organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Hydr­­oxy-3-(meth­oxy­carbon­yl)penta­nedioic acid

aSchool of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 30 June 2009; accepted 1 July 2009; online 11 July 2009)

In the title compound, C7H10O7, the aliphatic chain is approximately planar [maximum deviation = 0.013 (1) Å] and makes a dihedral angle of 78.75 (7)° with the methoxy­carbonyl group. In the crystal, mol­ecules are linked via inter­molecular O—H⋯O and C—H⋯O hydrogen bonds into sheets parallel to (100). In the sheet, O—H⋯O hydrogen bonds generate R22(9) and R22(8) ring motifs.

Related literature

For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C7H10O7

  • Mr = 206.15

  • Orthorhombic, P b c a

  • a = 12.7110 (4) Å

  • b = 5.8323 (2) Å

  • c = 23.8844 (7) Å

  • V = 1770.65 (10) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 100 K

  • 0.54 × 0.18 × 0.11 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.927, Tmax = 0.985

  • 54585 measured reflections

  • 4404 independent reflections

  • 4059 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.107

  • S = 1.12

  • 4404 reflections

  • 167 parameters

  • All H-atom parameters refined

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H1O2⋯O6i 0.84 (2) 1.85 (2) 2.6838 (8) 173 (2)
O3—H1O3⋯O1ii 0.87 (2) 2.01 (2) 2.8549 (8) 163 (2)
O4—H1O4⋯O5iii 0.91 (2) 1.73 (2) 2.6391 (9) 176 (2)
C4—H4A⋯O5iv 0.99 (1) 2.53 (1) 3.4035 (9) 147 (1)
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x, -y, -z+1; (iv) -x, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Research in natural products often results in the discovery of novel and interesting compounds. Chemical constituents from mango have been found to exhibit bioactivities against certain in silico disease models. Herein, we report the crystal structure of the title compound which was isolated from the mango extract.

The bond lengths (Allen et al., 1987) and angles in the molecule (Fig. 1) are within normal ranges. Atoms C1, C2, C3 and C4 is approximately planar, with a maximum deviation of 0.013 (1) Å for atom C2. This plane makes a dihedral angle of 78.75 (4)° with the mean plane of methoxycarbonyl group (C6/C7/O6/O7).

In the solid state (Fig. 2), the molecules are linked via intermolecular O2—H1O2···O6 and O3—H1O3···O1 hydrogen bonds to generate R22(9) ring motifs (Bernstein et al., 1995) (Table 1) and pairs of intermolecular O4—H1O4···O5 hydrogen bonds form R22(8) ring motifs. The crystal structure is further stabilized by intermolecular C4—H4A···O5 hydrogen bonds. The molecules are linked by these hydrogen bonds to form layers parallel to the (100).

Related literature top

For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

The title compound was extracted by Soxhlet extraction method using methanol from oven-dried mangoes. The dried extract was dissolved in water and fractionated using different solvents. The ethyl acetate fraction was evaporated using rotary evaporator and the residue was purified using column chromatography (40% ethyl acetate: 60% n-hexane) to give crystals after washing with ethyl acetate. The crystals were later found to be suitable for X-ray analysis.

Refinement top

All H atoms were located in a difference Fourier map and refined freely.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the a axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity.
3-Hydroxy-3-(methoxycarbonyl)pentanedioic acid top
Crystal data top
C7H10O7F(000) = 864
Mr = 206.15Dx = 1.547 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 9850 reflections
a = 12.7110 (4) Åθ = 3.2–36.7°
b = 5.8323 (2) ŵ = 0.14 mm1
c = 23.8844 (7) ÅT = 100 K
V = 1770.65 (10) Å3Plate, colourless
Z = 80.54 × 0.18 × 0.11 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4404 independent reflections
Radiation source: fine-focus sealed tube4059 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ϕ and ω scansθmax = 36.7°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 2121
Tmin = 0.927, Tmax = 0.985k = 89
54585 measured reflectionsl = 3939
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107All H-atom parameters refined
S = 1.12 w = 1/[σ2(Fo2) + (0.0517P)2 + 0.4849P]
where P = (Fo2 + 2Fc2)/3
4404 reflections(Δ/σ)max = 0.001
167 parametersΔρmax = 0.56 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C7H10O7V = 1770.65 (10) Å3
Mr = 206.15Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 12.7110 (4) ŵ = 0.14 mm1
b = 5.8323 (2) ÅT = 100 K
c = 23.8844 (7) Å0.54 × 0.18 × 0.11 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4404 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
4059 reflections with I > 2σ(I)
Tmin = 0.927, Tmax = 0.985Rint = 0.030
54585 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.107All H-atom parameters refined
S = 1.12Δρmax = 0.56 e Å3
4404 reflectionsΔρmin = 0.25 e Å3
167 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.02576 (5)0.61486 (11)0.25826 (2)0.01728 (11)
O20.17885 (5)0.80419 (12)0.24936 (3)0.01938 (12)
O30.08405 (4)0.23143 (9)0.34206 (2)0.01268 (10)
O40.12975 (5)0.07178 (11)0.47512 (3)0.01837 (12)
O50.02721 (4)0.24507 (10)0.46792 (2)0.01487 (11)
O60.11179 (4)0.42068 (10)0.35333 (2)0.01375 (10)
O70.04401 (4)0.74583 (10)0.38809 (3)0.01586 (11)
C10.10969 (5)0.67852 (13)0.27732 (3)0.01260 (11)
C20.14594 (5)0.62879 (13)0.33592 (3)0.01235 (11)
C30.07801 (5)0.45077 (12)0.36661 (3)0.01026 (11)
C40.12280 (5)0.42501 (12)0.42612 (3)0.01211 (11)
C50.06767 (5)0.23834 (12)0.45814 (3)0.01218 (11)
C60.03676 (5)0.53355 (12)0.36864 (3)0.01112 (11)
C70.14757 (6)0.85003 (15)0.38333 (4)0.02113 (15)
H2A0.1457 (11)0.771 (2)0.3557 (6)0.020 (3)*
H2B0.2200 (10)0.580 (2)0.3349 (6)0.021 (3)*
H4A0.1116 (10)0.567 (2)0.4477 (6)0.016 (3)*
H4B0.1959 (10)0.390 (2)0.4241 (5)0.015 (3)*
H7A0.1957 (12)0.773 (3)0.4079 (7)0.033 (4)*
H7B0.1406 (11)1.010 (3)0.3934 (6)0.023 (3)*
H7C0.1741 (14)0.827 (3)0.3455 (7)0.039 (4)*
H1O20.1539 (13)0.834 (3)0.2177 (7)0.038 (4)*
H1O30.0466 (12)0.225 (3)0.3117 (7)0.032 (4)*
H1O40.0934 (14)0.032 (4)0.4959 (8)0.046 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0175 (2)0.0178 (3)0.0166 (2)0.00488 (19)0.00472 (18)0.00421 (19)
O20.0153 (2)0.0256 (3)0.0172 (3)0.0040 (2)0.00089 (18)0.0107 (2)
O30.0149 (2)0.0102 (2)0.0130 (2)0.00161 (16)0.00136 (16)0.00159 (16)
O40.0142 (2)0.0180 (3)0.0229 (3)0.00341 (19)0.00330 (19)0.0089 (2)
O50.0123 (2)0.0159 (2)0.0164 (2)0.00103 (17)0.00198 (16)0.00301 (18)
O60.0111 (2)0.0156 (2)0.0145 (2)0.00290 (17)0.00018 (16)0.00210 (17)
O70.0116 (2)0.0115 (2)0.0245 (3)0.00166 (17)0.00251 (18)0.00385 (19)
C10.0128 (2)0.0115 (3)0.0135 (3)0.0001 (2)0.00038 (19)0.0027 (2)
C20.0111 (2)0.0132 (3)0.0128 (3)0.0015 (2)0.00051 (19)0.0029 (2)
C30.0101 (2)0.0097 (2)0.0110 (2)0.00015 (19)0.00016 (18)0.00032 (19)
C40.0120 (2)0.0133 (3)0.0110 (3)0.0015 (2)0.00097 (19)0.0013 (2)
C50.0129 (2)0.0136 (3)0.0100 (2)0.0004 (2)0.00019 (18)0.0006 (2)
C60.0110 (2)0.0106 (3)0.0118 (3)0.00047 (19)0.00006 (18)0.0002 (2)
C70.0146 (3)0.0169 (3)0.0319 (4)0.0051 (3)0.0034 (3)0.0041 (3)
Geometric parameters (Å, º) top
O1—C11.2179 (9)C2—C31.5365 (9)
O2—C11.3251 (9)C2—H2A0.956 (14)
O2—H1O20.838 (17)C2—H2B0.984 (13)
O3—C31.4094 (9)C3—C61.5373 (9)
O3—H1O30.869 (16)C3—C41.5386 (9)
O4—C51.3156 (9)C4—C51.5037 (10)
O4—H1O40.91 (2)C4—H4A0.984 (13)
O5—C51.2290 (9)C4—H4B0.953 (13)
O6—C61.2152 (8)C7—H7A0.960 (16)
O7—C61.3256 (9)C7—H7B0.966 (15)
O7—C71.4543 (10)C7—H7C0.973 (17)
C1—C21.5020 (10)
C1—O2—H1O2108.5 (12)C5—C4—C3111.60 (6)
C3—O3—H1O3111.0 (11)C5—C4—H4A106.0 (8)
C5—O4—H1O4110.8 (12)C3—C4—H4A110.4 (8)
C6—O7—C7115.21 (6)C5—C4—H4B108.9 (8)
O1—C1—O2124.15 (7)C3—C4—H4B109.6 (8)
O1—C1—C2123.93 (6)H4A—C4—H4B110.4 (11)
O2—C1—C2111.90 (6)O5—C5—O4123.61 (7)
C1—C2—C3113.75 (6)O5—C5—C4122.06 (6)
C1—C2—H2A107.0 (8)O4—C5—C4114.32 (6)
C3—C2—H2A110.5 (8)O6—C6—O7123.84 (6)
C1—C2—H2B109.1 (8)O6—C6—C3124.41 (6)
C3—C2—H2B110.7 (8)O7—C6—C3111.74 (6)
H2A—C2—H2B105.5 (12)O7—C7—H7A109.5 (10)
O3—C3—C2112.60 (5)O7—C7—H7B107.5 (8)
O3—C3—C6110.48 (5)H7A—C7—H7B111.0 (13)
C2—C3—C6109.64 (5)O7—C7—H7C109.2 (10)
O3—C3—C4106.00 (5)H7A—C7—H7C106.4 (14)
C2—C3—C4107.38 (5)H7B—C7—H7C113.3 (13)
C6—C3—C4110.65 (5)
O1—C1—C2—C311.29 (11)C3—C4—C5—O4120.28 (7)
O2—C1—C2—C3170.15 (6)C7—O7—C6—O67.76 (11)
C1—C2—C3—O365.49 (8)C7—O7—C6—C3170.92 (7)
C1—C2—C3—C657.93 (8)O3—C3—C6—O62.90 (9)
C1—C2—C3—C4178.20 (6)C2—C3—C6—O6127.56 (7)
O3—C3—C4—C554.29 (7)C4—C3—C6—O6114.18 (8)
C2—C3—C4—C5174.86 (6)O3—C3—C6—O7175.77 (6)
C6—C3—C4—C565.51 (7)C2—C3—C6—O751.11 (8)
C3—C4—C5—O560.67 (9)C4—C3—C6—O767.15 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1O2···O6i0.84 (2)1.85 (2)2.6838 (8)173 (2)
O3—H1O3···O1ii0.87 (2)2.01 (2)2.8549 (8)163 (2)
O4—H1O4···O5iii0.91 (2)1.73 (2)2.6391 (9)176 (2)
C4—H4A···O5iv0.99 (1)2.53 (1)3.4035 (9)147 (1)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y1/2, z+1/2; (iii) x, y, z+1; (iv) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC7H10O7
Mr206.15
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)100
a, b, c (Å)12.7110 (4), 5.8323 (2), 23.8844 (7)
V3)1770.65 (10)
Z8
Radiation typeMo Kα
µ (mm1)0.14
Crystal size (mm)0.54 × 0.18 × 0.11
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.927, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
54585, 4404, 4059
Rint0.030
(sin θ/λ)max1)0.841
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.107, 1.12
No. of reflections4404
No. of parameters167
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.56, 0.25

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1O2···O6i0.84 (2)1.85 (2)2.6838 (8)173 (2)
O3—H1O3···O1ii0.87 (2)2.01 (2)2.8549 (8)163 (2)
O4—H1O4···O5iii0.91 (2)1.73 (2)2.6391 (9)176 (2)
C4—H4A···O5iv0.99 (1)2.53 (1)3.4035 (9)147 (1)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y1/2, z+1/2; (iii) x, y, z+1; (iv) x, y+1, z+1.
 

Footnotes

Additional correspondence author, e-mail: nornisah@usm.my.

§Thomson Reuters ResearcherID: A-5525-2009.

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

LA and NM gratefully acknowledge funding from Universiti Sains Malaysia (USM) under the University Research Grant (No. 1001/PFARMASI/815025). HKF and CKQ thank USM for the Research University Golden Goose Grant (No. 1001/PFIZIK/811012). CKQ thanks USM for a Research Fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds