organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages o1921-o1922

Methyl 4-(3-eth­­oxy-4-hy­droxy­phen­yl)-6-methyl-2-oxo-1,2,3,4-tetra­hydro­pyrimidine-5-carboxyl­ate monohydrate

aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and bOrganic Chemistry Division, School of Science and Humanities, VIT University, Vellore 632 014, India
*Correspondence e-mail: mnpsy2004@yahoo.com

(Received 29 June 2009; accepted 14 July 2009; online 18 July 2009)

In the title compound, C15H18N2O5·H2O, the pyrimidine ring adopts a flattened-boat conformation. The eth­oxy group attached to the benzene ring is in an extended conformation. The oxopyrimidine mol­ecules are linked into centrosymmetric R22(20) dimers by O—H⋯O hydrogen bonds. The dimers are linked by N—H⋯O hydrogen bonds, forming a two-dimensional network parallel to the bc plane. Adjacent networks are cross-linked via N—H⋯O and O—H⋯O hydrogen bonds involving the water mol­ecules.

Related literature

For the biological properties of pyrimidine compounds, see: Kidwai et al. (2003[Kidwai, M., Saxena, S., Rastogi, S. & Venkataramanan, R. (2003). Curr. Med. Chem. Anti-Infective Agents, 2, 269-286.]). For C=O bond-length data, see: Litvinov et al. (1992[Litvinov, I. A., Kataev, V. E., Lenstra, A. T. H. & Geise, H. J. (1992). Acta Cryst. C48, 1286-1288.]). For hybridization, see: Beddoes et al. (1986[Beddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787-797.]). For ring conformational analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]). For graph-set analysis, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C15H18N2O5·H2O

  • Mr = 324.33

  • Monoclinic, P 21 /c

  • a = 11.4927 (6) Å

  • b = 15.3756 (8) Å

  • c = 8.9240 (5) Å

  • β = 95.932 (2)°

  • V = 1568.49 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.25 × 0.20 × 0.20 mm

Data collection
  • Bruker Kappa APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001[Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.]) Tmin = 0.977, Tmax = 0.981

  • 20671 measured reflections

  • 4719 independent reflections

  • 3292 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.140

  • S = 1.04

  • 4719 reflections

  • 231 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O6 0.87 (2) 2.02 (2) 2.890 (2) 172 (2)
N3—H3⋯O1i 0.85 (2) 2.28 (2) 3.031 (2) 147 (2)
O2—H2⋯O5ii 0.90 (2) 2.07 (2) 2.810 (2) 139 (2)
O6—H6A⋯O1iii 0.92 (3) 1.87 (3) 2.777 (2) 170 (2)
O6—H6B⋯O5iv 0.89 (3) 2.19 (3) 3.025 (2) 156 (3)
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) -x, -y, -z; (iii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) -x+1, -y, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Rizzi, R. (1999). J. Appl. Cryst. 32, 339-340.]); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Pyrimidines are considered to be important not only they form an integral part of the genetic material (viz. DNA and RNA), but also impart numerous biological activities such as bactericides, fungicides, viricides, insecticides and meticides. They have also found applications in agricultural and industrial chemicals (Kidwai et al., 2003).

The pyrimidine ring assumes a flattened-boat conformation with puckering parameters (Cremer & Pople, 1975) q2 = 0.241 (1) Å, q3 = 0.077 (1) Å and ϕ= 12.5 (3)°, and the asymmetry parameter (Nardelli, 1983) Δs(N1,C4) = 8.4 (2)°. The hydroxyphenyl ring is almost perpendicular to the C2/N3/C5/C6 plane, with a dihedral angle of 85.13 (7)°. The ethoxy [C14—C13—O3—C11 = -177.41 (13)°] and carboxylate [C5—C15—O4—C16 = 179.32 (14)°] groups attached to the pyrimidine ring exhibit extented conformations. The sum of the bond angles around atom N1 [357.4°] of the pyrimidine ring is in accordance with sp2 hybridization (Beddoes et al., 1986). The C2O1 bond length of 1.2420 (18) Å is close to the expected value of 1.225 Å for a free, unbridged bond (Litvinov et al., 1992).

The molecules are linked into centrosymmetric R22(20) dimers by O—H···O hydrogen bonds and the dimers are linked by N—H···O hydrogen bonds to form a two-dimensional network parallel to the bc plane. The adjacent networks are cross-linked via N—H···O and O—H···O hydrogen bonds involving the water molecules.

Related literature top

For the biological properties of pyrimidine compounds, see: Kidwai et al. (2003). For CO bond-length data, see: Litvinov et al. (1992). For hybridization, see: Beddoes et al. (1986). For ring conformational analysis, see: Cremer & Pople (1975); Nardelli (1983). For graph-set analysis, see: Bernstein et al. (1995).

Experimental top

A mixture of 3-ethoxy-4-hydroxy benzaldehyde (10 mmol), methylacetoacetate (12 mmol), urea (15 mmol) and 1 ml of conc. HCl was placed in a round bottom flask containing 30 ml of acetonitrile. The reaction mixture was refluxed for 5 h at 348-353 K. After completion of the reaction (checked by TLC), the reaction mixture was poured in ice cooled water. The separated solid was filtered, dried and recrystallized with methanol.

Refinement top

O- and N-bound H atoms were located in a difference map and refined freely. C-bound H atoms were positioned geometrically (C-H = 0.93–0.98 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2–1.5(methyl) Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1999); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids. The dashed line indicates a hydrogen bond.
[Figure 2] Fig. 2. Part of the crystal packing of the title compound, showing hydrogen-bonded (dashed lines) dimers.
Methyl 4-(3-ethoxy-4-hydroxyphenyl)-6-methyl-2-oxo-1,2,3,4- tetrahydropyrimidine-5-carboxylate monohydrate top
Crystal data top
C15H18N2O5·H2OF(000) = 688
Mr = 324.33Dx = 1.373 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4719 reflections
a = 11.4927 (6) Åθ = 1.8–30.3°
b = 15.3756 (8) ŵ = 0.11 mm1
c = 8.9240 (5) ÅT = 293 K
β = 95.932 (2)°Block, yellow
V = 1568.49 (15) Å30.25 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
4719 independent reflections
Radiation source: fine-focus sealed tube3292 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω and ϕ scansθmax = 30.3°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 1616
Tmin = 0.977, Tmax = 0.981k = 2121
20671 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0643P)2 + 0.381P]
where P = (Fo2 + 2Fc2)/3
4719 reflections(Δ/σ)max = 0.001
231 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C15H18N2O5·H2OV = 1568.49 (15) Å3
Mr = 324.33Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.4927 (6) ŵ = 0.11 mm1
b = 15.3756 (8) ÅT = 293 K
c = 8.9240 (5) Å0.25 × 0.20 × 0.20 mm
β = 95.932 (2)°
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
4719 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
3292 reflections with I > 2σ(I)
Tmin = 0.977, Tmax = 0.981Rint = 0.025
20671 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.140H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.31 e Å3
4719 reflectionsΔρmin = 0.25 e Å3
231 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C20.35042 (12)0.17029 (9)0.52062 (17)0.0356 (3)
C40.30165 (12)0.07826 (8)0.29487 (15)0.0323 (3)
H40.34470.07200.20630.039*
C50.33233 (11)0.00144 (8)0.39770 (15)0.0318 (3)
C60.35124 (11)0.01266 (8)0.54780 (16)0.0321 (3)
C70.17205 (12)0.08179 (8)0.24074 (15)0.0314 (3)
C80.08815 (12)0.06691 (10)0.33778 (15)0.0372 (3)
H80.11090.05430.43850.045*
C90.02997 (13)0.07060 (10)0.28638 (16)0.0394 (3)
H90.08580.06060.35280.047*
C100.06474 (12)0.08894 (9)0.13824 (15)0.0347 (3)
C110.01924 (12)0.10656 (9)0.03979 (15)0.0329 (3)
C120.13663 (12)0.10213 (9)0.09088 (15)0.0337 (3)
H120.19250.11280.02480.040*
C130.05268 (15)0.15592 (11)0.20597 (17)0.0458 (4)
H13A0.10740.10990.22330.055*
H13B0.09660.20620.16640.055*
C140.01997 (19)0.17865 (13)0.34907 (19)0.0579 (5)
H14A0.06420.12870.38570.087*
H14B0.03010.19680.42290.087*
H14C0.07250.22510.33060.087*
C150.33489 (12)0.08120 (9)0.31629 (17)0.0373 (3)
C160.3448 (2)0.23424 (11)0.3223 (3)0.0685 (6)
H16A0.28070.23580.24420.103*
H16B0.33720.28130.39130.103*
H16C0.41720.24000.27830.103*
C170.37615 (14)0.05489 (10)0.66793 (17)0.0422 (3)
H17A0.30580.08660.68030.063*
H17B0.40370.02710.76120.063*
H17C0.43480.09420.63920.063*
N10.34801 (11)0.09613 (8)0.60651 (15)0.0381 (3)
N30.34091 (11)0.15896 (8)0.37262 (14)0.0371 (3)
O10.36409 (10)0.24219 (7)0.58341 (13)0.0474 (3)
O20.18113 (9)0.09133 (9)0.09076 (14)0.0498 (3)
O30.02656 (9)0.12778 (8)0.10273 (11)0.0444 (3)
O40.34354 (12)0.15218 (7)0.40215 (14)0.0555 (3)
O50.32921 (11)0.08496 (8)0.18008 (13)0.0521 (3)
O60.43101 (15)0.11524 (11)0.92163 (16)0.0654 (4)
H10.3666 (16)0.1039 (11)0.703 (2)0.045 (5)*
H20.193 (2)0.0937 (15)0.010 (3)0.077 (7)*
H30.3418 (15)0.2040 (12)0.317 (2)0.048 (5)*
H6A0.418 (2)0.1623 (17)0.981 (3)0.086 (8)*
H6B0.508 (3)0.109 (2)0.921 (4)0.136 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0302 (7)0.0344 (6)0.0417 (8)0.0002 (5)0.0015 (6)0.0002 (5)
C40.0312 (6)0.0350 (6)0.0301 (7)0.0004 (5)0.0001 (5)0.0019 (5)
C50.0280 (6)0.0315 (6)0.0353 (7)0.0000 (5)0.0006 (5)0.0025 (5)
C60.0263 (6)0.0343 (6)0.0360 (7)0.0002 (5)0.0043 (5)0.0037 (5)
C70.0310 (6)0.0325 (6)0.0301 (6)0.0003 (5)0.0013 (5)0.0003 (5)
C80.0363 (7)0.0490 (8)0.0259 (6)0.0012 (6)0.0015 (5)0.0037 (5)
C90.0342 (7)0.0546 (8)0.0304 (7)0.0001 (6)0.0079 (5)0.0020 (6)
C100.0288 (7)0.0439 (7)0.0313 (7)0.0014 (5)0.0028 (5)0.0031 (5)
C110.0350 (7)0.0379 (7)0.0254 (6)0.0002 (5)0.0010 (5)0.0012 (5)
C120.0322 (7)0.0400 (7)0.0294 (6)0.0016 (5)0.0055 (5)0.0021 (5)
C130.0518 (9)0.0531 (9)0.0332 (8)0.0040 (7)0.0082 (7)0.0053 (6)
C140.0819 (14)0.0552 (10)0.0366 (9)0.0059 (9)0.0054 (9)0.0085 (7)
C150.0290 (7)0.0372 (7)0.0445 (8)0.0001 (5)0.0020 (6)0.0031 (6)
C160.0751 (13)0.0344 (8)0.0933 (16)0.0003 (8)0.0045 (11)0.0136 (9)
C170.0440 (8)0.0438 (8)0.0388 (8)0.0028 (6)0.0050 (6)0.0113 (6)
N10.0443 (7)0.0375 (6)0.0323 (6)0.0001 (5)0.0028 (5)0.0002 (5)
N30.0406 (7)0.0319 (6)0.0373 (6)0.0047 (5)0.0026 (5)0.0063 (5)
O10.0557 (7)0.0356 (5)0.0501 (7)0.0013 (5)0.0018 (5)0.0059 (4)
O20.0289 (5)0.0835 (9)0.0366 (6)0.0018 (5)0.0019 (4)0.0008 (6)
O30.0380 (6)0.0664 (7)0.0281 (5)0.0014 (5)0.0005 (4)0.0087 (5)
O40.0748 (9)0.0310 (5)0.0591 (8)0.0006 (5)0.0011 (6)0.0010 (5)
O50.0593 (7)0.0524 (7)0.0431 (7)0.0062 (5)0.0016 (5)0.0114 (5)
O60.0703 (10)0.0753 (9)0.0500 (8)0.0054 (8)0.0034 (7)0.0158 (7)
Geometric parameters (Å, º) top
C2—O11.2421 (16)C13—O31.4279 (19)
C2—N31.3255 (19)C13—C141.493 (2)
C2—N11.3758 (18)C13—H13A0.97
C4—N31.4696 (17)C13—H13B0.97
C4—C51.5149 (18)C14—H14A0.96
C4—C71.5186 (18)C14—H14B0.96
C4—H40.98C14—H14C0.96
C5—C61.3457 (19)C15—O51.2119 (18)
C5—C151.4654 (19)C15—O41.3314 (18)
C6—N11.3881 (18)C16—O41.450 (2)
C6—C171.4988 (19)C16—H16A0.96
C7—C81.3801 (19)C16—H16B0.96
C7—C121.3926 (18)C16—H16C0.96
C8—C91.388 (2)C17—H17A0.96
C8—H80.93C17—H17B0.96
C9—C101.370 (2)C17—H17C0.96
C9—H90.93N1—H10.877 (19)
C10—O21.3613 (17)N3—H30.852 (19)
C10—C111.3972 (19)O2—H20.90 (2)
C11—O31.3648 (16)O6—H6A0.92 (3)
C11—C121.3804 (19)O6—H6B0.89 (4)
C12—H120.93
O1—C2—N3124.06 (13)C14—C13—H13A110.4
O1—C2—N1119.69 (14)O3—C13—H13B110.4
N3—C2—N1116.23 (12)C14—C13—H13B110.4
N3—C4—C5109.36 (11)H13A—C13—H13B108.6
N3—C4—C7111.30 (11)C13—C14—H14A109.5
C5—C4—C7112.32 (11)C13—C14—H14B109.5
N3—C4—H4107.9H14A—C14—H14B109.5
C5—C4—H4107.9C13—C14—H14C109.5
C7—C4—H4107.9H14A—C14—H14C109.5
C6—C5—C15126.53 (12)H14B—C14—H14C109.5
C6—C5—C4120.43 (12)O5—C15—O4122.09 (13)
C15—C5—C4113.02 (12)O5—C15—C5122.48 (13)
C5—C6—N1119.10 (12)O4—C15—C5115.44 (13)
C5—C6—C17128.48 (13)O4—C16—H16A109.5
N1—C6—C17112.41 (12)O4—C16—H16B109.5
C8—C7—C12119.08 (12)H16A—C16—H16B109.5
C8—C7—C4121.36 (12)O4—C16—H16C109.5
C12—C7—C4119.55 (12)H16A—C16—H16C109.5
C7—C8—C9120.57 (13)H16B—C16—H16C109.5
C7—C8—H8119.7C6—C17—H17A109.5
C9—C8—H8119.7C6—C17—H17B109.5
C10—C9—C8120.32 (13)H17A—C17—H17B109.5
C10—C9—H9119.8C6—C17—H17C109.5
C8—C9—H9119.8H17A—C17—H17C109.5
O2—C10—C9119.01 (13)H17B—C17—H17C109.5
O2—C10—C11121.30 (12)C2—N1—C6123.58 (13)
C9—C10—C11119.67 (13)C2—N1—H1114.8 (12)
O3—C11—C12126.10 (12)C6—N1—H1119.0 (12)
O3—C11—C10114.04 (12)C2—N3—C4124.82 (12)
C12—C11—C10119.86 (12)C2—N3—H3118.0 (12)
C11—C12—C7120.46 (12)C4—N3—H3115.6 (12)
C11—C12—H12119.8C10—O2—H2111.0 (15)
C7—C12—H12119.8C11—O3—C13117.61 (12)
O3—C13—C14106.57 (14)C15—O4—C16115.74 (14)
O3—C13—H13A110.4H6A—O6—H6B108 (3)
N3—C4—C5—C621.65 (17)O3—C11—C12—C7178.32 (13)
C7—C4—C5—C6102.44 (14)C10—C11—C12—C71.2 (2)
N3—C4—C5—C15159.91 (11)C8—C7—C12—C110.6 (2)
C7—C4—C5—C1576.00 (14)C4—C7—C12—C11179.32 (12)
C15—C5—C6—N1178.59 (12)C6—C5—C15—O5171.98 (14)
C4—C5—C6—N13.19 (19)C4—C5—C15—O59.7 (2)
C15—C5—C6—C171.7 (2)C6—C5—C15—O48.2 (2)
C4—C5—C6—C17176.53 (13)C4—C5—C15—O4170.10 (12)
N3—C4—C7—C879.50 (16)O1—C2—N1—C6169.74 (13)
C5—C4—C7—C843.50 (17)N3—C2—N1—C68.4 (2)
N3—C4—C7—C1299.20 (14)C5—C6—N1—C213.8 (2)
C5—C4—C7—C12137.80 (13)C17—C6—N1—C2166.38 (13)
C12—C7—C8—C91.1 (2)O1—C2—N3—C4167.13 (14)
C4—C7—C8—C9179.85 (13)N1—C2—N3—C414.8 (2)
C7—C8—C9—C100.1 (2)C5—C4—N3—C228.53 (18)
C8—C9—C10—O2179.40 (14)C7—C4—N3—C296.16 (15)
C8—C9—C10—C111.9 (2)C12—C11—O3—C136.2 (2)
O2—C10—C11—O31.5 (2)C10—C11—O3—C13173.34 (13)
C9—C10—C11—O3177.11 (13)C14—C13—O3—C11177.41 (13)
O2—C10—C11—C12178.89 (13)O5—C15—O4—C160.5 (2)
C9—C10—C11—C122.5 (2)C5—C15—O4—C16179.32 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O60.87 (2)2.02 (2)2.890 (2)172 (2)
N3—H3···O1i0.85 (2)2.28 (2)3.031 (2)147 (2)
O2—H2···O5ii0.90 (2)2.07 (2)2.810 (2)139 (2)
O6—H6A···O1iii0.92 (3)1.87 (3)2.777 (2)170 (2)
O6—H6B···O5iv0.89 (3)2.19 (3)3.025 (2)156 (3)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y, z; (iii) x, y+1/2, z+1/2; (iv) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC15H18N2O5·H2O
Mr324.33
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)11.4927 (6), 15.3756 (8), 8.9240 (5)
β (°) 95.932 (2)
V3)1568.49 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.25 × 0.20 × 0.20
Data collection
DiffractometerBruker Kappa APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.977, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
20671, 4719, 3292
Rint0.025
(sin θ/λ)max1)0.711
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.140, 1.04
No. of reflections4719
No. of parameters231
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.25

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SIR92 (Altomare et al., 1999), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O60.87 (2)2.02 (2)2.890 (2)172 (2)
N3—H3···O1i0.85 (2)2.28 (2)3.031 (2)147 (2)
O2—H2···O5ii0.90 (2)2.07 (2)2.810 (2)139 (2)
O6—H6A···O1iii0.92 (3)1.87 (3)2.777 (2)170 (2)
O6—H6B···O5iv0.89 (3)2.19 (3)3.025 (2)156 (3)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y, z; (iii) x, y+1/2, z+1/2; (iv) x+1, y, z+1.
 

Acknowledgements

MT thanks the University of Madras for a University Research Fellowship.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Rizzi, R. (1999). J. Appl. Cryst. 32, 339–340.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBeddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787–797.  CSD CrossRef Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKidwai, M., Saxena, S., Rastogi, S. & Venkataramanan, R. (2003). Curr. Med. Chem. Anti-Infective Agents, 2, 269–286.  CrossRef CAS Google Scholar
First citationLitvinov, I. A., Kataev, V. E., Lenstra, A. T. H. & Geise, H. J. (1992). Acta Cryst. C48, 1286–1288.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages o1921-o1922
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds