organic compounds
3,4-Diaminopyridinium 4-nitrobenzoate–4-nitrobenzoic acid (1/1)
aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 Universiti Sains Malaysia, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my
In the title compound, C5H8N3+·C7H4NO4−·C7H5NO4, the non-H atoms of the 3,4-diaminopyridinium cation are coplanar, with a maximum deviation of 0.022 (1) Å. The carboxylate and nitro groups of the 4-nitrobenzoate anion are twisted out of the attached ring planes by dihedral angles of 15.89 (8) and 10.20 (8)°, respectively. In the 4-nitrobenzoic acid molecule, the carboxyl and nitro groups form dihedral angles of 18.25 (8) and 6.55 (8)°, respectively, with the benzene ring. In the crystal, the constituent units form two-dimensional networks parallel to (001) by O—H⋯O, N—-H⋯O and C—H⋯O hydrogen bonds. Weak π–π interactions involving inversion-related 4-nitrobenzoic acid molecules [centroid–centroid distance = 3.7325 (8) Å] and inversion-related 4-nitrobenzoate molecules [centroid–centroid distance = 3.7124 (8) Å] are also observed.
Related literature
For general background to substituted pyridines, see: Pozharski et al. (1997); Katritzky et al. (1996); For related structures, see: Opozda et al. (2006); Rubin-Preminger & Englert (2007); Koleva et al. (2007, 2008); Fun & Balasubramani (2009). For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2005); cell SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536809027354/ci2849sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809027354/ci2849Isup2.hkl
Hot methanol solutions (20 ml) of 3,4-diaminopyridine (27 mg, Aldrich) and 4-nitrobenzoic acid (42 mg, Merck) were mixed and warmed over a heating magnetic stirrer for 5 minutes. The resulting solution was allowed to cool slowly at room temperature. Crystals of (I) appeared from the mother liquor after a few days.
All the H atoms (except carboxyl oxygen) were located from the difference Fourier map [N–H = 0.89 (2)–1.05 (3) Å, C–H = 0.89 (2)–1.00 (2) Å and allowed to refine freely. The oxygen H atom was positioned geometrically (O–H = 0.82 Å) and refined using a riding model Uiso(H) = 1.5Ueq(O).
Data collection: APEX2 (Bruker, 2005); cell
SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).Fig. 1. The asymmetric unit of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme. | |
Fig. 2. Part of the crystal packing in the title compound, showing a two-dimensional network parallel to the (001). Hydrogen bonds are shown as dashed lines. |
C5H8N3+·C7H4NO4−·C7H5NO4 | Z = 2 |
Mr = 443.38 | F(000) = 460 |
Triclinic, P1 | Dx = 1.568 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 6.8073 (2) Å | Cell parameters from 7405 reflections |
b = 6.8087 (2) Å | θ = 3.1–33.7° |
c = 21.0171 (5) Å | µ = 0.13 mm−1 |
α = 80.859 (1)° | T = 100 K |
β = 83.253 (1)° | Block, yellow |
γ = 78.549 (1)° | 0.56 × 0.20 × 0.17 mm |
V = 938.88 (5) Å3 |
Bruker SMART APEXII CCD area-detector diffractometer | 5435 independent reflections |
Radiation source: fine-focus sealed tube | 4025 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.041 |
ϕ and ω scans | θmax = 30.0°, θmin = 1.0° |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | h = −9→9 |
Tmin = 0.934, Tmax = 0.979 | k = −9→9 |
27907 measured reflections | l = −29→28 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.059 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.190 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | w = 1/[σ2(Fo2) + (0.1091P)2 + 0.3802P] where P = (Fo2 + 2Fc2)/3 |
5435 reflections | (Δ/σ)max = 0.001 |
353 parameters | Δρmax = 0.81 e Å−3 |
0 restraints | Δρmin = −0.44 e Å−3 |
C5H8N3+·C7H4NO4−·C7H5NO4 | γ = 78.549 (1)° |
Mr = 443.38 | V = 938.88 (5) Å3 |
Triclinic, P1 | Z = 2 |
a = 6.8073 (2) Å | Mo Kα radiation |
b = 6.8087 (2) Å | µ = 0.13 mm−1 |
c = 21.0171 (5) Å | T = 100 K |
α = 80.859 (1)° | 0.56 × 0.20 × 0.17 mm |
β = 83.253 (1)° |
Bruker SMART APEXII CCD area-detector diffractometer | 5435 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | 4025 reflections with I > 2σ(I) |
Tmin = 0.934, Tmax = 0.979 | Rint = 0.041 |
27907 measured reflections |
R[F2 > 2σ(F2)] = 0.059 | 0 restraints |
wR(F2) = 0.190 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | Δρmax = 0.81 e Å−3 |
5435 reflections | Δρmin = −0.44 e Å−3 |
353 parameters |
Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K. |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1A | 1.39968 (18) | 0.6458 (2) | 0.56237 (6) | 0.0292 (3) | |
O2A | 1.1299 (2) | 0.6247 (2) | 0.62692 (6) | 0.0282 (3) | |
O3A | 0.84687 (17) | 0.9461 (2) | 0.30121 (6) | 0.0235 (3) | |
O4A | 0.56283 (19) | 0.8966 (2) | 0.36256 (7) | 0.0342 (4) | |
C7A | 0.7456 (2) | 0.8934 (2) | 0.35545 (8) | 0.0193 (3) | |
C1A | 0.8875 (2) | 0.7614 (2) | 0.52810 (8) | 0.0175 (3) | |
C2A | 0.7744 (2) | 0.8188 (2) | 0.47485 (8) | 0.0178 (3) | |
C3A | 0.8705 (2) | 0.8287 (2) | 0.41221 (7) | 0.0160 (3) | |
C4A | 1.0802 (2) | 0.7779 (2) | 0.40257 (8) | 0.0173 (3) | |
C5A | 1.1946 (2) | 0.7216 (2) | 0.45525 (7) | 0.0166 (3) | |
C6A | 1.0950 (2) | 0.7158 (2) | 0.51679 (7) | 0.0155 (3) | |
N1A | 1.2168 (2) | 0.6579 (2) | 0.57258 (7) | 0.0186 (3) | |
O1B | 0.08979 (19) | 0.3360 (2) | −0.05503 (7) | 0.0309 (3) | |
O2B | 0.3609 (2) | 0.3677 (2) | −0.11725 (6) | 0.0285 (3) | |
O3B | 0.64656 (17) | 0.0180 (2) | 0.20718 (6) | 0.0239 (3) | |
H1O3 | 0.7184 | 0.0014 | 0.2370 | 0.036* | |
O4B | 0.91654 (18) | 0.1156 (2) | 0.14870 (6) | 0.0276 (3) | |
C7B | 0.7393 (2) | 0.0931 (2) | 0.15458 (8) | 0.0185 (3) | |
C1B | 0.2910 (2) | 0.2478 (2) | 0.05366 (8) | 0.0177 (3) | |
C2B | 0.4051 (2) | 0.1875 (2) | 0.10658 (7) | 0.0170 (3) | |
C3B | 0.6149 (2) | 0.1559 (2) | 0.09760 (8) | 0.0164 (3) | |
C4B | 0.7116 (2) | 0.1852 (2) | 0.03518 (8) | 0.0180 (3) | |
C5B | 0.5997 (2) | 0.2440 (2) | −0.01814 (8) | 0.0177 (3) | |
C6B | 0.3922 (2) | 0.2731 (2) | −0.00739 (7) | 0.0163 (3) | |
N1B | 0.2727 (2) | 0.3303 (2) | −0.06376 (7) | 0.0188 (3) | |
N2 | 0.3773 (2) | 0.7229 (2) | 0.23610 (7) | 0.0261 (3) | |
N3 | −0.0247 (2) | 0.4644 (3) | 0.21167 (9) | 0.0355 (4) | |
N4 | 0.2251 (2) | 0.1578 (2) | 0.28541 (7) | 0.0254 (3) | |
C8 | 0.4928 (3) | 0.5748 (3) | 0.27289 (9) | 0.0243 (4) | |
C9 | 0.4450 (3) | 0.3893 (3) | 0.28994 (9) | 0.0242 (4) | |
C10 | 0.2719 (2) | 0.3463 (3) | 0.27034 (8) | 0.0204 (3) | |
C11 | 0.1493 (2) | 0.5011 (3) | 0.23126 (8) | 0.0229 (3) | |
C12 | 0.2073 (3) | 0.6893 (3) | 0.21562 (9) | 0.0241 (4) | |
H1N3 | −0.023 (4) | 0.312 (4) | 0.2071 (13) | 0.048 (7)* | |
H2N3 | −0.080 (4) | 0.564 (4) | 0.1805 (15) | 0.060 (8)* | |
H1N2 | 0.431 (3) | 0.851 (4) | 0.2220 (12) | 0.036 (6)* | |
H1N4 | 0.312 (3) | 0.070 (3) | 0.3102 (11) | 0.028 (5)* | |
H2N4 | 0.098 (3) | 0.146 (3) | 0.2834 (11) | 0.028 (6)* | |
H1A | 0.820 (3) | 0.765 (3) | 0.5715 (11) | 0.027 (5)* | |
H2A | 0.630 (4) | 0.852 (3) | 0.4818 (11) | 0.034 (6)* | |
H4A | 1.145 (3) | 0.772 (3) | 0.3597 (11) | 0.023 (5)* | |
H5A | 1.333 (3) | 0.687 (3) | 0.4501 (11) | 0.027 (5)* | |
H8A | 0.599 (4) | 0.613 (4) | 0.2850 (14) | 0.052 (8)* | |
H1B | 0.150 (4) | 0.265 (3) | 0.0608 (11) | 0.033 (6)* | |
H2B | 0.340 (3) | 0.173 (3) | 0.1505 (11) | 0.029 (6)* | |
H4B | 0.857 (4) | 0.163 (4) | 0.0290 (12) | 0.036 (6)* | |
H5B | 0.668 (4) | 0.250 (4) | −0.0633 (12) | 0.036 (6)* | |
H9 | 0.524 (4) | 0.285 (4) | 0.3184 (12) | 0.041 (7)* | |
H12 | 0.147 (3) | 0.800 (4) | 0.1914 (12) | 0.034 (6)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1A | 0.0199 (6) | 0.0440 (8) | 0.0234 (7) | −0.0055 (5) | −0.0076 (5) | −0.0003 (6) |
O2A | 0.0303 (7) | 0.0390 (7) | 0.0133 (6) | −0.0033 (5) | −0.0016 (5) | −0.0015 (5) |
O3A | 0.0195 (6) | 0.0354 (7) | 0.0147 (6) | −0.0023 (5) | −0.0024 (4) | −0.0030 (5) |
O4A | 0.0216 (6) | 0.0494 (8) | 0.0304 (7) | −0.0152 (6) | −0.0123 (5) | 0.0159 (6) |
C7A | 0.0211 (7) | 0.0166 (7) | 0.0216 (8) | −0.0049 (6) | −0.0082 (6) | −0.0007 (6) |
C1A | 0.0199 (7) | 0.0178 (7) | 0.0150 (7) | −0.0043 (5) | −0.0003 (6) | −0.0026 (5) |
C2A | 0.0156 (7) | 0.0178 (7) | 0.0201 (8) | −0.0033 (5) | −0.0021 (6) | −0.0022 (6) |
C3A | 0.0173 (7) | 0.0151 (6) | 0.0158 (7) | −0.0034 (5) | −0.0034 (5) | −0.0010 (5) |
C4A | 0.0194 (7) | 0.0183 (7) | 0.0140 (7) | −0.0032 (5) | −0.0020 (5) | −0.0018 (5) |
C5A | 0.0156 (7) | 0.0186 (7) | 0.0158 (7) | −0.0029 (5) | −0.0015 (5) | −0.0029 (5) |
C6A | 0.0178 (7) | 0.0154 (6) | 0.0138 (7) | −0.0029 (5) | −0.0043 (5) | −0.0017 (5) |
N1A | 0.0223 (7) | 0.0190 (6) | 0.0151 (6) | −0.0033 (5) | −0.0047 (5) | −0.0026 (5) |
O1B | 0.0201 (6) | 0.0475 (8) | 0.0244 (7) | −0.0067 (5) | −0.0078 (5) | 0.0025 (6) |
O2B | 0.0286 (6) | 0.0405 (7) | 0.0124 (6) | 0.0004 (5) | −0.0014 (5) | −0.0008 (5) |
O3B | 0.0206 (6) | 0.0375 (7) | 0.0136 (6) | −0.0041 (5) | −0.0057 (4) | −0.0020 (5) |
O4B | 0.0197 (6) | 0.0396 (7) | 0.0237 (6) | −0.0069 (5) | −0.0077 (5) | 0.0014 (5) |
C7B | 0.0193 (7) | 0.0195 (7) | 0.0172 (7) | −0.0010 (6) | −0.0052 (6) | −0.0042 (6) |
C1B | 0.0146 (7) | 0.0212 (7) | 0.0179 (7) | −0.0024 (5) | −0.0019 (5) | −0.0050 (6) |
C2B | 0.0182 (7) | 0.0206 (7) | 0.0125 (7) | −0.0033 (5) | −0.0023 (5) | −0.0034 (5) |
C3B | 0.0173 (7) | 0.0165 (7) | 0.0158 (7) | −0.0025 (5) | −0.0038 (5) | −0.0028 (5) |
C4B | 0.0164 (7) | 0.0206 (7) | 0.0174 (7) | −0.0028 (5) | −0.0022 (5) | −0.0040 (6) |
C5B | 0.0199 (7) | 0.0189 (7) | 0.0143 (7) | −0.0040 (5) | −0.0011 (5) | −0.0025 (5) |
C6B | 0.0185 (7) | 0.0170 (7) | 0.0137 (7) | −0.0025 (5) | −0.0047 (5) | −0.0019 (5) |
N1B | 0.0214 (6) | 0.0186 (6) | 0.0161 (6) | −0.0015 (5) | −0.0054 (5) | −0.0021 (5) |
N2 | 0.0330 (8) | 0.0230 (7) | 0.0230 (8) | −0.0063 (6) | 0.0024 (6) | −0.0071 (6) |
N3 | 0.0229 (8) | 0.0494 (11) | 0.0333 (9) | −0.0102 (7) | −0.0129 (7) | 0.0087 (8) |
N4 | 0.0211 (7) | 0.0290 (8) | 0.0251 (8) | −0.0062 (6) | −0.0041 (6) | 0.0025 (6) |
C8 | 0.0315 (9) | 0.0230 (8) | 0.0215 (8) | −0.0065 (7) | −0.0059 (7) | −0.0080 (6) |
C9 | 0.0279 (8) | 0.0240 (8) | 0.0204 (8) | −0.0003 (7) | −0.0063 (6) | −0.0049 (6) |
C10 | 0.0203 (7) | 0.0244 (8) | 0.0156 (7) | −0.0019 (6) | 0.0019 (6) | −0.0057 (6) |
C11 | 0.0168 (7) | 0.0332 (9) | 0.0177 (8) | −0.0018 (6) | 0.0002 (6) | −0.0048 (6) |
C12 | 0.0248 (8) | 0.0243 (8) | 0.0202 (8) | 0.0018 (6) | 0.0007 (6) | −0.0036 (6) |
O1A—N1A | 1.2269 (18) | C2B—C3B | 1.396 (2) |
O2A—N1A | 1.2317 (18) | C2B—H2B | 0.98 (2) |
O3A—C7A | 1.299 (2) | C3B—C4B | 1.400 (2) |
O4A—C7A | 1.232 (2) | C4B—C5B | 1.390 (2) |
C7A—C3A | 1.504 (2) | C4B—H4B | 0.97 (2) |
C1A—C6A | 1.386 (2) | C5B—C6B | 1.384 (2) |
C1A—C2A | 1.393 (2) | C5B—H5B | 1.00 (2) |
C1A—H1A | 0.97 (2) | C6B—N1B | 1.473 (2) |
C2A—C3A | 1.397 (2) | N2—C8 | 1.347 (2) |
C2A—H2A | 0.96 (2) | N2—C12 | 1.353 (2) |
C3A—C4A | 1.399 (2) | N2—H1N2 | 1.00 (2) |
C4A—C5A | 1.389 (2) | N3—C11 | 1.379 (2) |
C4A—H4A | 0.96 (2) | N3—H1N3 | 1.05 (3) |
C5A—C6A | 1.386 (2) | N3—H2N3 | 0.92 (3) |
C5A—H5A | 0.92 (2) | N4—C10 | 1.364 (2) |
C6A—N1A | 1.4727 (19) | N4—H1N4 | 0.90 (2) |
O1B—N1B | 1.2307 (18) | N4—H2N4 | 0.89 (2) |
O2B—N1B | 1.2247 (18) | C8—C9 | 1.349 (2) |
O3B—C7B | 1.2913 (19) | C8—H8A | 0.89 (3) |
O3B—H1O3 | 0.82 | C9—C10 | 1.390 (2) |
O4B—C7B | 1.2355 (19) | C9—H9 | 0.97 (2) |
C7B—C3B | 1.505 (2) | C10—C11 | 1.421 (2) |
C1B—C6B | 1.386 (2) | C11—C12 | 1.394 (3) |
C1B—C2B | 1.393 (2) | C12—H12 | 0.89 (2) |
C1B—H1B | 0.94 (2) | ||
O4A—C7A—O3A | 125.20 (15) | C5B—C4B—C3B | 120.32 (14) |
O4A—C7A—C3A | 120.56 (15) | C5B—C4B—H4B | 119.7 (14) |
O3A—C7A—C3A | 114.22 (13) | C3B—C4B—H4B | 120.0 (14) |
C6A—C1A—C2A | 118.09 (14) | C6B—C5B—C4B | 118.05 (14) |
C6A—C1A—H1A | 122.4 (13) | C6B—C5B—H5B | 121.0 (14) |
C2A—C1A—H1A | 119.3 (13) | C4B—C5B—H5B | 120.6 (14) |
C1A—C2A—C3A | 120.10 (14) | C5B—C6B—C1B | 123.32 (14) |
C1A—C2A—H2A | 119.2 (14) | C5B—C6B—N1B | 118.39 (14) |
C3A—C2A—H2A | 120.7 (14) | C1B—C6B—N1B | 118.28 (13) |
C2A—C3A—C4A | 120.26 (14) | O2B—N1B—O1B | 123.15 (14) |
C2A—C3A—C7A | 119.19 (14) | O2B—N1B—C6B | 118.26 (13) |
C4A—C3A—C7A | 120.55 (14) | O1B—N1B—C6B | 118.58 (13) |
C5A—C4A—C3A | 120.19 (14) | C8—N2—C12 | 120.32 (15) |
C5A—C4A—H4A | 119.4 (12) | C8—N2—H1N2 | 116.5 (14) |
C3A—C4A—H4A | 120.3 (12) | C12—N2—H1N2 | 122.9 (14) |
C6A—C5A—C4A | 118.16 (14) | C11—N3—H1N3 | 114.8 (14) |
C6A—C5A—H5A | 120.1 (14) | C11—N3—H2N3 | 112.8 (18) |
C4A—C5A—H5A | 121.7 (14) | H1N3—N3—H2N3 | 119 (2) |
C1A—C6A—C5A | 123.18 (14) | C10—N4—H1N4 | 113.8 (14) |
C1A—C6A—N1A | 118.74 (13) | C10—N4—H2N4 | 117.7 (14) |
C5A—C6A—N1A | 118.08 (13) | H1N4—N4—H2N4 | 124 (2) |
O1A—N1A—O2A | 123.50 (14) | N2—C8—C9 | 121.67 (17) |
O1A—N1A—C6A | 118.07 (13) | N2—C8—H8A | 113.6 (18) |
O2A—N1A—C6A | 118.43 (13) | C9—C8—H8A | 124.7 (18) |
C7B—O3B—H1O3 | 109.5 | C8—C9—C10 | 120.49 (16) |
O4B—C7B—O3B | 125.03 (14) | C8—C9—H9 | 121.6 (14) |
O4B—C7B—C3B | 119.89 (14) | C10—C9—H9 | 117.7 (14) |
O3B—C7B—C3B | 115.08 (13) | N4—C10—C9 | 121.17 (15) |
C6B—C1B—C2B | 117.96 (14) | N4—C10—C11 | 120.42 (16) |
C6B—C1B—H1B | 123.3 (15) | C9—C10—C11 | 118.34 (16) |
C2B—C1B—H1B | 118.7 (15) | N3—C11—C12 | 121.98 (16) |
C1B—C2B—C3B | 120.33 (14) | N3—C11—C10 | 119.85 (16) |
C1B—C2B—H2B | 120.5 (13) | C12—C11—C10 | 118.13 (16) |
C3B—C2B—H2B | 119.1 (13) | N2—C12—C11 | 121.03 (16) |
C2B—C3B—C4B | 120.01 (14) | N2—C12—H12 | 110.3 (14) |
C2B—C3B—C7B | 120.67 (14) | C11—C12—H12 | 128.6 (15) |
C4B—C3B—C7B | 119.31 (13) | ||
C6A—C1A—C2A—C3A | 0.1 (2) | O3B—C7B—C3B—C4B | −162.32 (14) |
C1A—C2A—C3A—C4A | 1.0 (2) | C2B—C3B—C4B—C5B | −0.6 (2) |
C1A—C2A—C3A—C7A | −179.27 (14) | C7B—C3B—C4B—C5B | −179.72 (14) |
O4A—C7A—C3A—C2A | −15.2 (2) | C3B—C4B—C5B—C6B | 0.3 (2) |
O3A—C7A—C3A—C2A | 163.72 (14) | C4B—C5B—C6B—C1B | 0.4 (2) |
O4A—C7A—C3A—C4A | 164.48 (16) | C4B—C5B—C6B—N1B | −178.44 (13) |
O3A—C7A—C3A—C4A | −16.6 (2) | C2B—C1B—C6B—C5B | −0.8 (2) |
C2A—C3A—C4A—C5A | −1.4 (2) | C2B—C1B—C6B—N1B | 178.02 (13) |
C7A—C3A—C4A—C5A | 178.91 (14) | C5B—C6B—N1B—O2B | −6.6 (2) |
C3A—C4A—C5A—C6A | 0.6 (2) | C1B—C6B—N1B—O2B | 174.52 (14) |
C2A—C1A—C6A—C5A | −1.0 (2) | C5B—C6B—N1B—O1B | 172.62 (14) |
C2A—C1A—C6A—N1A | 179.05 (13) | C1B—C6B—N1B—O1B | −6.3 (2) |
C4A—C5A—C6A—C1A | 0.7 (2) | C12—N2—C8—C9 | 0.6 (3) |
C4A—C5A—C6A—N1A | −179.40 (13) | N2—C8—C9—C10 | −0.7 (3) |
C1A—C6A—N1A—O1A | −169.88 (14) | C8—C9—C10—N4 | 177.85 (16) |
C5A—C6A—N1A—O1A | 10.2 (2) | C8—C9—C10—C11 | 1.0 (3) |
C1A—C6A—N1A—O2A | 10.0 (2) | N4—C10—C11—N3 | 4.0 (3) |
C5A—C6A—N1A—O2A | −169.97 (14) | C9—C10—C11—N3 | −179.15 (16) |
C6B—C1B—C2B—C3B | 0.5 (2) | N4—C10—C11—C12 | −178.05 (16) |
C1B—C2B—C3B—C4B | 0.2 (2) | C9—C10—C11—C12 | −1.2 (2) |
C1B—C2B—C3B—C7B | 179.27 (14) | C8—N2—C12—C11 | −0.8 (3) |
O4B—C7B—C3B—C2B | −161.34 (15) | N3—C11—C12—N2 | 179.05 (17) |
O3B—C7B—C3B—C2B | 18.6 (2) | C10—C11—C12—N2 | 1.1 (2) |
O4B—C7B—C3B—C4B | 17.8 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
O3B—H1O3···O3Ai | 0.82 | 1.65 | 2.463 (2) | 173 |
N3—H1N3···O4Bii | 1.05 (3) | 2.08 (3) | 3.008 (3) | 146 (2) |
N3—H2N3···O2Biii | 0.92 (3) | 2.39 (3) | 3.129 (2) | 138 (2) |
N2—H1N2···O3Biv | 1.00 (2) | 2.00 (2) | 2.929 (2) | 154 (2) |
N4—H1N4···O4Ai | 0.90 (2) | 2.18 (2) | 3.068 (2) | 169 (2) |
N4—H2N4···O3Av | 0.89 (2) | 2.35 (2) | 3.152 (2) | 150 (2) |
C1B—H1B···O4Bii | 0.94 (2) | 2.52 (2) | 3.231 (2) | 133 (2) |
C4B—H4B···O1Bvi | 0.97 (2) | 2.54 (2) | 3.250 (2) | 130 (2) |
C12—H12···O4Bvii | 0.89 (2) | 2.50 (2) | 3.376 (2) | 165 (2) |
Symmetry codes: (i) x, y−1, z; (ii) x−1, y, z; (iii) −x, −y+1, −z; (iv) x, y+1, z; (v) x−1, y−1, z; (vi) x+1, y, z; (vii) x−1, y+1, z. |
Experimental details
Crystal data | |
Chemical formula | C5H8N3+·C7H4NO4−·C7H5NO4 |
Mr | 443.38 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 100 |
a, b, c (Å) | 6.8073 (2), 6.8087 (2), 21.0171 (5) |
α, β, γ (°) | 80.859 (1), 83.253 (1), 78.549 (1) |
V (Å3) | 938.88 (5) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.13 |
Crystal size (mm) | 0.56 × 0.20 × 0.17 |
Data collection | |
Diffractometer | Bruker SMART APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2005) |
Tmin, Tmax | 0.934, 0.979 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 27907, 5435, 4025 |
Rint | 0.041 |
(sin θ/λ)max (Å−1) | 0.703 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.059, 0.190, 1.05 |
No. of reflections | 5435 |
No. of parameters | 353 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.81, −0.44 |
Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
O3B—H1O3···O3Ai | 0.82 | 1.65 | 2.463 (2) | 173 |
N3—H1N3···O4Bii | 1.05 (3) | 2.08 (3) | 3.008 (3) | 146 (2) |
N3—H2N3···O2Biii | 0.92 (3) | 2.39 (3) | 3.129 (2) | 138 (2) |
N2—H1N2···O3Biv | 1.00 (2) | 2.00 (2) | 2.929 (2) | 154 (2) |
N4—H1N4···O4Ai | 0.90 (2) | 2.18 (2) | 3.068 (2) | 169 (2) |
N4—H2N4···O3Av | 0.89 (2) | 2.35 (2) | 3.152 (2) | 150 (2) |
C1B—H1B···O4Bii | 0.94 (2) | 2.52 (2) | 3.231 (2) | 133 (2) |
C4B—H4B···O1Bvi | 0.97 (2) | 2.54 (2) | 3.250 (2) | 130 (2) |
C12—H12···O4Bvii | 0.89 (2) | 2.50 (2) | 3.376 (2) | 165 (2) |
Symmetry codes: (i) x, y−1, z; (ii) x−1, y, z; (iii) −x, −y+1, −z; (iv) x, y+1, z; (v) x−1, y−1, z; (vi) x+1, y, z; (vii) x−1, y+1, z. |
Footnotes
‡Thomson Reuters ResearcherID: A-3561-2009.
Acknowledgements
HKF and KB thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. KB thanks Universiti Sains Malaysia for a post–doctoral research fellowship. HKF also thanks Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107. CrossRef CAS Web of Science IUCr Journals Google Scholar
Fun, H.-K. & Balasubramani, K. (2009). Acta Cryst. E65, o1531–o1532. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Katritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). Editors. Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon Press. Google Scholar
Koleva, B., Kolev, T., Tsanev, T., Kotov, S., Mayer-Figge, H., Seidel, R. W. & Sheldrich, W. S. (2008). J. Mol. Struct. 881, 146–155. Web of Science CSD CrossRef CAS Google Scholar
Koleva, B., Tsanev, T., Kolev, T., Mayer-Figge, H. & Sheldrick, W. S. (2007). Acta Cryst. E63, o3356. Web of Science CSD CrossRef IUCr Journals Google Scholar
Opozda, E. M., Lasocha, W. & Wlodarczyk–Gajda, B. (2006). J. Mol. Struct. 784, 149–156. Web of Science CSD CrossRef CAS Google Scholar
Pozharski, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). Heterocycles in Life and Society. New York: Wiley. Google Scholar
Rubin-Preminger, J. M. & Englert, U. (2007). Acta Cryst. E63, o757–o758. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Pyridine and its derivatives play an important role in heterocyclic chemistry (Pozharski et al., 1997; Katritzky et al., 1996). 3,4-Diaminopyridine is used as a component in Schiff base reactions (Opozda et al., 2006). The crystal structure of 3,4-diaminopyridine (Rubin-Preminger & Englert, 2007), 3,4-diaminopyridinium hydrogen squarate (Koleva et al., 2007), 3,4-diaminopyridinium hydrogen tartarate (Koleva et al., 2008) and 3,4-diaminopyridinium hydrogen succinate (Fun & Balasubramani, 2009) have been reported. Since our aim is to study some interesting hydrogen-bonding interactions, the synthesis and structure of the title compound, (I), is presented here.
The asymmetric unit of (I) contains a 3,4-diaminopyridinium cation, a 4-nitrobenzoate anion and a 4-nitrobenzoic acid molecule (Fig 1). The bond lengths (Allen et al., 1987) and angles are normal.
In the 3,4-diaminopyridinium cation, the protonation of atom N2 has lead to a slight increase in C8—N2—C12 angle to 120.32 (15)° compared to 115.69 (19)° in 3,4-diaminopyridine (Rubin-Preminger & Englert, 2007). The non-H atoms of the 3,4-diaminopyridinium cation are coplanar, with a maximum deviation of 0.022 (1) Å for atom N4. The sum of bond angles associated with atoms N3 and N4 suggests that atom N3 is sp3 hybridized while atom N4 is sp2 hybridized.
In the 4-nitrobenzoate anion, the carboxylate group is twisted slightly from the attached ring; the dihedral angle between C1A-C6A and O3A/O4A/C3A/C7A planes is 15.89 (8)°. The nitro group is twisted away from the attached benzene ring by 10.20 (8)°. In the neutral 4-nitrobenzoic acid molecule, the carboxylic acid (O3B/O4b/C3B/C7B) and nitro (O1B/O2B/N1B/C6B) groups form dihedral angles of 18.25 (8)° and 6.55 (8)°, respectively, with the attached C1B-C6B benzene ring.
The dihedral angle between the benzene rings of 4-nitrobenzoate (C1A-C6A) anion and 4-nitrobenzoic acid (C1B-C6B) molecule is 6.16 (6)°. The pyridine ring (N2/C8-C12) forms dihedral angles of 71.75 (8)° and 65.83 (8)°, respectively, with the C1A-C6A and C1B-C6B rings.
In the crystal packing (Fig. 2), the two amino groups (N3 and N4) are involved in N—H···O hydrogen bonding with two 4-nitrobenzoate O atoms (O3A and O4A), one 4-nitrobenzoic acid O atom (O4B) and with one nitro group O atom (O2B). The 4-nitrobenzoic acid hydrogen, H1O3, is hydrogen-bonded to the carboxylate oxygen atom of 4-nitrobenzoate through O—H···O bonds. The 4-nitrobenzoic acid carbon atoms (C1B & C4B) are involved in C—H···O hydrogen bonding with the carboxylic acid and nitro group O atoms O4B and O1B, to form an R22(10) ring motif (Bernstein et al., 1995). The O—H···O, N—H···O and C—H···O hydrogen bonds (Table 1) link all the constituent units to form a two-dimensional network parallel to the (001). The crystal structure is further stabilized by π-π interactions. The inversion related 4-nitrobenzoic acid molecules are stacked with a centroid-to-centroid distance of 3.7325 (8) Å. Similarly, the inversion related 4-nitrobenzoate molecules are stacked with a centroid-to-centroid distance of 3.7124 (8) Å.