organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N′-Bis(4-pyridylmethyl­ene)octane-1,8-di­amine

aDepartment of Chemistry, Vijaygarh Jyotish Ray College, 8/2 Vijaygarh, Jadavpur, Kolkata 700 032, India, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 24 June 2009; accepted 26 June 2009; online 1 July 2009)

The complete molecule of the title compound, C20H26N4, is generated by a crystallographic centre of inversion and the central eight-carbon chain adopts a fully extended conformation. In the crystal, the molecules pack in layers parallel to (010).

Related literature

There are only few crystallographic reports of Schiff bases derived from 1,2-octa­nediamine; for details, see: Glidewell et al. (2005[Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2005). Acta Cryst. E61, o3551-o3553.]); Nathan et al. (2003[Nathan, L. C., Koehne, J. E., Gilmore, J. M., Hannibal, K. A., Dewhirst, W. E. & Mai, T. D. (2003). Polyhedron, 22, 887-894.]); Viossat et al. (1997[Viossat, B., Dung, N. Y., Labouze, X., Morgant, G., Lancelot, J. C., Perrine, D. & Robba, M. (1997). J. Inorg. Biochem. 65, 163-166.]); Yamashita et al. (2003[Yamashita, S., Nihei, M. & Oshio, H. (2003). Chem. Lett. pp. 808-809.]).

[Scheme 1]

Experimental

Crystal data
  • C20H26N4

  • Mr = 322.45

  • Monoclinic, P 21 /c

  • a = 11.6285 (4) Å

  • b = 9.3821 (3) Å

  • c = 8.8302 (3) Å

  • β = 111.143 (2)°

  • V = 898.52 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 140 K

  • 0.40 × 0.20 × 0.02 mm

Data collection
  • Bruker SMART APEX area-detector diffractometer

  • Absorption correction: none

  • 6110 measured reflections

  • 2065 independent reflections

  • 1588 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.138

  • S = 1.02

  • 2065 reflections

  • 109 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Related literature top

There are only few crystallographic reports of Schiff bases derived from 1,2-octanediamine; for details, see: Glidewell et al. (2005); Nathan et al. (2003); Viossat et al. (1997); Yamashita et al. (2003).

Experimental top

1,8-Diaminooctane (0.145 g, 1 mmol) was dissolved in methanol (15 ml) and to this was added 4-pyridinecarboxaldehyde (0.215 g, 2 mmol). The mixture was heated for 4 h. The solid that formed was recrystallized from methanol in 70% yield; m.p. 393 K.

Refinement top

H atoms were placed in calculated positions (C-H = 0.95-0.99 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Displacement ellipsoid plot (Barbour, 2001) of C20H26N2 at the 70% probability level; H atoms are drawn as spheres of arbitrary radius.
N,N'-Bis(4-pyridylmethylene)octane-1,8-diamine top
Crystal data top
C20H26N4F(000) = 348
Mr = 322.45Dx = 1.192 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1645 reflections
a = 11.6285 (4) Åθ = 2.2–27.3°
b = 9.3821 (3) ŵ = 0.07 mm1
c = 8.8302 (3) ÅT = 140 K
β = 111.143 (2)°Plate, light yellow
V = 898.52 (5) Å30.40 × 0.20 × 0.02 mm
Z = 2
Data collection top
Bruker SMART APEX area-detector
diffractometer
1588 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.023
Graphite monochromatorθmax = 27.5°, θmin = 1.9°
ω scansh = 1515
6110 measured reflectionsk = 1211
2065 independent reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0697P)2 + 0.2588P]
where P = (Fo2 + 2Fc2)/3
2065 reflections(Δ/σ)max = 0.001
109 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C20H26N4V = 898.52 (5) Å3
Mr = 322.45Z = 2
Monoclinic, P21/cMo Kα radiation
a = 11.6285 (4) ŵ = 0.07 mm1
b = 9.3821 (3) ÅT = 140 K
c = 8.8302 (3) Å0.40 × 0.20 × 0.02 mm
β = 111.143 (2)°
Data collection top
Bruker SMART APEX area-detector
diffractometer
1588 reflections with I > 2σ(I)
6110 measured reflectionsRint = 0.023
2065 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.138H-atom parameters constrained
S = 1.02Δρmax = 0.31 e Å3
2065 reflectionsΔρmin = 0.23 e Å3
109 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.28339 (13)0.52618 (14)0.97725 (16)0.0353 (3)
N20.09040 (12)0.40434 (14)1.39134 (15)0.0326 (3)
C10.48329 (13)0.46639 (14)0.56773 (16)0.0248 (3)
H1A0.56010.43880.65730.030*
H1B0.43530.37840.52610.030*
C20.40867 (13)0.56437 (15)0.63471 (17)0.0264 (3)
H2A0.45840.65000.68180.032*
H2B0.33400.59610.54420.032*
C30.36981 (13)0.49380 (15)0.76402 (17)0.0265 (3)
H3A0.30860.41840.71250.032*
H3B0.44260.44760.84510.032*
C40.31509 (18)0.59651 (17)0.8495 (2)0.0413 (4)
H4A0.37480.67400.89790.050*
H4B0.24000.63970.76970.050*
C50.20006 (13)0.58108 (14)1.01734 (16)0.0250 (3)
H50.15980.66470.96310.030*
C60.16301 (12)0.51912 (15)1.14647 (15)0.0225 (3)
C70.07925 (13)0.58973 (15)1.19920 (17)0.0265 (3)
H70.04460.67821.15220.032*
C80.04704 (13)0.52910 (16)1.32146 (18)0.0303 (4)
H80.00920.57931.35760.036*
C90.17031 (14)0.33682 (16)1.33808 (18)0.0304 (3)
H90.20180.24731.38520.036*
C100.20944 (13)0.38956 (15)1.21893 (17)0.0263 (3)
H100.26730.33801.18690.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0532 (8)0.0291 (7)0.0383 (7)0.0066 (6)0.0343 (7)0.0070 (6)
N20.0390 (7)0.0354 (7)0.0306 (7)0.0071 (5)0.0212 (6)0.0029 (5)
C10.0282 (7)0.0273 (7)0.0236 (7)0.0019 (5)0.0148 (6)0.0008 (5)
C20.0339 (7)0.0257 (7)0.0274 (7)0.0007 (6)0.0203 (6)0.0006 (6)
C30.0338 (7)0.0256 (7)0.0260 (7)0.0022 (6)0.0181 (6)0.0023 (6)
C40.0682 (11)0.0283 (8)0.0490 (10)0.0084 (7)0.0473 (9)0.0090 (7)
C50.0318 (7)0.0225 (7)0.0238 (7)0.0000 (5)0.0139 (6)0.0003 (5)
C60.0244 (7)0.0245 (7)0.0202 (6)0.0037 (5)0.0101 (5)0.0032 (5)
C70.0270 (7)0.0277 (7)0.0274 (7)0.0002 (5)0.0130 (6)0.0023 (6)
C80.0304 (7)0.0348 (8)0.0323 (8)0.0035 (6)0.0191 (6)0.0066 (6)
C90.0387 (8)0.0270 (7)0.0297 (7)0.0027 (6)0.0174 (6)0.0010 (6)
C100.0308 (7)0.0252 (7)0.0267 (7)0.0001 (5)0.0151 (6)0.0017 (5)
Geometric parameters (Å, º) top
N1—C51.2558 (18)C3—H3B0.99
N1—C41.4643 (18)C4—H4A0.99
N2—C81.334 (2)C4—H4B0.99
N2—C91.3421 (18)C5—C61.4758 (18)
C1—C1i1.522 (2)C5—H50.95
C1—C21.5225 (18)C6—C101.3889 (19)
C1—H1A0.99C6—C71.3898 (18)
C1—H1B0.99C7—C81.3860 (19)
C2—C31.5227 (18)C7—H70.95
C2—H2A0.99C8—H80.95
C2—H2B0.99C9—C101.3800 (19)
C3—C41.4998 (19)C9—H90.95
C3—H3A0.99C10—H100.95
C5—N1—C4117.82 (13)C3—C4—H4A109.3
C8—N2—C9116.48 (12)N1—C4—H4B109.3
C1i—C1—C2113.46 (14)C3—C4—H4B109.3
C1i—C1—H1A108.9H4A—C4—H4B108.0
C2—C1—H1A108.9N1—C5—C6121.75 (13)
C1i—C1—H1B108.9N1—C5—H5119.1
C2—C1—H1B108.9C6—C5—H5119.1
H1A—C1—H1B107.7C10—C6—C7117.76 (12)
C3—C2—C1113.18 (11)C10—C6—C5121.82 (12)
C3—C2—H2A108.9C7—C6—C5120.42 (12)
C1—C2—H2A108.9C8—C7—C6118.97 (13)
C3—C2—H2B108.9C8—C7—H7120.5
C1—C2—H2B108.9C6—C7—H7120.5
H2A—C2—H2B107.8N2—C8—C7123.85 (13)
C4—C3—C2113.11 (12)N2—C8—H8118.1
C4—C3—H3A109.0C7—C8—H8118.1
C2—C3—H3A109.0N2—C9—C10123.94 (14)
C4—C3—H3B109.0N2—C9—H9118.0
C2—C3—H3B109.0C10—C9—H9118.0
H3A—C3—H3B107.8C9—C10—C6119.00 (13)
N1—C4—C3111.63 (12)C9—C10—H10120.5
N1—C4—H4A109.3C6—C10—H10120.5
C1i—C1—C2—C3176.99 (14)C5—C6—C7—C8179.57 (13)
C1—C2—C3—C4170.37 (14)C9—N2—C8—C70.5 (2)
C5—N1—C4—C3154.80 (15)C6—C7—C8—N21.1 (2)
C2—C3—C4—N1177.71 (14)C8—N2—C9—C100.6 (2)
C4—N1—C5—C6179.09 (14)N2—C9—C10—C61.0 (2)
N1—C5—C6—C106.5 (2)C7—C6—C10—C90.4 (2)
N1—C5—C6—C7173.65 (13)C5—C6—C10—C9179.46 (13)
C10—C6—C7—C80.6 (2)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC20H26N4
Mr322.45
Crystal system, space groupMonoclinic, P21/c
Temperature (K)140
a, b, c (Å)11.6285 (4), 9.3821 (3), 8.8302 (3)
β (°) 111.143 (2)
V3)898.52 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.40 × 0.20 × 0.02
Data collection
DiffractometerBruker SMART APEX area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6110, 2065, 1588
Rint0.023
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.138, 1.02
No. of reflections2065
No. of parameters109
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.23

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2009).

 

Acknowledgements

The authors thank Vijaygarh Jyotish Ray College and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGlidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2005). Acta Cryst. E61, o3551–o3553.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNathan, L. C., Koehne, J. E., Gilmore, J. M., Hannibal, K. A., Dewhirst, W. E. & Mai, T. D. (2003). Polyhedron, 22, 887–894.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationViossat, B., Dung, N. Y., Labouze, X., Morgant, G., Lancelot, J. C., Perrine, D. & Robba, M. (1997). J. Inorg. Biochem. 65, 163–166.  CSD CrossRef CAS Web of Science Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar
First citationYamashita, S., Nihei, M. & Oshio, H. (2003). Chem. Lett. pp. 808–809.  CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds