metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[[2-(2-pyrid­yl)-1H-benz­imidazole]cadmium(II)]-μ-benzene-1,4-di­carboxyl­ato]

aDepartment of Chemistry and Pharmaceutical Engineering, Suihua University, Suihua 152061, People's Republic of China
*Correspondence e-mail: lhy4486@yahoo.com.cn

(Received 27 June 2009; accepted 9 July 2009; online 15 July 2009)

In the title compound, [Cd(C8H4O4)(C12H9N3)]n, each CdII ion is six-coordinated in a distorted octa­hedral geometry by four carboxyl­ate O atoms from two benzene-1,4-dicarboxyl­ate anions (L), and two N atoms from one 2-(2-pyrid­yl)benzimidazole ligand. The neighboring CdII ions are bridged by the L ligands, forming a zigzag polymeric chain structure. The chains are further extended into a three-dimensional supra­molecular structure through inter­molecular N—H⋯O hydrogen bonds.

Related literature

For metal-dicarboxyl­ate complexes with aromatic N-donor chelating ligands, see: Robl (1992[Robl, C. (1992). Mater. Res. Bull. 27, 99-107.]); Wang et al. (2006[Wang, X.-L., Qin, C., Wang, E.-B. & Xu, L. (2006). Cryst. Growth Des. 6, 2061-2065.]); Liu et al. (2008[Liu, G.-X., Huang, R.-Y., Xu, H., Kong, X.-J., Huang, L.-F., Zhu, K. & Ren, X.-M. (2008). Polyhedron, 27, 2327-2336.]); Xia et al. (2007[Xia, C.-K., Wu, W., Chen, Q.-Y. & Xie, J.-M. (2007). Acta Cryst. E63, m2726.]). For the synthesis, see: Addison & Burke (1981[Addison, A. W. & Burke, P. J. (1981). J. Heterocycl. Chem. 18, 803-805.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C8H4O4)(C12H9N3)]

  • Mr = 471.73

  • Monoclinic, P 21 /c

  • a = 7.378 (5) Å

  • b = 20.860 (5) Å

  • c = 11.546 (5) Å

  • β = 93.362 (5)°

  • V = 1773.9 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.26 mm−1

  • T = 293 K

  • 0.24 × 0.20 × 0.16 mm

Data collection
  • Oxford Diffraction Gemini R Ultra diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.750, Tmax = 0.815

  • 8112 measured reflections

  • 3624 independent reflections

  • 1967 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.052

  • S = 0.76

  • 3624 reflections

  • 257 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Selected bond lengths (Å)

Cd1—O3i 2.271 (3)
Cd1—N1 2.278 (3)
Cd1—O2 2.318 (3)
Cd1—N2 2.322 (3)
Cd1—O1 2.338 (3)
Cd1—O4i 2.357 (3)
Symmetry code: (i) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H1A⋯O2ii 0.83 (2) 2.17 (3) 2.882 (5) 144 (4)
N3—H1A⋯O3iii 0.83 (2) 2.46 (4) 2.988 (5) 123 (4)
Symmetry codes: (ii) -x+1, -y, -z+1; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In recent years, studies on metal-dicarboxylate complexes with aromatic N-donor chelating ligands have attracted special attention because of their interesting structural and chemical properties (Robl, 1992; Wang et al., 2006; Liu et al., 2008; Xia et al., 2007). Herein, we present a new cadmium-dicarboxylate complex (I), namely, [Cd(PyBM)L]n, where PyBM is 2-(2-pyridyl)benzimidazole and L is benzene-1,4-dicarboxylic acid.

Selected bond distances are listed in Table 1. Each CdII center is six-coordinated by two N atoms of the chelating PyBM ligand and four O atoms from two L ions. The neighboring CdII ions are bridged by L ligands to form a zigzag polymeric chain structure (Fig. 2).

In the crystal structure, the adjacent chains are linked via N—H···O hydrogen bonds (Table 2) resulting in the formation of a three-dimensional supramolecular structure.

Related literature top

For metal-dicarboxylate complexes with aromatic N-donor chelating ligands, see: Robl (1992); Wang et al. (2006); Liu et al. (2008); Xia et al. (2007). For the synthesis, see: Addison et al. (1981).

Experimental top

2-(2-Pyridyl)benzimidazole was synthesized according to the literature method of Addison et al., (1981). A solution of Cd(CH3COO)2.2H2O (0.133 g, 0.5 mmol), 2-(2-pyridyl)benzimidazole (0.097 g, 0.5 mmol), benzene-1,4-dicarboxylic acid (0.083 g, 0.5 mmol) in H2O (10 ml) and CH3OH (5 ml) was stirred under ambient conditions, then sealed in a Teflon-lined steel vessel, heated at 443 K for 3 d, and cooled to room temperature. The resulting product was recovered by filtration, washed with distilled water and dried in air (65% yield).

Refinement top

The H atom bonded to atom N3 was located in a difference map and refined with the N-H distance restrained to 0.85 (2) Å. C-bound H atoms were positioned geometrically (C-H = 0.93 Å) and refined as riding, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis CCD (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The coordination environment of the CdII ion in the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Symmetry code: (i) 1 + x, 1/2 -y, 1/2 + z.
[Figure 2] Fig. 2. Part of the polymeric chain in the title compound.
catena-Poly[[[2-(2-pyridyl)-1H-benzimidazole]cadmium(II)]-µ- benzene-1,4-dicarboxylato] top
Crystal data top
[Cd(C8H4O4)(C12H9N3)]F(000) = 936
Mr = 471.73Dx = 1.766 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybcCell parameters from 3624 reflections
a = 7.378 (5) Åθ = 2.0–26.5°
b = 20.860 (5) ŵ = 1.26 mm1
c = 11.546 (5) ÅT = 293 K
β = 93.362 (5)°Block, colourless
V = 1773.9 (15) Å30.24 × 0.20 × 0.16 mm
Z = 4
Data collection top
Oxford Diffraction Gemini R Ultra
diffractometer
3624 independent reflections
Radiation source: fine-focus sealed tube1967 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
Detector resolution: 10.0 pixels mm-1θmax = 26.5°, θmin = 2.0°
ω scansh = 99
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
k = 2025
Tmin = 0.750, Tmax = 0.815l = 914
8112 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.052H atoms treated by a mixture of independent and constrained refinement
S = 0.76 w = 1/[σ2(Fo2) + (0.0138P)2]
where P = (Fo2 + 2Fc2)/3
3624 reflections(Δ/σ)max = 0.001
257 parametersΔρmax = 0.47 e Å3
1 restraintΔρmin = 0.39 e Å3
Crystal data top
[Cd(C8H4O4)(C12H9N3)]V = 1773.9 (15) Å3
Mr = 471.73Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.378 (5) ŵ = 1.26 mm1
b = 20.860 (5) ÅT = 293 K
c = 11.546 (5) Å0.24 × 0.20 × 0.16 mm
β = 93.362 (5)°
Data collection top
Oxford Diffraction Gemini R Ultra
diffractometer
3624 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
1967 reflections with I > 2σ(I)
Tmin = 0.750, Tmax = 0.815Rint = 0.052
8112 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0371 restraint
wR(F2) = 0.052H atoms treated by a mixture of independent and constrained refinement
S = 0.76Δρmax = 0.47 e Å3
3624 reflectionsΔρmin = 0.39 e Å3
257 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.79275 (4)0.109528 (16)0.34633 (3)0.03417 (10)
C10.5456 (5)0.14696 (17)0.1841 (4)0.0286 (10)
C20.4090 (5)0.17967 (17)0.1042 (3)0.0256 (9)
C30.2232 (5)0.17395 (19)0.1229 (3)0.0330 (11)
H30.18500.14610.17950.040*
C40.0980 (5)0.20935 (18)0.0576 (3)0.0341 (10)
H40.02510.20410.06850.041*
C50.1527 (5)0.25280 (17)0.0243 (4)0.0293 (10)
C60.3364 (5)0.25629 (17)0.0456 (4)0.0316 (10)
H60.37420.28340.10340.038*
C70.4622 (5)0.22008 (18)0.0176 (3)0.0318 (10)
H70.58420.22280.00200.038*
C80.0192 (5)0.29813 (19)0.0795 (3)0.0302 (10)
C90.7918 (6)0.0301 (2)0.2117 (4)0.0487 (13)
H90.81980.00580.14770.058*
C100.7574 (6)0.0939 (2)0.1950 (4)0.0581 (14)
H100.76560.11270.12250.070*
C110.7105 (6)0.1293 (2)0.2886 (5)0.0556 (14)
H110.68360.17260.28000.067*
C120.7032 (5)0.1004 (2)0.3951 (4)0.0451 (11)
H120.67120.12380.45930.054*
C130.7440 (5)0.03626 (19)0.4051 (4)0.0327 (10)
C140.7435 (5)0.00048 (19)0.5139 (4)0.0303 (10)
C150.7579 (5)0.0770 (2)0.6369 (4)0.0333 (11)
C160.7781 (5)0.1363 (2)0.6920 (4)0.0436 (12)
H160.79810.17370.65070.052*
C170.7668 (6)0.1367 (2)0.8101 (4)0.0506 (14)
H170.77890.17560.84930.061*
C180.7379 (6)0.0815 (2)0.8736 (4)0.0582 (14)
H180.73120.08420.95370.070*
C190.7192 (6)0.0225 (2)0.8197 (4)0.0490 (13)
H190.69980.01480.86130.059*
C200.7307 (5)0.02185 (19)0.7012 (4)0.0339 (11)
N10.7647 (4)0.06143 (15)0.5215 (3)0.0329 (8)
N20.7879 (4)0.00038 (16)0.3145 (3)0.0378 (9)
N30.7210 (5)0.02713 (18)0.6197 (3)0.0400 (10)
O10.7077 (4)0.14386 (12)0.1581 (3)0.0435 (7)
O20.4940 (3)0.12531 (12)0.2787 (2)0.0371 (8)
O30.0764 (3)0.34878 (12)0.1266 (2)0.0354 (7)
O40.1483 (3)0.28802 (12)0.0740 (2)0.0403 (8)
H1A0.701 (6)0.0642 (12)0.642 (4)0.080 (18)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.03531 (15)0.03201 (15)0.03438 (19)0.00389 (19)0.00479 (12)0.0038 (2)
C10.035 (2)0.024 (2)0.026 (3)0.0038 (19)0.002 (2)0.0041 (19)
C20.031 (2)0.024 (2)0.022 (3)0.0032 (18)0.0023 (18)0.0007 (19)
C30.034 (2)0.036 (2)0.029 (3)0.004 (2)0.004 (2)0.013 (2)
C40.028 (2)0.045 (3)0.029 (3)0.001 (2)0.002 (2)0.005 (2)
C50.032 (2)0.025 (2)0.031 (3)0.0029 (19)0.0011 (19)0.0009 (19)
C60.037 (2)0.032 (2)0.027 (3)0.004 (2)0.006 (2)0.004 (2)
C70.027 (2)0.041 (3)0.028 (3)0.004 (2)0.005 (2)0.003 (2)
C80.036 (3)0.033 (2)0.021 (3)0.000 (2)0.001 (2)0.008 (2)
C90.057 (3)0.044 (3)0.045 (4)0.005 (2)0.002 (2)0.004 (3)
C100.072 (3)0.054 (4)0.047 (4)0.015 (3)0.004 (3)0.021 (3)
C110.062 (3)0.036 (3)0.067 (4)0.007 (2)0.013 (3)0.020 (3)
C120.052 (3)0.032 (3)0.050 (3)0.005 (2)0.005 (2)0.001 (2)
C130.034 (2)0.030 (3)0.033 (3)0.011 (2)0.005 (2)0.002 (2)
C140.026 (2)0.030 (3)0.034 (3)0.0012 (19)0.003 (2)0.005 (2)
C150.026 (2)0.039 (3)0.036 (3)0.003 (2)0.005 (2)0.003 (2)
C160.050 (3)0.038 (3)0.044 (4)0.003 (2)0.008 (2)0.008 (2)
C170.052 (3)0.058 (3)0.043 (4)0.002 (3)0.010 (3)0.020 (3)
C180.070 (4)0.071 (4)0.034 (4)0.004 (3)0.007 (3)0.013 (3)
C190.055 (3)0.060 (3)0.032 (3)0.005 (2)0.007 (2)0.008 (3)
C200.031 (2)0.037 (3)0.034 (3)0.003 (2)0.002 (2)0.003 (2)
N10.041 (2)0.028 (2)0.029 (3)0.0010 (17)0.0010 (17)0.0043 (17)
N20.046 (2)0.041 (2)0.025 (3)0.0010 (17)0.0062 (19)0.0089 (19)
N30.047 (2)0.039 (2)0.033 (3)0.003 (2)0.001 (2)0.004 (2)
O10.0297 (14)0.0664 (18)0.0346 (19)0.0045 (16)0.0043 (13)0.0090 (17)
O20.0307 (14)0.046 (2)0.035 (2)0.0055 (13)0.0037 (14)0.0123 (15)
O30.0336 (16)0.0359 (17)0.037 (2)0.0027 (13)0.0036 (14)0.0105 (14)
O40.0291 (16)0.0356 (17)0.056 (2)0.0032 (14)0.0015 (15)0.0059 (15)
Geometric parameters (Å, º) top
Cd1—O3i2.271 (3)C9—H90.9300
Cd1—N12.278 (3)C10—C111.369 (6)
Cd1—O22.318 (3)C10—H100.9300
Cd1—N22.322 (3)C11—C121.374 (6)
Cd1—O12.338 (3)C11—H110.9300
Cd1—O4i2.357 (3)C12—C131.375 (5)
Cd1—C12.654 (4)C12—H120.9300
Cd1—C8i2.658 (4)C13—N21.341 (5)
C1—O11.252 (4)C13—C141.461 (6)
C1—O21.261 (4)C14—N11.303 (4)
C1—C21.491 (5)C14—N31.361 (5)
C2—C71.382 (5)C15—N11.375 (5)
C2—C31.405 (5)C15—C201.389 (5)
C3—C41.373 (5)C15—C161.396 (5)
C3—H30.9300C16—C171.372 (6)
C4—C51.387 (5)C16—H160.9300
C4—H40.9300C17—C181.389 (6)
C5—C61.394 (5)C17—H170.9300
C5—C81.482 (5)C18—C191.383 (6)
C6—C71.373 (5)C18—H180.9300
C6—H60.9300C19—C201.376 (6)
C7—H70.9300C19—H190.9300
C8—O41.259 (4)C20—N31.387 (5)
C8—O31.272 (4)N3—H1A0.829 (19)
C8—Cd1ii2.658 (4)O3—Cd1ii2.271 (3)
C9—N21.342 (5)O4—Cd1ii2.357 (3)
C9—C101.366 (5)
O3i—Cd1—N1100.24 (11)O3—C8—C5119.0 (3)
O3i—Cd1—O2147.38 (10)O4—C8—Cd1ii62.44 (19)
N1—Cd1—O2103.14 (10)O3—C8—Cd1ii58.55 (19)
O3i—Cd1—N2113.93 (11)C5—C8—Cd1ii171.9 (3)
N1—Cd1—N272.79 (12)N2—C9—C10124.2 (5)
O2—Cd1—N294.67 (10)N2—C9—H9117.9
O3i—Cd1—O1101.85 (10)C10—C9—H9117.9
N1—Cd1—O1157.89 (10)C9—C10—C11117.9 (5)
O2—Cd1—O156.34 (9)C9—C10—H10121.1
N2—Cd1—O198.89 (11)C11—C10—H10121.1
O3i—Cd1—O4i56.74 (9)C10—C11—C12119.7 (4)
N1—Cd1—O4i94.44 (11)C10—C11—H11120.2
O2—Cd1—O4i98.78 (9)C12—C11—H11120.2
N2—Cd1—O4i163.31 (11)C11—C12—C13118.8 (4)
O1—Cd1—O4i96.78 (10)C11—C12—H12120.6
O3i—Cd1—C1125.02 (11)C13—C12—H12120.6
N1—Cd1—C1131.42 (12)N2—C13—C12122.6 (4)
O2—Cd1—C128.37 (9)N2—C13—C14113.5 (4)
N2—Cd1—C1100.09 (11)C12—C13—C14123.9 (4)
O1—Cd1—C128.15 (10)N1—C14—N3111.4 (4)
O4i—Cd1—C196.43 (10)N1—C14—C13123.9 (4)
O3i—Cd1—C8i28.54 (10)N3—C14—C13124.7 (4)
N1—Cd1—C8i96.98 (11)N1—C15—C20109.7 (4)
O2—Cd1—C8i124.94 (11)N1—C15—C16129.9 (4)
N2—Cd1—C8i140.36 (12)C20—C15—C16120.4 (4)
O1—Cd1—C8i101.92 (10)C17—C16—C15116.6 (4)
O4i—Cd1—C8i28.26 (9)C17—C16—H16121.7
C1—Cd1—C8i114.01 (12)C15—C16—H16121.7
O1—C1—O2122.0 (4)C16—C17—C18122.7 (4)
O1—C1—C2119.7 (4)C16—C17—H17118.7
O2—C1—C2118.2 (3)C18—C17—H17118.7
O1—C1—Cd161.8 (2)C19—C18—C17121.0 (5)
O2—C1—Cd160.87 (19)C19—C18—H18119.5
C2—C1—Cd1169.4 (3)C17—C18—H18119.5
C7—C2—C3118.9 (4)C20—C19—C18116.5 (4)
C7—C2—C1121.1 (3)C20—C19—H19121.7
C3—C2—C1119.8 (3)C18—C19—H19121.7
C4—C3—C2120.1 (3)C19—C20—N3132.7 (4)
C4—C3—H3120.0C19—C20—C15122.8 (4)
C2—C3—H3120.0N3—C20—C15104.5 (4)
C3—C4—C5120.8 (3)C14—N1—C15106.7 (3)
C3—C4—H4119.6C14—N1—Cd1113.2 (3)
C5—C4—H4119.6C15—N1—Cd1140.1 (3)
C4—C5—C6118.7 (4)C13—N2—C9116.8 (4)
C4—C5—C8119.8 (4)C13—N2—Cd1115.5 (3)
C6—C5—C8121.3 (4)C9—N2—Cd1126.6 (3)
C7—C6—C5120.7 (4)C14—N3—C20107.7 (4)
C7—C6—H6119.6C14—N3—H1A134 (4)
C5—C6—H6119.6C20—N3—H1A119 (4)
C6—C7—C2120.6 (4)C1—O1—Cd190.1 (2)
C6—C7—H7119.7C1—O2—Cd190.8 (2)
C2—C7—H7119.7C8—O3—Cd1ii92.9 (2)
O4—C8—O3120.8 (4)C8—O4—Cd1ii89.3 (2)
O4—C8—C5120.1 (4)
O3i—Cd1—C1—O138.9 (3)C20—C15—N1—C140.2 (4)
N1—Cd1—C1—O1165.9 (2)C16—C15—N1—C14178.1 (4)
O2—Cd1—C1—O1171.1 (4)C20—C15—N1—Cd1177.6 (3)
N2—Cd1—C1—O190.0 (2)C16—C15—N1—Cd14.1 (7)
O4i—Cd1—C1—O192.4 (2)O3i—Cd1—N1—C14118.0 (3)
C8i—Cd1—C1—O169.3 (2)O2—Cd1—N1—C1484.9 (3)
O3i—Cd1—C1—O2150.07 (19)N2—Cd1—N1—C146.0 (3)
N1—Cd1—C1—O25.1 (3)O1—Cd1—N1—C1464.6 (4)
N2—Cd1—C1—O281.0 (2)O4i—Cd1—N1—C14175.0 (3)
O1—Cd1—C1—O2171.1 (4)C1—Cd1—N1—C1482.4 (3)
O4i—Cd1—C1—O296.6 (2)C8i—Cd1—N1—C14146.7 (3)
C8i—Cd1—C1—O2119.6 (2)O3i—Cd1—N1—C1564.3 (4)
O3i—Cd1—C1—C262.2 (16)O2—Cd1—N1—C1592.8 (4)
N1—Cd1—C1—C293.0 (16)N2—Cd1—N1—C15176.3 (4)
O2—Cd1—C1—C287.9 (16)O1—Cd1—N1—C15113.1 (4)
N2—Cd1—C1—C2168.9 (16)O4i—Cd1—N1—C157.3 (4)
O1—Cd1—C1—C2101.1 (16)C1—Cd1—N1—C1595.3 (4)
O4i—Cd1—C1—C28.7 (16)C8i—Cd1—N1—C1535.6 (4)
C8i—Cd1—C1—C231.8 (16)C12—C13—N2—C90.5 (6)
O1—C1—C2—C716.2 (6)C14—C13—N2—C9179.7 (3)
O2—C1—C2—C7161.1 (4)C12—C13—N2—Cd1168.0 (3)
Cd1—C1—C2—C779.0 (17)C14—C13—N2—Cd111.8 (4)
O1—C1—C2—C3169.3 (4)C10—C9—N2—C131.2 (6)
O2—C1—C2—C313.4 (5)C10—C9—N2—Cd1168.2 (3)
Cd1—C1—C2—C395.5 (16)O3i—Cd1—N2—C13103.7 (3)
C7—C2—C3—C41.6 (6)N1—Cd1—N2—C139.9 (3)
C1—C2—C3—C4173.0 (4)O2—Cd1—N2—C1392.5 (3)
C2—C3—C4—C52.4 (6)O1—Cd1—N2—C13149.1 (3)
C3—C4—C5—C65.0 (6)O4i—Cd1—N2—C1351.2 (5)
C3—C4—C5—C8169.8 (4)C1—Cd1—N2—C13120.6 (3)
C4—C5—C6—C73.6 (6)C8i—Cd1—N2—C1389.8 (3)
C8—C5—C6—C7171.1 (4)O3i—Cd1—N2—C989.2 (3)
C5—C6—C7—C20.4 (6)N1—Cd1—N2—C9177.0 (4)
C3—C2—C7—C63.0 (6)O2—Cd1—N2—C974.7 (3)
C1—C2—C7—C6171.6 (3)O1—Cd1—N2—C918.1 (4)
C4—C5—C8—O416.7 (6)O4i—Cd1—N2—C9141.6 (4)
C6—C5—C8—O4168.7 (4)C1—Cd1—N2—C946.6 (4)
C4—C5—C8—O3159.5 (4)C8i—Cd1—N2—C9103.0 (4)
C6—C5—C8—O315.1 (6)N1—C14—N3—C200.7 (5)
N2—C9—C10—C112.1 (7)C13—C14—N3—C20179.3 (4)
C9—C10—C11—C121.3 (7)C19—C20—N3—C14179.2 (4)
C10—C11—C12—C130.2 (6)C15—C20—N3—C140.5 (4)
C11—C12—C13—N21.1 (6)O2—C1—O1—Cd19.2 (4)
C11—C12—C13—C14179.1 (4)C2—C1—O1—Cd1168.0 (3)
N2—C13—C14—N16.8 (6)O3i—Cd1—O1—C1148.3 (2)
C12—C13—C14—N1173.0 (4)N1—Cd1—O1—C129.0 (4)
N2—C13—C14—N3173.2 (4)O2—Cd1—O1—C15.1 (2)
C12—C13—C14—N37.0 (6)N2—Cd1—O1—C194.8 (2)
N1—C15—C16—C17179.1 (4)O4i—Cd1—O1—C191.0 (2)
C20—C15—C16—C170.9 (6)C8i—Cd1—O1—C1119.1 (2)
C15—C16—C17—C180.4 (7)O1—C1—O2—Cd19.3 (4)
C16—C17—C18—C190.1 (7)C2—C1—O2—Cd1167.9 (3)
C17—C18—C19—C200.0 (7)O3i—Cd1—O2—C149.3 (3)
C18—C19—C20—N3179.1 (4)N1—Cd1—O2—C1176.0 (2)
C18—C19—C20—C150.6 (6)N2—Cd1—O2—C1102.6 (2)
N1—C15—C20—C19179.6 (4)O1—Cd1—O2—C15.1 (2)
C16—C15—C20—C191.1 (6)O4i—Cd1—O2—C187.3 (2)
N1—C15—C20—N30.2 (4)C8i—Cd1—O2—C175.6 (3)
C16—C15—C20—N3178.7 (4)O4—C8—O3—Cd1ii5.2 (4)
N3—C14—N1—C150.6 (4)C5—C8—O3—Cd1ii171.0 (3)
C13—C14—N1—C15179.4 (3)O3—C8—O4—Cd1ii5.0 (4)
N3—C14—N1—Cd1177.9 (2)C5—C8—O4—Cd1ii171.2 (3)
C13—C14—N1—Cd12.1 (5)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x1, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H1A···O2iii0.83 (2)2.17 (3)2.882 (5)144 (4)
N3—H1A···O3iv0.83 (2)2.46 (4)2.988 (5)123 (4)
Symmetry codes: (iii) x+1, y, z+1; (iv) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cd(C8H4O4)(C12H9N3)]
Mr471.73
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.378 (5), 20.860 (5), 11.546 (5)
β (°) 93.362 (5)
V3)1773.9 (15)
Z4
Radiation typeMo Kα
µ (mm1)1.26
Crystal size (mm)0.24 × 0.20 × 0.16
Data collection
DiffractometerOxford Diffraction Gemini R Ultra
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2006)
Tmin, Tmax0.750, 0.815
No. of measured, independent and
observed [I > 2σ(I)] reflections
8112, 3624, 1967
Rint0.052
(sin θ/λ)max1)0.627
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.052, 0.76
No. of reflections3624
No. of parameters257
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.47, 0.39

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL-Plus (Sheldrick, 2008).

Selected bond lengths (Å) top
Cd1—O3i2.271 (3)Cd1—N22.322 (3)
Cd1—N12.278 (3)Cd1—O12.338 (3)
Cd1—O22.318 (3)Cd1—O4i2.357 (3)
Symmetry code: (i) x+1, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H1A···O2ii0.83 (2)2.17 (3)2.882 (5)144 (4)
N3—H1A···O3iii0.83 (2)2.46 (4)2.988 (5)123 (4)
Symmetry codes: (ii) x+1, y, z+1; (iii) x+1, y1/2, z+1/2.
 

Acknowledgements

The authors thank the Science Foundation of Suihua University (grant No. K081001) for supporting this work.

References

First citationAddison, A. W. & Burke, P. J. (1981). J. Heterocycl. Chem. 18, 803–805.  CrossRef CAS Google Scholar
First citationLiu, G.-X., Huang, R.-Y., Xu, H., Kong, X.-J., Huang, L.-F., Zhu, K. & Ren, X.-M. (2008). Polyhedron, 27, 2327–2336.  Web of Science CSD CrossRef CAS Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationRobl, C. (1992). Mater. Res. Bull. 27, 99–107.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, X.-L., Qin, C., Wang, E.-B. & Xu, L. (2006). Cryst. Growth Des. 6, 2061–2065.  Web of Science CSD CrossRef CAS Google Scholar
First citationXia, C.-K., Wu, W., Chen, Q.-Y. & Xie, J.-M. (2007). Acta Cryst. E63, m2726.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds