organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2,5-Di­meth­oxy­phen­yl)-4-nitro­benzene­sulfonamide

aKey Laboratory of Drug Targeting of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
*Correspondence e-mail: wyong@scu.edu.cn

(Received 6 July 2009; accepted 16 July 2009; online 22 July 2009)

The title compound, C14H14N2O6S, is an inter­mediate for the synthesis of β-3-adrenergic receptor agonists. The two meth­oxy groups are approximately coplanar with the attached benzene ring [C—O—C—C = −2.7 (4) and 9.4 (4)°]. The dihedral angle between the two aromatic rings is 67.16 (12)°. An intra­molecular N—H⋯O hydrogen bond is observed. In the crystal, mol­ecules are linked into chains along the c axis by C—H⋯O hydrogen bonds.

Related literature

For biological activity of β-3-adrenergic receptors, see: Bardou et al. (1998[Bardou, M., Dousset, B., Tharaux, C. D., Smadja, C., Naline, E., Chaput, J. C., Naveau, S., Manara, L., Croci, T. & Advenier, C. (1998). Eur. J. Pharmacol. 352, 281-287.]); Hu et al. (2001[Hu, B., Ellingboe, J., Gunawan, I., Han, S., Largis, E., Li, Z., Malamas, M., Mulvey, R., Oliphant, A., Sum, F. W., Tillettb, J. & Wonga, V. (2001). Bioorg. Med. Chem. Lett. 11, 757-760.]); Klaus et al. (2001[Klaus, S., Seivert, A. & Boeuf, S. (2001). Biochim. Biophys. Acta, 1539, 85-92.]); Margareto et al. (2001[Margareto, J., Larrarte, E., Marti, A. & Martinez, J. A. (2001). Biochem. Pharmacol. 61, 1471-1478.]); Ok et al. (2000[Ok, H. O., Reigle, L. B., Candelore, M. R., Cascieri, M. A., Colwell, L. F., Deng, L., Feeney, W. P., Forrest, M. J., Hom, G. J., MacIntyre, D. E., Strader, C. D., Tota, L., Wang, P., Wyvratt, M. J., Fisher, M. H. & Weber, A. E. (2000). Bioorg. Med. Chem. Lett. 10, 1531-1534.]); Parmee et al. (1998[Parmee, E. R., Ok, H. O., Candelore, M. R., Tota, L., Deng, L., Strader, C. D., Wyvratt, M. J., Fisher, M. H. & Weber, A. E. (1998). Bioorg. Med. Chem. Lett. 8, 1107-1112.], 2000[Parmee, E. R., Brockunier, L. L., He, J., Singh, S. B., Candelore, M. R., Cascieri, M. A., Deng, L., Liu, Y., Tota, L., Wyvratt, M. J., Fisher, M. H. & &Weber, A. E. (2000). Bioorg. Med. Chem. Lett. 10, 2283-2286.]); Tonello et al. (1998[Tonello, C., Dioni, L., Briscini, L., Nisoli, E. & Carruba, M. O. (1998). Eur. J. Pharmacol. 352, 125-129.]); Weber et al. (1998[Weber, A. E., Mathvink, R. J., Perkins, L., Hutchins, J. E., Candelore, M. R., Tota, L., Strader, C. D., Wyvratt, M. J. & Fisher, M. H. (1998). Bioorg. Med. Chem. Lett. 8, 1101-1106.]).

[Scheme 1]

Experimental

Crystal data
  • C14H14N2O6S

  • Mr = 338.33

  • Orthorhombic, P b c a

  • a = 14.532 (4) Å

  • b = 12.375 (4) Å

  • c = 17.311 (4) Å

  • V = 3113.2 (14) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 292 K

  • 0.48 × 0.44 × 0.42 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: for a sphere (WinGX; Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) Tmin = 0.893, Tmax = 0.906

  • 4003 measured reflections

  • 2877 independent reflections

  • 1790 reflections with I > 2σ(I)

  • Rint = 0.004

  • 3 standard reflections every 200 reflections intensity decay: 0.9%

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.121

  • S = 1.06

  • 2877 reflections

  • 214 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2 0.78 (3) 2.20 (3) 2.607 (3) 113 (2)
C8—H8C⋯O4i 0.96 2.55 3.414 (4) 150
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: DIFRAC (Gabe & White, 1993[Gabe, E. J. & White, P. S. (1993). DIFRAC. American Crystallographic Association Meeting, Pittsburgh, Abstract PA 104.]); cell refinement: DIFRAC; data reduction: NRCVAX (Gabe et al., 1989[Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384-387.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The beta 3-adrenergic receptor has been shown to mediate various pharmacological and physiological effects such as lipolysis in white adipocyte tissue, thermogenesis in brown adipocyte tissue (Tonello et al., 1998; Ok et al., 2000; Parmee et al., 1998, 2000) and relaxation of urinary bladder detrusor tissue (Hu et al., 2001; Parmee et al., 1998; Weber et al., 1998). Consequently, several pharmaceutical firms, including ourselves, are engaged in developing potent and selective beta 3-adrenergic receptor agonists for the treatment of obesity, type II diabetes, and frequent urination (Margareto et al., 2001; Bardou et al., 1998; Klaus et al., 2001). In our synthetic work of beta 3-adrenergic receptor agonists, we obtained the title compound. Its crystal structure is reported here.

The two methoxy groups are approximately coplanar with the attached benzene ring [C7—O1—C3—C4 = -2.7 (4)° and C8—O2—C6—C5 9.4 (4)°]. The nitro group is coplanar with the C9-C14 benzene ring. The dihedral angle between the two aromatic rings is 67.16 (12)°. An intramolecular N—H···O hydrogen bond is observed.

The crystal packing of the title compound shows that the molecules are linked by C—H···.O hydrogen bonds (Table 1) to form chains along the c axis.

Related literature top

For biological activity of β-3-adrenergic receptors, see: Bardou et al. (1998); Hu et al. (2001); Klaus et al. (2001); Margareto et al. (2001); Ok et al. (2000); Parmee et al. (1998, 2000); Tonello et al. (1998); Weber et al. (1998).

Experimental top

2,5-Dimethoxybenzenamine (10 mmol) and excess pyridine were dissolved in dichloromethane (20 ml) and a solution of 4-nitrobenzene-1-sulfonyl chloride (13 mmol) in dichloromethane (20 ml) was added dropwise with vigorous stirring at 273 K. After 1 h, the reaction was quenched by addition of water and the oil was washed with diluted HCl. The organic layer separated was evaporated to give the crude product, which was recrystallized from n-hexane -dichloromethane (5:1). Colourless crystals suitable for X-ray analysis were obtained by slow evaporation in n-hexane-dichloromethane at room temperature.

Refinement top

Atom H1N was located in a difference map and was refined freely. All other H atoms were positioned geometrically (C-H = 0.93–0.96 Å) and refined using a riding model, with Uiso(H) = 1.2–1.5Ueq(C).

Computing details top

Data collection: DIFRAC (Gabe & White, 1993); cell refinement: DIFRAC (Gabe & White, 1993); data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram for the title compound.
N-(2,5-Dimethoxyphenyl)-4-nitrobenzenesulfonamide top
Crystal data top
C14H14N2O6SF(000) = 1408
Mr = 338.33Dx = 1.444 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 32 reflections
a = 14.532 (4) Åθ = 4.3–7.5°
b = 12.375 (4) ŵ = 0.24 mm1
c = 17.311 (4) ÅT = 292 K
V = 3113.2 (14) Å3Block, colourless
Z = 80.48 × 0.44 × 0.42 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1790 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.004
Graphite monochromatorθmax = 25.4°, θmin = 2.4°
ω/2θ scansh = 1710
Absorption correction: for a sphere
(WinGX; Farrugia, 1999)
k = 214
Tmin = 0.893, Tmax = 0.906l = 1120
4003 measured reflections3 standard reflections every 200 reflections
2877 independent reflections intensity decay: 0.9%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: mixed
wR(F2) = 0.121H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0632P)2 + 0.3387P]
where P = (Fo2 + 2Fc2)/3
2877 reflections(Δ/σ)max = 0.001
214 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C14H14N2O6SV = 3113.2 (14) Å3
Mr = 338.33Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 14.532 (4) ŵ = 0.24 mm1
b = 12.375 (4) ÅT = 292 K
c = 17.311 (4) Å0.48 × 0.44 × 0.42 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1790 reflections with I > 2σ(I)
Absorption correction: for a sphere
(WinGX; Farrugia, 1999)
Rint = 0.004
Tmin = 0.893, Tmax = 0.9063 standard reflections every 200 reflections
4003 measured reflections intensity decay: 0.9%
2877 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.121H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.20 e Å3
2877 reflectionsΔρmin = 0.32 e Å3
214 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.06666 (4)0.69183 (6)0.38224 (3)0.0473 (2)
N10.05816 (14)0.7151 (2)0.28983 (13)0.0530 (6)
H1N0.0834 (18)0.669 (2)0.2672 (16)0.057 (10)*
N20.23262 (16)0.3748 (2)0.44664 (14)0.0662 (7)
O10.20633 (15)0.94720 (18)0.27633 (11)0.0854 (7)
O20.00947 (13)0.61834 (17)0.16246 (10)0.0731 (6)
O30.15329 (11)0.63919 (17)0.39190 (10)0.0624 (5)
O40.04683 (13)0.78981 (14)0.42213 (10)0.0615 (5)
O50.30528 (13)0.40717 (19)0.47199 (13)0.0831 (7)
O60.21642 (16)0.28124 (19)0.43150 (18)0.1057 (9)
C10.02551 (15)0.7501 (2)0.25371 (14)0.0452 (6)
C20.07889 (17)0.8326 (2)0.28188 (15)0.0549 (7)
H20.06180.86810.32700.066*
C30.15884 (18)0.8634 (2)0.24300 (15)0.0569 (7)
C40.18336 (17)0.8124 (2)0.17588 (15)0.0562 (7)
H40.23660.83290.14990.067*
C50.12900 (19)0.7305 (2)0.14695 (15)0.0576 (7)
H50.14560.69660.10110.069*
C60.04991 (17)0.6982 (2)0.18527 (14)0.0495 (6)
C70.2851 (2)0.9874 (3)0.23675 (18)0.0916 (11)
H7A0.26881.00470.18440.137*
H7B0.30711.05120.26230.137*
H7C0.33250.93340.23680.137*
C80.0013 (2)0.5726 (3)0.08822 (16)0.0856 (11)
H8A0.05710.53120.08660.128*
H8B0.05010.52630.07720.128*
H8C0.00410.62920.05040.128*
C90.02178 (15)0.59843 (19)0.40462 (12)0.0392 (5)
C100.00660 (16)0.4902 (2)0.39088 (14)0.0518 (6)
H100.04980.46700.37160.062*
C110.07563 (18)0.4167 (2)0.40591 (15)0.0542 (7)
H110.06640.34320.39780.065*
C120.15815 (16)0.4544 (2)0.43310 (14)0.0474 (6)
C130.17421 (17)0.5610 (2)0.44706 (15)0.0536 (7)
H130.23100.58380.46570.064*
C140.10508 (15)0.6342 (2)0.43313 (15)0.0494 (6)
H140.11440.70730.44280.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0389 (3)0.0590 (4)0.0440 (3)0.0088 (3)0.0050 (3)0.0049 (3)
N10.0418 (12)0.0706 (17)0.0467 (12)0.0002 (12)0.0015 (9)0.0032 (12)
N20.0512 (15)0.0693 (18)0.0780 (16)0.0135 (13)0.0120 (12)0.0180 (14)
O10.0911 (14)0.0898 (16)0.0751 (13)0.0359 (14)0.0083 (11)0.0015 (12)
O20.0859 (14)0.0786 (14)0.0547 (12)0.0178 (12)0.0074 (10)0.0102 (11)
O30.0344 (9)0.0884 (14)0.0645 (11)0.0040 (9)0.0062 (8)0.0152 (10)
O40.0738 (12)0.0565 (11)0.0541 (11)0.0146 (10)0.0101 (9)0.0053 (10)
O50.0478 (11)0.0999 (18)0.1017 (16)0.0122 (12)0.0057 (11)0.0330 (14)
O60.0880 (17)0.0563 (15)0.173 (3)0.0261 (13)0.0048 (17)0.0040 (16)
C10.0409 (12)0.0526 (14)0.0422 (12)0.0101 (13)0.0033 (11)0.0099 (13)
C20.0566 (15)0.0624 (18)0.0458 (13)0.0020 (14)0.0048 (12)0.0002 (13)
C30.0563 (15)0.0618 (17)0.0525 (15)0.0030 (14)0.0020 (12)0.0101 (14)
C40.0475 (14)0.0632 (18)0.0577 (15)0.0060 (14)0.0077 (12)0.0131 (15)
C50.0602 (17)0.0620 (18)0.0505 (15)0.0190 (15)0.0130 (12)0.0054 (14)
C60.0533 (14)0.0506 (15)0.0446 (13)0.0061 (13)0.0019 (11)0.0057 (13)
C70.082 (2)0.105 (3)0.088 (2)0.036 (2)0.0062 (18)0.030 (2)
C80.128 (3)0.078 (2)0.0505 (17)0.016 (2)0.0012 (17)0.0066 (17)
C90.0350 (12)0.0436 (13)0.0389 (12)0.0026 (11)0.0008 (9)0.0004 (11)
C100.0390 (12)0.0553 (16)0.0612 (16)0.0061 (12)0.0085 (11)0.0058 (13)
C110.0547 (15)0.0425 (14)0.0653 (16)0.0039 (13)0.0012 (12)0.0019 (13)
C120.0391 (13)0.0484 (15)0.0548 (14)0.0044 (12)0.0053 (11)0.0091 (12)
C130.0360 (13)0.0545 (16)0.0703 (17)0.0073 (12)0.0093 (12)0.0041 (14)
C140.0427 (13)0.0409 (14)0.0646 (15)0.0075 (12)0.0074 (12)0.0013 (13)
Geometric parameters (Å, º) top
S1—O41.4249 (19)C4—H40.93
S1—O31.4273 (18)C5—C61.386 (3)
S1—N11.630 (2)C5—H50.93
S1—C91.771 (2)C7—H7A0.96
N1—C11.434 (3)C7—H7B0.96
N1—H1N0.78 (3)C7—H7C0.96
N2—O61.210 (3)C8—H8A0.96
N2—O51.212 (3)C8—H8B0.96
N2—C121.482 (3)C8—H8C0.96
O1—C31.373 (3)C9—C101.378 (4)
O1—C71.424 (3)C9—C141.380 (3)
O2—C61.370 (3)C10—C111.379 (3)
O2—C81.413 (3)C10—H100.93
C1—C21.372 (3)C11—C121.371 (3)
C1—C61.393 (3)C11—H110.93
C2—C31.396 (3)C12—C131.360 (3)
C2—H20.93C13—C141.374 (3)
C3—C41.370 (4)C13—H130.93
C4—C51.379 (4)C14—H140.93
O4—S1—O3120.67 (12)C5—C6—C1119.0 (2)
O4—S1—N1108.06 (13)O1—C7—H7A109.5
O3—S1—N1105.22 (11)O1—C7—H7B109.5
O4—S1—C9107.61 (11)H7A—C7—H7B109.5
O3—S1—C9108.45 (11)O1—C7—H7C109.5
N1—S1—C9105.95 (11)H7A—C7—H7C109.5
C1—N1—S1123.06 (17)H7B—C7—H7C109.5
C1—N1—H1N114 (2)O2—C8—H8A109.5
S1—N1—H1N109 (2)O2—C8—H8B109.5
O6—N2—O5124.4 (3)H8A—C8—H8B109.5
O6—N2—C12117.4 (3)O2—C8—H8C109.5
O5—N2—C12118.3 (3)H8A—C8—H8C109.5
C3—O1—C7117.8 (2)H8B—C8—H8C109.5
C6—O2—C8118.8 (2)C10—C9—C14120.9 (2)
C2—C1—C6120.1 (2)C10—C9—S1118.70 (18)
C2—C1—N1123.3 (2)C14—C9—S1120.34 (19)
C6—C1—N1116.6 (2)C9—C10—C11119.5 (2)
C1—C2—C3120.2 (2)C9—C10—H10120.3
C1—C2—H2119.9C11—C10—H10120.3
C3—C2—H2119.9C12—C11—C10118.4 (2)
C4—C3—O1125.0 (2)C12—C11—H11120.8
C4—C3—C2120.0 (3)C10—C11—H11120.8
O1—C3—C2115.0 (2)C13—C12—C11122.8 (2)
C3—C4—C5119.9 (2)C13—C12—N2119.4 (2)
C3—C4—H4120.1C11—C12—N2117.8 (2)
C5—C4—H4120.1C12—C13—C14118.9 (2)
C4—C5—C6120.9 (2)C12—C13—H13120.6
C4—C5—H5119.6C14—C13—H13120.6
C6—C5—H5119.6C13—C14—C9119.5 (2)
O2—C6—C5126.3 (2)C13—C14—H14120.3
O2—C6—C1114.7 (2)C9—C14—H14120.3
O4—S1—N1—C161.0 (2)N1—C1—C6—C5178.5 (2)
O3—S1—N1—C1168.9 (2)O4—S1—C9—C10162.61 (19)
C9—S1—N1—C154.1 (2)O3—S1—C9—C1030.5 (2)
S1—N1—C1—C247.4 (3)N1—S1—C9—C1082.0 (2)
S1—N1—C1—C6134.8 (2)O4—S1—C9—C1419.3 (2)
C6—C1—C2—C31.3 (4)O3—S1—C9—C14151.32 (19)
N1—C1—C2—C3179.0 (2)N1—S1—C9—C1496.1 (2)
C7—O1—C3—C42.7 (4)C14—C9—C10—C110.1 (4)
C7—O1—C3—C2175.8 (3)S1—C9—C10—C11178.18 (19)
C1—C2—C3—C41.0 (4)C9—C10—C11—C121.0 (4)
C1—C2—C3—O1179.7 (2)C10—C11—C12—C131.1 (4)
O1—C3—C4—C5178.6 (2)C10—C11—C12—N2178.1 (2)
C2—C3—C4—C50.1 (4)O6—N2—C12—C13178.0 (3)
C3—C4—C5—C60.6 (4)O5—N2—C12—C132.0 (4)
C8—O2—C6—C59.4 (4)O6—N2—C12—C111.3 (4)
C8—O2—C6—C1170.3 (2)O5—N2—C12—C11178.7 (2)
C4—C5—C6—O2180.0 (2)C11—C12—C13—C140.2 (4)
C4—C5—C6—C10.3 (4)N2—C12—C13—C14179.0 (2)
C2—C1—C6—O2179.1 (2)C12—C13—C14—C90.7 (4)
N1—C1—C6—O21.2 (3)C10—C9—C14—C130.8 (4)
C2—C1—C6—C50.7 (4)S1—C9—C14—C13177.25 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O20.78 (3)2.20 (3)2.607 (3)113 (2)
C8—H8C···O4i0.962.553.414 (4)150
Symmetry code: (i) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC14H14N2O6S
Mr338.33
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)292
a, b, c (Å)14.532 (4), 12.375 (4), 17.311 (4)
V3)3113.2 (14)
Z8
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.48 × 0.44 × 0.42
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionFor a sphere
(WinGX; Farrugia, 1999)
Tmin, Tmax0.893, 0.906
No. of measured, independent and
observed [I > 2σ(I)] reflections
4003, 2877, 1790
Rint0.004
(sin θ/λ)max1)0.604
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.121, 1.06
No. of reflections2877
No. of parameters214
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.32

Computer programs: DIFRAC (Gabe & White, 1993), NRCVAX (Gabe et al., 1989), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O20.78 (3)2.20 (3)2.607 (3)113 (2)
C8—H8C···O4i0.962.553.414 (4)150
Symmetry code: (i) x, y+3/2, z1/2.
 

References

First citationBardou, M., Dousset, B., Tharaux, C. D., Smadja, C., Naline, E., Chaput, J. C., Naveau, S., Manara, L., Croci, T. & Advenier, C. (1998). Eur. J. Pharmacol. 352, 281–287.  Web of Science CrossRef Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGabe, E. J. & White, P. S. (1993). DIFRAC. American Crystallographic Association Meeting, Pittsburgh, Abstract PA 104.  Google Scholar
First citationHu, B., Ellingboe, J., Gunawan, I., Han, S., Largis, E., Li, Z., Malamas, M., Mulvey, R., Oliphant, A., Sum, F. W., Tillettb, J. & Wonga, V. (2001). Bioorg. Med. Chem. Lett. 11, 757–760.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKlaus, S., Seivert, A. & Boeuf, S. (2001). Biochim. Biophys. Acta, 1539, 85–92.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMargareto, J., Larrarte, E., Marti, A. & Martinez, J. A. (2001). Biochem. Pharmacol. 61, 1471–1478.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOk, H. O., Reigle, L. B., Candelore, M. R., Cascieri, M. A., Colwell, L. F., Deng, L., Feeney, W. P., Forrest, M. J., Hom, G. J., MacIntyre, D. E., Strader, C. D., Tota, L., Wang, P., Wyvratt, M. J., Fisher, M. H. & Weber, A. E. (2000). Bioorg. Med. Chem. Lett. 10, 1531–1534.  Web of Science CrossRef PubMed CAS Google Scholar
First citationParmee, E. R., Brockunier, L. L., He, J., Singh, S. B., Candelore, M. R., Cascieri, M. A., Deng, L., Liu, Y., Tota, L., Wyvratt, M. J., Fisher, M. H. & &Weber, A. E. (2000). Bioorg. Med. Chem. Lett. 10, 2283–2286.  Web of Science CrossRef PubMed CAS Google Scholar
First citationParmee, E. R., Ok, H. O., Candelore, M. R., Tota, L., Deng, L., Strader, C. D., Wyvratt, M. J., Fisher, M. H. & Weber, A. E. (1998). Bioorg. Med. Chem. Lett. 8, 1107–1112.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTonello, C., Dioni, L., Briscini, L., Nisoli, E. & Carruba, M. O. (1998). Eur. J. Pharmacol. 352, 125–129.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWeber, A. E., Mathvink, R. J., Perkins, L., Hutchins, J. E., Candelore, M. R., Tota, L., Strader, C. D., Wyvratt, M. J. & Fisher, M. H. (1998). Bioorg. Med. Chem. Lett. 8, 1101–1106.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds