metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages m907-m908

trans-Bis(2-benzoyl­benzoato-κO1)bis­­(ethanol-κO)bis­­(1H-imidazole-κN3)nickel(II)

aDepartment of Chemistry, Faculty of Arts and Sciences, Ondokuz Mayıs University, Kurupelit, TR-55139 Samsun, Turkey, and bDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Kurupelit Samsun, Turkey
*Correspondence e-mail: yhakki@omu.edu.tr

(Received 30 June 2009; accepted 6 July 2009; online 11 July 2009)

In the title centrosymmetric mononuclear nickel(II) complex, [Ni(C14H9O3)2(C3H4N2)2(CH3CH2OH)2], the central NiII ion lies on an inversion centre and is octa­hedrally coordinated. The equatorial plane is formed by two O atoms from two symmetry-related 2-benzoyl­benzoate ligands and two N atoms from two symmetry-related imidazole ligands, whereas the axial positions are occupied by two O atoms from two ethanol ligands. Intramolecular O---H...O hydrogen bonds stabilize this arrangement. The mol­ecules are linked into chains running along the b axis by N—H⋯O hydrogen bonds.

Related literature

For crystal structures with 2-benzoyl­benzoate ligands, see: Diop et al. (2006[Diop, C. A. K., Touré, A., Diop, L. & Welter, R. (2006). Acta Cryst. E62, m3338-m3340.], 2007[Diop, C. A. K., Touré, A., Diop, L., Tinant, B. & Mahieu, B. (2007). Acta Cryst. E63, m91-m93.]); Foreman et al. (2001[Foreman, M. R. J., Plater, M. J. & Skakle, M. S. (2001). J. Chem. Soc. Dalton Trans. pp. 1897-1903.]); Jones et al. (1996[Jones, P. B., Pollastri, M. P. & Porter, N. A. (1996). J. Org. Chem. 61, 9455-9461.]); Martin & Valente (1998[Martin, S. B. & Valente, J. (1998). J. Chem. Crystallogr. 28, 203-207.]); Prout et al. (1996[Prout, K., Vaughan-Lee, D., Moloney, M. G. & Prottey, S. C. (1996). Acta Cryst. C52, 351-354.]); Song et al. (2005[Song, Y., Yan, B. & Chen, Z. (2005). J. Coord. Chem. 58, 1417-1421.]); Yıldırım et al. (2009[Yıldırım, M. H., Heren, Z., Paşaoğlu, H., Hıra, D. & Büyükgüngör, O. (2009). Acta Cryst. E65, m638-m639.]). For the crystal structure of 2-benzoyl­benzoic acid, see: Lalancette et al. (1990[Lalancette, R. A., Vanderhoff, P. A. & Thompson, H. W. (1990). Acta Cryst. C46, 1682-1686.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C14H9O3)2(C3H4N2)2(C2H6O)2]

  • Mr = 737.43

  • Monoclinic, P 21 /c

  • a = 12.8914 (8) Å

  • b = 8.3908 (5) Å

  • c = 16.4590 (11) Å

  • β = 90.832 (5)°

  • V = 1780.17 (19) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.60 mm−1

  • T = 296 K

  • 0.43 × 0.25 × 0.14 mm

Data collection
  • Stoe IPDSII diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-RED32 and X-AREA. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.809, Tmax = 0.921

  • 15078 measured reflections

  • 3889 independent reflections

  • 2704 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.150

  • S = 1.11

  • 3889 reflections

  • 235 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O3 0.78 (5) 1.86 (5) 2.627 (4) 170 (6)
N2—H2⋯O3i 0.86 2.02 2.837 (5) 159
Symmetry code: (i) x, y-1, z.

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-RED32 and X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-RED32 and X-AREA. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

We have previously reported the crystal structure of [Cu(2-byba)2(bim)2] (bim = benzimidazole, 2-byba = 2-benzoylbenzoate) (Yıldırım et al., 2009). As an extension of this study, we now report the structure of a new nickel(II) complex with the 2-byba ligand.

In the title complex, the NiII ion lies on a centre of symmetry and has a octahedral coordination geometry formed by 2-byba, imidazole (im), ethanol ligands and their symmetry-related equivalents. All ligands are monodentate with the 2-byba coordinates through a carboxylate O atom, im coordinates through the aromatic N atom and ethanol coordinates through the O atom. Intramolecular O—H···O hydrogen bonds are observed.

The molecular packing is mainly stabilized by strong intermolecular N—H···O hydrogen bonds (Table 2 and Fig. 2). Atom N2 in the molecule at (x, y, z) acts as a hydrogen-bond donor, via H2, to atom O3 in the molecule at (x, y - 1, z) forming C(8) chains with R22(16) rings (Bernstein et al., 1995). These chains run parallel to the [010] (Fig. 2).

Related literature top

For crystal structures with 2-benzoylbenzoate ligands, see: Diop et al. (2006, 2007); Foreman et al. (2001); Jones et al. (1996); Martin et al. (1998); Prout et al. (1996); Song et al. (2005); Yıldırım et al., 2009). For the crystal structure of 2-benzoylbenzoic acid, see: Lalancette et al. (1990). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

A solution of 2-benzoylbenzoate (0.45 g, 2 mmol) in ethanol (10 ml) was added to a solution of nickel acetate tetrahydrate (0.25 g, 1 mmol) in ethanol (10 ml) and the solution was stirred for 15 min at 333 K. To this solution, a solution of imidazole (0.23 g, 2 mmol) in ethanol (10 ml) was added and the resultant solution was left to evaporate slowly at room temperature. After one week, single crystals of the title complex were isolated.

Refinement top

Alcohol H atom was located in a difference Fourier map and its positional parameters were refined. The remaining H atoms were placed in calculated positions and constrained to ride on their parents atoms, with C-H = 0.93-0.97 Å, N-H = 0.86 Å and Uiso(H) = 1.2Ueq(C,N).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 20% probability. Symmetry code: (i) 1 -x, 1 -y, 1 -z.
[Figure 2] Fig. 2. Part of the crystal structure of the title compound showing the chain of R22(16) rings along [010] generated by N—H···O hydrogen bonds (dashed lines). H atoms not involved in hydrogen bonds have been omitted for clarity.Symmetry code: (ii) x, y - 1, z
trans-Bis(2-benzoylbenzoato-κO1)bis(ethanol- κO)bis(1H-imidazole-κN3)nickel(II) top
Crystal data top
[Ni(C14H9O3)2(C3H4N2)2(C2H6O)2]F(000) = 772
Mr = 737.43Dx = 1.376 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 15078 reflections
a = 12.8914 (8) Åθ = 1.6–27.6°
b = 8.3908 (5) ŵ = 0.60 mm1
c = 16.4590 (11) ÅT = 296 K
β = 90.832 (5)°Prism, green
V = 1780.17 (19) Å30.43 × 0.25 × 0.14 mm
Z = 2
Data collection top
Stoe IPDSII
diffractometer
3889 independent reflections
Radiation source: fine-focus sealed tube2704 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
Detector resolution: 6.67 pixels mm-1θmax = 27.0°, θmin = 1.6°
ω scansh = 1616
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 1010
Tmin = 0.809, Tmax = 0.921l = 2020
15078 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.150H atoms treated by a mixture of independent and constrained refinement
S = 1.11 w = 1/[σ2(Fo2) + (0.0435P)2 + 2.752P]
where P = (Fo2 + 2Fc2)/3
3889 reflections(Δ/σ)max = 0.004
235 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
[Ni(C14H9O3)2(C3H4N2)2(C2H6O)2]V = 1780.17 (19) Å3
Mr = 737.43Z = 2
Monoclinic, P21/cMo Kα radiation
a = 12.8914 (8) ŵ = 0.60 mm1
b = 8.3908 (5) ÅT = 296 K
c = 16.4590 (11) Å0.43 × 0.25 × 0.14 mm
β = 90.832 (5)°
Data collection top
Stoe IPDSII
diffractometer
3889 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
2704 reflections with I > 2σ(I)
Tmin = 0.809, Tmax = 0.921Rint = 0.046
15078 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.150H atoms treated by a mixture of independent and constrained refinement
S = 1.11Δρmax = 0.31 e Å3
3889 reflectionsΔρmin = 0.26 e Å3
235 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3658 (4)0.5474 (6)0.3388 (3)0.0630 (13)
H1A0.30570.48820.35680.076*
H1B0.41380.47230.31510.076*
C20.3320 (5)0.6663 (8)0.2749 (3)0.0848 (18)
H2A0.29930.61120.23030.127*
H2B0.39150.72310.25580.127*
H2C0.28380.74020.29790.127*
C30.5546 (4)0.1822 (5)0.4290 (3)0.0525 (11)
H30.62480.20740.43300.063*
C40.4127 (4)0.0507 (6)0.4036 (3)0.0623 (13)
H40.36610.02840.38790.075*
C50.3897 (4)0.1970 (6)0.4334 (3)0.0563 (11)
H50.32300.23560.44160.068*
C60.6557 (3)0.6330 (5)0.3827 (2)0.0448 (9)
C70.7620 (3)0.6345 (5)0.3466 (2)0.0452 (9)
C80.7755 (4)0.7083 (5)0.2710 (3)0.0548 (11)
H80.71920.75600.24480.066*
C90.8715 (4)0.7106 (6)0.2352 (3)0.0660 (13)
H90.88000.76170.18560.079*
C100.9537 (4)0.6380 (7)0.2724 (3)0.0724 (15)
H101.01810.63910.24770.087*
C110.9426 (4)0.5622 (6)0.3471 (3)0.0658 (13)
H110.99910.51240.37200.079*
C120.8466 (3)0.5616 (5)0.3841 (2)0.0454 (9)
C130.8422 (3)0.4876 (6)0.4681 (2)0.0481 (9)
C140.8461 (3)0.3113 (5)0.4742 (3)0.0463 (10)
C150.8481 (4)0.2143 (6)0.4068 (3)0.0616 (12)
H150.84460.25870.35510.074*
C160.8554 (5)0.0506 (6)0.4159 (4)0.0829 (17)
H160.85740.01500.37040.100*
C170.8597 (4)0.0149 (7)0.4934 (4)0.0815 (16)
H170.86500.12490.49930.098*
C180.8564 (5)0.0769 (7)0.5591 (4)0.0770 (16)
H180.85850.03060.61040.092*
C190.8498 (4)0.2423 (6)0.5516 (3)0.0613 (12)
H190.84790.30620.59780.074*
N10.4796 (3)0.2796 (4)0.44961 (19)0.0431 (8)
N20.5184 (3)0.0434 (4)0.4016 (2)0.0601 (10)
H20.55480.03620.38570.072*
Ni10.50000.50000.50000.0385 (2)
O10.4142 (2)0.6220 (4)0.40705 (17)0.0489 (7)
O20.6371 (2)0.5278 (3)0.43480 (16)0.0462 (7)
O30.5923 (2)0.7370 (4)0.35828 (19)0.0566 (8)
O40.8429 (3)0.5724 (4)0.52801 (18)0.0585 (8)
H10.465 (4)0.665 (7)0.395 (3)0.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.080 (3)0.056 (3)0.052 (3)0.004 (2)0.011 (2)0.007 (2)
C20.106 (5)0.099 (5)0.049 (3)0.009 (4)0.017 (3)0.005 (3)
C30.062 (3)0.041 (2)0.054 (2)0.002 (2)0.007 (2)0.003 (2)
C40.071 (3)0.046 (3)0.070 (3)0.008 (2)0.009 (2)0.009 (2)
C50.058 (3)0.050 (3)0.061 (3)0.001 (2)0.003 (2)0.007 (2)
C60.053 (2)0.036 (2)0.045 (2)0.0040 (19)0.0011 (18)0.0035 (18)
C70.055 (2)0.040 (2)0.041 (2)0.0023 (19)0.0071 (18)0.0004 (17)
C80.067 (3)0.051 (3)0.047 (2)0.001 (2)0.006 (2)0.004 (2)
C90.075 (3)0.070 (3)0.054 (3)0.010 (3)0.017 (2)0.008 (2)
C100.067 (3)0.083 (4)0.068 (3)0.010 (3)0.025 (3)0.001 (3)
C110.056 (3)0.069 (3)0.073 (3)0.005 (2)0.014 (2)0.004 (3)
C120.047 (2)0.042 (2)0.047 (2)0.0058 (18)0.0040 (18)0.0009 (18)
C130.044 (2)0.049 (2)0.051 (2)0.001 (2)0.0021 (16)0.002 (2)
C140.042 (2)0.041 (2)0.056 (2)0.0002 (18)0.0046 (18)0.0022 (19)
C150.071 (3)0.052 (3)0.062 (3)0.003 (2)0.007 (2)0.006 (2)
C160.096 (4)0.045 (3)0.108 (5)0.001 (3)0.017 (4)0.020 (3)
C170.081 (4)0.044 (3)0.120 (5)0.000 (3)0.016 (3)0.015 (3)
C180.090 (4)0.059 (3)0.082 (4)0.001 (3)0.005 (3)0.022 (3)
C190.071 (3)0.051 (3)0.062 (3)0.004 (2)0.002 (2)0.006 (2)
N10.0491 (19)0.0369 (18)0.0434 (17)0.0001 (16)0.0029 (15)0.0017 (14)
N20.078 (3)0.042 (2)0.061 (2)0.0093 (19)0.0084 (19)0.0090 (17)
Ni10.0424 (4)0.0347 (4)0.0384 (3)0.0010 (4)0.0027 (3)0.0022 (3)
O10.0534 (18)0.0486 (19)0.0446 (15)0.0003 (14)0.0038 (13)0.0035 (13)
O20.0521 (16)0.0393 (17)0.0474 (14)0.0011 (13)0.0080 (12)0.0042 (12)
O30.0580 (19)0.0476 (18)0.0644 (18)0.0100 (15)0.0056 (15)0.0074 (15)
O40.078 (2)0.0487 (18)0.0485 (17)0.0015 (16)0.0019 (15)0.0077 (14)
Geometric parameters (Å, º) top
C1—O11.423 (5)C10—H100.93
C1—C21.509 (7)C11—C121.387 (6)
C1—H1A0.97C11—H110.93
C1—H1B0.97C12—C131.517 (6)
C2—H2A0.96C13—O41.216 (5)
C2—H2B0.96C13—C141.483 (6)
C2—H2C0.96C14—C151.377 (6)
C3—N11.315 (5)C14—C191.400 (6)
C3—N21.331 (5)C15—C161.384 (7)
C3—H30.93C15—H150.93
C4—C51.356 (6)C16—C171.389 (8)
C4—N21.365 (6)C16—H160.93
C4—H40.93C17—C181.329 (8)
C5—N11.373 (5)C17—H170.93
C5—H50.93C18—C191.396 (7)
C6—O21.257 (5)C18—H180.93
C6—O31.257 (5)C19—H190.93
C6—C71.502 (6)N1—Ni12.042 (3)
C7—C121.388 (6)N2—H20.8600
C7—C81.403 (6)Ni1—N1i2.042 (3)
C8—C91.378 (6)Ni1—O2i2.094 (3)
C8—H80.93Ni1—O22.094 (3)
C9—C101.361 (7)Ni1—O1i2.136 (3)
C9—H90.93Ni1—O12.136 (3)
C10—C111.394 (7)O1—H10.78 (5)
O1—C1—C2112.2 (4)C14—C13—C12117.9 (4)
O1—C1—H1A109.2C15—C14—C19119.2 (4)
C2—C1—H1A109.2C15—C14—C13122.4 (4)
O1—C1—H1B109.2C19—C14—C13118.4 (4)
C2—C1—H1B109.2C14—C15—C16120.1 (5)
H1A—C1—H1B107.9C14—C15—H15119.9
C1—C2—H2A109.5C16—C15—H15119.9
C1—C2—H2B109.5C15—C16—C17119.6 (6)
H2A—C2—H2B109.5C15—C16—H16120.2
C1—C2—H2C109.5C17—C16—H16120.2
H2A—C2—H2C109.5C18—C17—C16121.1 (6)
H2B—C2—H2C109.5C18—C17—H17119.5
N1—C3—N2112.0 (4)C16—C17—H17119.5
N1—C3—H3124.0C17—C18—C19120.5 (6)
N2—C3—H3124.0C17—C18—H18119.8
C5—C4—N2105.8 (4)C19—C18—H18119.8
C5—C4—H4127.1C18—C19—C14119.5 (5)
N2—C4—H4127.1C18—C19—H19120.2
C4—C5—N1109.8 (4)C14—C19—H19120.2
C4—C5—H5125.1C3—N1—C5105.0 (4)
N1—C5—H5125.1C3—N1—Ni1125.2 (3)
O2—C6—O3125.1 (4)C5—N1—Ni1129.8 (3)
O2—C6—C7117.4 (4)C3—N2—C4107.4 (4)
O3—C6—C7117.4 (4)C3—N2—H2126.3
C12—C7—C8118.9 (4)C4—N2—H2126.3
C12—C7—C6122.4 (4)N1i—Ni1—N1180.0
C8—C7—C6118.7 (4)N1i—Ni1—O2i89.87 (12)
C9—C8—C7120.6 (5)N1—Ni1—O2i90.13 (12)
C9—C8—H8119.7N1i—Ni1—O290.13 (12)
C7—C8—H8119.7N1—Ni1—O289.87 (12)
C10—C9—C8120.0 (5)O2i—Ni1—O2180.0
C10—C9—H9120.0N1i—Ni1—O1i94.64 (12)
C8—C9—H9120.0N1—Ni1—O1i85.36 (12)
C9—C10—C11120.7 (5)O2i—Ni1—O1i90.65 (11)
C9—C10—H10119.6O2—Ni1—O1i89.35 (11)
C11—C10—H10119.6N1i—Ni1—O185.36 (12)
C12—C11—C10119.6 (5)N1—Ni1—O194.64 (12)
C12—C11—H11120.2O2i—Ni1—O189.35 (11)
C10—C11—H11120.2O2—Ni1—O190.65 (11)
C11—C12—C7120.2 (4)O1i—Ni1—O1180.0
C11—C12—C13116.6 (4)C1—O1—Ni1124.9 (3)
C7—C12—C13123.1 (4)C1—O1—H1112 (4)
O4—C13—C14121.9 (4)Ni1—O1—H188 (4)
O4—C13—C12120.0 (4)C6—O2—Ni1126.8 (3)
N2—C4—C5—N10.0 (5)C17—C18—C19—C140.4 (8)
O2—C6—C7—C1220.1 (6)C15—C14—C19—C180.6 (7)
O3—C6—C7—C12160.0 (4)C13—C14—C19—C18178.3 (4)
O2—C6—C7—C8158.0 (4)N2—C3—N1—C50.6 (5)
O3—C6—C7—C821.9 (6)N2—C3—N1—Ni1176.6 (3)
C12—C7—C8—C91.1 (7)C4—C5—N1—C30.3 (5)
C6—C7—C8—C9179.2 (4)C4—C5—N1—Ni1176.7 (3)
C7—C8—C9—C101.4 (8)N1—C3—N2—C40.7 (5)
C8—C9—C10—C110.7 (8)C5—C4—N2—C30.4 (5)
C9—C10—C11—C120.4 (8)C3—N1—Ni1—O2i147.8 (3)
C10—C11—C12—C70.7 (7)C5—N1—Ni1—O2i28.7 (4)
C10—C11—C12—C13175.6 (5)C3—N1—Ni1—O232.2 (3)
C8—C7—C12—C110.0 (6)C5—N1—Ni1—O2151.3 (4)
C6—C7—C12—C11178.1 (4)C3—N1—Ni1—O1i57.2 (3)
C8—C7—C12—C13176.1 (4)C5—N1—Ni1—O1i119.3 (4)
C6—C7—C12—C135.9 (6)C3—N1—Ni1—O1122.8 (3)
C11—C12—C13—O4100.0 (5)C5—N1—Ni1—O160.7 (4)
C7—C12—C13—O476.2 (5)C2—C1—O1—Ni1167.2 (3)
C11—C12—C13—C1474.9 (5)N1i—Ni1—O1—C1179.8 (4)
C7—C12—C13—C14108.9 (5)N1—Ni1—O1—C10.2 (4)
O4—C13—C14—C15178.2 (4)O2i—Ni1—O1—C189.8 (3)
C12—C13—C14—C153.4 (6)O2—Ni1—O1—C190.2 (3)
O4—C13—C14—C190.6 (6)O3—C6—O2—Ni13.1 (6)
C12—C13—C14—C19175.4 (4)C7—C6—O2—Ni1177.0 (2)
C19—C14—C15—C161.0 (7)N1i—Ni1—O2—C661.3 (3)
C13—C14—C15—C16177.8 (5)N1—Ni1—O2—C6118.7 (3)
C14—C15—C16—C170.6 (9)O1i—Ni1—O2—C6155.9 (3)
C15—C16—C17—C180.4 (9)O1—Ni1—O2—C624.1 (3)
C16—C17—C18—C190.8 (9)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O30.78 (5)1.86 (5)2.627 (4)170 (6)
N2—H2···O3ii0.862.022.837 (5)159
Symmetry code: (ii) x, y1, z.

Experimental details

Crystal data
Chemical formula[Ni(C14H9O3)2(C3H4N2)2(C2H6O)2]
Mr737.43
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)12.8914 (8), 8.3908 (5), 16.4590 (11)
β (°) 90.832 (5)
V3)1780.17 (19)
Z2
Radiation typeMo Kα
µ (mm1)0.60
Crystal size (mm)0.43 × 0.25 × 0.14
Data collection
DiffractometerStoe IPDSII
diffractometer
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.809, 0.921
No. of measured, independent and
observed [I > 2σ(I)] reflections
15078, 3889, 2704
Rint0.046
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.150, 1.11
No. of reflections3889
No. of parameters235
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.26

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O30.78 (5)1.86 (5)2.627 (4)170 (6)
N2—H2···O3i0.862.022.837 (5)159
Symmetry code: (i) x, y1, z.
 

Acknowledgements

The authors thank Professor Dr Orhan Büyükgüngör for his help with the data collection and acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe II diffractometer (purchased under grant No. F279 of the University Research Fund).

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationDiop, C. A. K., Touré, A., Diop, L., Tinant, B. & Mahieu, B. (2007). Acta Cryst. E63, m91–m93.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDiop, C. A. K., Touré, A., Diop, L. & Welter, R. (2006). Acta Cryst. E62, m3338–m3340.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationForeman, M. R. J., Plater, M. J. & Skakle, M. S. (2001). J. Chem. Soc. Dalton Trans. pp. 1897–1903.  Web of Science CSD CrossRef Google Scholar
First citationJones, P. B., Pollastri, M. P. & Porter, N. A. (1996). J. Org. Chem. 61, 9455–9461.  CrossRef CAS Web of Science Google Scholar
First citationLalancette, R. A., Vanderhoff, P. A. & Thompson, H. W. (1990). Acta Cryst. C46, 1682–1686.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMartin, S. B. & Valente, J. (1998). J. Chem. Crystallogr. 28, 203–207.  Web of Science CSD CrossRef CAS Google Scholar
First citationProut, K., Vaughan-Lee, D., Moloney, M. G. & Prottey, S. C. (1996). Acta Cryst. C52, 351–354.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, Y., Yan, B. & Chen, Z. (2005). J. Coord. Chem. 58, 1417–1421.  Web of Science CSD CrossRef CAS Google Scholar
First citationStoe & Cie (2002). X-RED32 and X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationYıldırım, M. H., Heren, Z., Paşaoğlu, H., Hıra, D. & Büyükgüngör, O. (2009). Acta Cryst. E65, m638–m639.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages m907-m908
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds