.36447 (17)0.0570 (10)
H2A0.49160.14780.36580.068*
C30.4170 (4)0.0072 (5)0.31297 (18)0.0643 (11)
H30.47390.01120.27990.077*
C40.3242 (4)0.1154 (4)0.30873 (17)0.0510 (9)
C50.2414 (4)0.1400 (4)0.35845 (18)0.0563 (10)
H50.17770.21300.35650.068*
C60.2499 (4)0.0604 (4)0.41063 (17)0.0505 (9)
H60.19180.07910.44320.061*
C70.3166 (6)0.2061 (5)0.2522 (2)0.0741 (13)
H7A0.41180.24160.24640.111*
H7B0.28270.15540.21600.111*
H7C0.25050.27910.25830.111*
C80.3585 (3)0.1336 (3)0.47026 (15)0.0408 (8)
C90.2290 (4)0.2630 (4)0.61419 (16)0.0452 (8)
C100.1687 (4)0.3869 (4)0.62354 (19)0.0593 (10)
H100.17540.45370.59350.071*
C110.0982 (5)0.4148 (6)0.6766 (2)0.0774 (14)
H110.05720.49930.68200.093*
C120.0891 (5)0.3171 (7)0.7213 (2)0.0850 (17)
H120.04710.33680.75830.102*
C130.1420 (6)0.1908 (7)0.7113 (2)0.0880 (17)
H130.13010.12320.74050.106*
C140.2135 (5)0.1619 (5)0.65781 (18)0.0642 (11)
H140.25020.07600.65150.077*
C150.3122 (4)0.2354 (3)0.55912 (15)0.0416 (8)
C160.4426 (3)0.2849 (3)0.54164 (15)0.0380 (7)
C170.5461 (4)0.3845 (3)0.56847 (15)0.0398 (8)
C180.6681 (4)0.4211 (4)0.53799 (17)0.0486 (9)
H180.68360.38130.49990.058*
C190.7659 (4)0.5140 (4)0.56250 (18)0.0556 (10)
H190.84700.53550.54110.067*
C200.7458 (4)0.5755 (4)0.61809 (18)0.0551 (10)
H200.81230.63920.63440.066*
C210.6265 (4)0.5421 (5)0.64936 (19)0.0679 (12)
H210.61160.58410.68710.082*
C220.5274 (4)0.4466 (5)0.62564 (18)0.0624 (11)
H220.44800.42360.64800.075*
Cl10.11229 (9)0.69744 (9)0.07737 (4)0.0502 (3)
O10.0560 (4)0.5809 (4)0.04536 (19)0.1035 (12)
O20.0600 (4)0.8046 (4)0.0390 (2)0.1247 (16)
O30.2657 (3)0.6929 (4)0.07995 (16)0.0939 (12)
O40.0591 (4)0.7023 (5)0.13600 (17)0.1216 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0325 (15)0.0463 (17)0.0409 (16)0.0013 (12)0.0100 (12)0.0018 (13)
N20.0372 (16)0.0509 (18)0.0446 (16)0.0107 (14)0.0112 (13)0.0063 (14)
C10.0344 (17)0.0446 (19)0.0403 (18)0.0016 (14)0.0051 (14)0.0009 (15)
C20.058 (2)0.063 (2)0.052 (2)0.0193 (19)0.0177 (18)0.0104 (19)
C30.065 (3)0.082 (3)0.049 (2)0.011 (2)0.0218 (19)0.015 (2)
C40.052 (2)0.054 (2)0.046 (2)0.0043 (18)0.0002 (17)0.0066 (17)
C50.057 (2)0.056 (2)0.056 (2)0.0138 (19)0.0006 (19)0.0072 (19)
C60.049 (2)0.058 (2)0.045 (2)0.0116 (18)0.0103 (16)0.0029 (18)
C70.096 (4)0.070 (3)0.056 (3)0.003 (2)0.004 (2)0.016 (2)
C80.0341 (17)0.048 (2)0.0406 (18)0.0012 (15)0.0067 (14)0.0030 (15)
C90.0343 (17)0.062 (2)0.0396 (18)0.0046 (16)0.0069 (14)0.0052 (17)
C100.055 (2)0.065 (3)0.060 (2)0.0018 (19)0.0207 (19)0.005 (2)
C110.062 (3)0.099 (4)0.073 (3)0.005 (2)0.021 (2)0.030 (3)
C120.053 (3)0.151 (5)0.053 (3)0.010 (3)0.020 (2)0.034 (3)
C130.078 (3)0.143 (5)0.045 (2)0.012 (3)0.017 (2)0.018 (3)
C140.067 (3)0.077 (3)0.050 (2)0.001 (2)0.013 (2)0.008 (2)
C150.0412 (18)0.0467 (19)0.0379 (18)0.0004 (15)0.0084 (14)0.0002 (15)
C160.0358 (17)0.0428 (18)0.0359 (17)0.0023 (14)0.0064 (13)0.0002 (14)
C170.0366 (17)0.0443 (19)0.0387 (17)0.0017 (14)0.0040 (14)0.0020 (15)
C180.045 (2)0.059 (2)0.0428 (19)0.0067 (17)0.0105 (16)0.0056 (17)
C190.044 (2)0.066 (3)0.057 (2)0.0101 (19)0.0080 (18)0.006 (2)
C200.050 (2)0.057 (2)0.057 (2)0.0120 (18)0.0031 (18)0.0045 (19)
C210.065 (3)0.086 (3)0.054 (2)0.016 (2)0.007 (2)0.027 (2)
C220.050 (2)0.091 (3)0.049 (2)0.020 (2)0.0150 (18)0.016 (2)
Cl10.0404 (5)0.0565 (6)0.0555 (6)0.0032 (4)0.0167 (4)0.0080 (4)
O10.093 (3)0.089 (2)0.130 (3)0.006 (2)0.021 (2)0.043 (2)
O20.083 (3)0.108 (3)0.185 (4)0.032 (2)0.023 (3)0.064 (3)
O30.0401 (16)0.152 (3)0.091 (2)0.0059 (18)0.0130 (15)0.033 (2)
O40.093 (3)0.206 (4)0.070 (2)0.018 (3)0.038 (2)0.037 (3)
Geometric parameters (Å, º) top
N1—C81.332 (4)C10—H100.93
N1—C161.387 (4)C11—C121.372 (7)
N1—H10.89 (4)C11—H110.93
N2—C81.333 (4)C12—C131.367 (8)
N2—C151.374 (4)C12—H120.93
N2—H20.81 (4)C13—C141.394 (6)
C1—C61.389 (5)C13—H130.93
C1—C21.396 (5)C14—H140.93
C1—C81.457 (5)C15—C161.374 (4)
C2—C31.371 (5)C16—C171.461 (5)
C2—H2A0.93C17—C181.388 (5)
C3—C41.370 (5)C17—C221.396 (5)
C3—H30.93C18—C191.366 (5)
C4—C51.378 (5)C18—H180.93
C4—C71.509 (5)C19—C201.366 (5)
C5—C61.370 (5)C19—H190.93
C5—H50.93C20—C211.369 (5)
C6—H60.93C20—H200.93
C7—H7A0.96C21—C221.386 (5)
C7—H7B0.96C21—H210.93
C7—H7C0.96C22—H220.93
C9—C101.370 (5)Cl1—O41.385 (3)
C9—C141.387 (5)Cl1—O21.408 (4)
C9—C151.481 (4)Cl1—O31.409 (3)
C10—C111.379 (5)Cl1—O11.424 (3)
C8—N1—C16111.2 (3)C10—C11—H11120.2
C8—N1—H1120 (2)C13—C12—C11119.7 (4)
C16—N1—H1127 (2)C13—C12—H12120.1
C8—N2—C15110.8 (3)C11—C12—H12120.1
C8—N2—H2125 (3)C12—C13—C14120.9 (5)
C15—N2—H2123 (2)C12—C13—H13119.6
C6—C1—C2118.1 (3)C14—C13—H13119.6
C6—C1—C8121.3 (3)C9—C14—C13119.1 (5)
C2—C1—C8120.5 (3)C9—C14—H14120.5
C3—C2—C1120.2 (4)C13—C14—H14120.5
C3—C2—H2A119.9C16—C15—N2106.7 (3)
C1—C2—H2A119.9C16—C15—C9131.6 (3)
C4—C3—C2121.9 (4)N2—C15—C9121.6 (3)
C4—C3—H3119.0C15—C16—N1105.1 (3)
C2—C3—H3119.0C15—C16—C17133.7 (3)
C3—C4—C5117.6 (3)N1—C16—C17121.2 (3)
C3—C4—C7120.9 (4)C18—C17—C22117.1 (3)
C5—C4—C7121.5 (4)C18—C17—C16121.1 (3)
C6—C5—C4122.1 (4)C22—C17—C16121.8 (3)
C6—C5—H5119.0C19—C18—C17121.8 (3)
C4—C5—H5119.0C19—C18—H18119.1
C5—C6—C1120.1 (3)C17—C18—H18119.1
C5—C6—H6120.0C20—C19—C18120.8 (4)
C1—C6—H6120.0C20—C19—H19119.6
C4—C7—H7A109.5C18—C19—H19119.6
C4—C7—H7B109.5C19—C20—C21119.0 (4)
H7A—C7—H7B109.5C19—C20—H20120.5
C4—C7—H7C109.5C21—C20—H20120.5
H7A—C7—H7C109.5C20—C21—C22121.0 (4)
H7B—C7—H7C109.5C20—C21—H21119.5
N1—C8—N2106.2 (3)C22—C21—H21119.5
N1—C8—C1126.7 (3)C21—C22—C17120.4 (4)
N2—C8—C1127.1 (3)C21—C22—H22119.8
C10—C9—C14119.2 (3)C17—C22—H22119.8
C10—C9—C15121.4 (3)O4—Cl1—O2112.2 (3)
C14—C9—C15119.4 (3)O4—Cl1—O3112.6 (2)
C9—C10—C11121.4 (4)O2—Cl1—O3110.2 (2)
C9—C10—H10119.3O4—Cl1—O1109.1 (2)
C11—C10—H10119.3O2—Cl1—O1103.5 (3)
C12—C11—C10119.6 (5)O3—Cl1—O1108.7 (2)
C12—C11—H11120.2
C6—C1—C2—C31.2 (6)C12—C13—C14—C90.8 (7)
C8—C1—C2—C3178.9 (4)C8—N2—C15—C161.1 (4)
C1—C2—C3—C40.6 (7)C8—N2—C15—C9179.1 (3)
C2—C3—C4—C50.0 (6)C10—C9—C15—C1666.3 (5)
C2—C3—C4—C7178.4 (4)C14—C9—C15—C16112.8 (5)
C3—C4—C5—C60.0 (6)C10—C9—C15—N2116.2 (4)
C7—C4—C5—C6178.4 (4)C14—C9—C15—N264.7 (5)
C4—C5—C6—C10.6 (6)N2—C15—C16—N10.4 (4)
C2—C1—C6—C51.2 (5)C9—C15—C16—N1178.1 (3)
C8—C1—C6—C5178.9 (3)N2—C15—C16—C17180.0 (3)
C16—N1—C8—N21.1 (4)C9—C15—C16—C172.2 (7)
C16—N1—C8—C1179.0 (3)C8—N1—C16—C150.5 (4)
C15—N2—C8—N11.4 (4)C8—N1—C16—C17179.2 (3)
C15—N2—C8—C1178.7 (3)C15—C16—C17—C18176.1 (4)
C6—C1—C8—N1162.8 (3)N1—C16—C17—C183.5 (5)
C2—C1—C8—N117.4 (5)C15—C16—C17—C224.1 (6)
C6—C1—C8—N217.1 (5)N1—C16—C17—C22176.2 (3)
C2—C1—C8—N2162.7 (4)C22—C17—C18—C190.2 (6)
C14—C9—C10—C112.7 (6)C16—C17—C18—C19179.9 (3)
C15—C9—C10—C11176.3 (4)C17—C18—C19—C200.7 (6)
C9—C10—C11—C120.6 (7)C18—C19—C20—C210.5 (6)
C10—C11—C12—C134.0 (7)C19—C20—C21—C220.6 (7)
C11—C12—C13—C144.1 (7)C20—C21—C22—C171.4 (7)
C10—C9—C14—C132.6 (6)C18—C17—C22—C211.2 (6)
C15—C9—C14—C13176.5 (4)C16—C17—C22—C21179.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.89 (4)2.05 (4)2.943 (4)175 (3)
N2—H2···O1ii0.81 (4)2.33 (4)3.037 (5)146 (3)
N2—H2···O1iii0.81 (4)2.50 (4)3.196 (5)145 (3)
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC22H19N2+·ClO4
Mr410.84
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)9.1964 (18), 9.921 (2), 21.489 (4)
β (°) 94.16 (3)
V3)1955.4 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.45 × 0.40 × 0.25
Data collection
DiffractometerRigaku Mercury2
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.945, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
19242, 4474, 2602
Rint0.070
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.072, 0.214, 1.04
No. of reflections4474
No. of parameters271
No. of restraints24
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.54, 0.35

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.89 (4)2.05 (4)2.943 (4)175 (3)
N2—H2···O1ii0.81 (4)2.33 (4)3.037 (5)146 (3)
N2—H2···O1iii0.81 (4)2.50 (4)3.196 (5)145 (3)
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x, y1/2, z+1/2.
 

Acknowledgements

This work was supported by a start-up grant from Southeast University to Professor Ren-Gen Xiong.

References

First citationFu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q., Xiong, R.-G., Akutagawa, T., Nakamura, T., Chan, P. W. H. & Huang, S. D. (2007). J. Am. Chem. Soc. 129, 5346–5347.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFu, D.-W. & Xiong, R.-G. (2008). Dalton Trans. pp. 3946–3948.  Web of Science CSD CrossRef Google Scholar
First citationFu, D.-W., Zhang, W. & Xiong, R.-G. (2008). Cryst. Growth Des. 8, 3461–3464.  Web of Science CSD CrossRef CAS Google Scholar
First citationHuang, X.-F., Fu, D.-W. & Xiong, R.-G. (2008). Cryst. Growth. Des. 8, 1795–1797.  Web of Science CSD CrossRef CAS Google Scholar
First citationHuang, S.-P.-D., Xiong, R.-G., Han, J.-D. & Weiner, B. R. (1999). Inorg. Chim. Acta, 294, 95–98.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, C.-M., Yu, Z., Xiong, R.-G., Liu, K. & You, X.-Z. (1999). Inorg. Chem. Commun. 2, 31–34.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXie, Y.-R., Zhao, H., Wang, X.-S., Qu, Z.-R., Xiong, R.-G., Xue, X.-A., Xue, Z.-L. & You, X.-Z. (2003). Eur. J. Inorg. Chem. 20, 3712–3715.  Web of Science CSD CrossRef Google Scholar
First citationZhang, J., Xiong, R.-G., Chen, X.-T., Che, C.-M., Xue, Z.-L. & You, X.-Z. (2001). Organometallics, 20, 4118–4121.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, J., Xiong, R.-G., Zuo, J.-L. & You, X.-Z. (2000). Chem. Commun. 16, 1495–1496.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds