organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages o1887-o1888

3,4-Di­amino­pyridinium 4-nitro­benzoate–4-nitro­benzoic acid (1/1)

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 Universiti Sains Malaysia, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 9 July 2009; accepted 12 July 2009; online 18 July 2009)

In the title compound, C5H8N3+·C7H4NO4·C7H5NO4, the non-H atoms of the 3,4-diamino­pyridinium cation are coplanar, with a maximum deviation of 0.022 (1) Å. The carboxyl­ate and nitro groups of the 4-nitro­benzoate anion are twisted out of the attached ring planes by dihedral angles of 15.89 (8) and 10.20 (8)°, respectively. In the 4-nitro­benzoic acid mol­ecule, the carboxyl and nitro groups form dihedral angles of 18.25 (8) and 6.55 (8)°, respectively, with the benzene ring. In the crystal, the constituent units form two-dimensional networks parallel to (001) by O—H⋯O, N—-H⋯O and C—H⋯O hydrogen bonds. Weak ππ inter­actions involving inversion-related 4-nitro­benzoic acid mol­ecules [centroid–centroid distance = 3.7325 (8) Å] and inversion-related 4-nitro­benzoate mol­ecules [centroid–centroid distance = 3.7124 (8) Å] are also observed.

Related literature

For general background to substituted pyridines, see: Pozharski et al. (1997[Pozharski, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). Heterocycles in Life and Society. New York: Wiley.]); Katritzky et al. (1996[Katritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). Editors. Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon Press.]); For related structures, see: Opozda et al. (2006[Opozda, E. M., Lasocha, W. & Wlodarczyk-Gajda, B. (2006). J. Mol. Struct. 784, 149-156.]); Rubin-Preminger & Englert (2007[Rubin-Preminger, J. M. & Englert, U. (2007). Acta Cryst. E63, o757-o758.]); Koleva et al. (2007[Koleva, B., Tsanev, T., Kolev, T., Mayer-Figge, H. & Sheldrick, W. S. (2007). Acta Cryst. E63, o3356.], 2008[Koleva, B., Kolev, T., Tsanev, T., Kotov, S., Mayer-Figge, H., Seidel, R. W. & Sheldrich, W. S. (2008). J. Mol. Struct. 881, 146-155.]); Fun & Balasubramani (2009[Fun, H.-K. & Balasubramani, K. (2009). Acta Cryst. E65, o1531-o1532.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C5H8N3+·C7H4NO4·C7H5NO4

  • Mr = 443.38

  • Triclinic, [P \overline 1]

  • a = 6.8073 (2) Å

  • b = 6.8087 (2) Å

  • c = 21.0171 (5) Å

  • α = 80.859 (1)°

  • β = 83.253 (1)°

  • γ = 78.549 (1)°

  • V = 938.88 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 100 K

  • 0.56 × 0.20 × 0.17 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.934, Tmax = 0.979

  • 27907 measured reflections

  • 5435 independent reflections

  • 4025 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.190

  • S = 1.05

  • 5435 reflections

  • 353 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.81 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3B—H1O3⋯O3Ai 0.82 1.65 2.463 (2) 173
N3—H1N3⋯O4Bii 1.05 (3) 2.08 (3) 3.008 (3) 146 (2)
N3—H2N3⋯O2Biii 0.92 (3) 2.39 (3) 3.129 (2) 138 (2)
N2—H1N2⋯O3Biv 1.00 (2) 2.00 (2) 2.929 (2) 154 (2)
N4—H1N4⋯O4Ai 0.90 (2) 2.18 (2) 3.068 (2) 169 (2)
N4—H2N4⋯O3Av 0.89 (2) 2.35 (2) 3.152 (2) 150 (2)
C1B—H1B⋯O4Bii 0.94 (2) 2.52 (2) 3.231 (2) 133 (2)
C4B—H4B⋯O1Bvi 0.97 (2) 2.54 (2) 3.250 (2) 130 (2)
C12—H12⋯O4Bvii 0.89 (2) 2.50 (2) 3.376 (2) 165 (2)
Symmetry codes: (i) x, y-1, z; (ii) x-1, y, z; (iii) -x, -y+1, -z; (iv) x, y+1, z; (v) x-1, y-1, z; (vi) x+1, y, z; (vii) x-1, y+1, z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Pyridine and its derivatives play an important role in heterocyclic chemistry (Pozharski et al., 1997; Katritzky et al., 1996). 3,4-Diaminopyridine is used as a component in Schiff base reactions (Opozda et al., 2006). The crystal structure of 3,4-diaminopyridine (Rubin-Preminger & Englert, 2007), 3,4-diaminopyridinium hydrogen squarate (Koleva et al., 2007), 3,4-diaminopyridinium hydrogen tartarate (Koleva et al., 2008) and 3,4-diaminopyridinium hydrogen succinate (Fun & Balasubramani, 2009) have been reported. Since our aim is to study some interesting hydrogen-bonding interactions, the synthesis and structure of the title compound, (I), is presented here.

The asymmetric unit of (I) contains a 3,4-diaminopyridinium cation, a 4-nitrobenzoate anion and a 4-nitrobenzoic acid molecule (Fig 1). The bond lengths (Allen et al., 1987) and angles are normal.

In the 3,4-diaminopyridinium cation, the protonation of atom N2 has lead to a slight increase in C8—N2—C12 angle to 120.32 (15)° compared to 115.69 (19)° in 3,4-diaminopyridine (Rubin-Preminger & Englert, 2007). The non-H atoms of the 3,4-diaminopyridinium cation are coplanar, with a maximum deviation of 0.022 (1) Å for atom N4. The sum of bond angles associated with atoms N3 and N4 suggests that atom N3 is sp3 hybridized while atom N4 is sp2 hybridized.

In the 4-nitrobenzoate anion, the carboxylate group is twisted slightly from the attached ring; the dihedral angle between C1A-C6A and O3A/O4A/C3A/C7A planes is 15.89 (8)°. The nitro group is twisted away from the attached benzene ring by 10.20 (8)°. In the neutral 4-nitrobenzoic acid molecule, the carboxylic acid (O3B/O4b/C3B/C7B) and nitro (O1B/O2B/N1B/C6B) groups form dihedral angles of 18.25 (8)° and 6.55 (8)°, respectively, with the attached C1B-C6B benzene ring.

The dihedral angle between the benzene rings of 4-nitrobenzoate (C1A-C6A) anion and 4-nitrobenzoic acid (C1B-C6B) molecule is 6.16 (6)°. The pyridine ring (N2/C8-C12) forms dihedral angles of 71.75 (8)° and 65.83 (8)°, respectively, with the C1A-C6A and C1B-C6B rings.

In the crystal packing (Fig. 2), the two amino groups (N3 and N4) are involved in N—H···O hydrogen bonding with two 4-nitrobenzoate O atoms (O3A and O4A), one 4-nitrobenzoic acid O atom (O4B) and with one nitro group O atom (O2B). The 4-nitrobenzoic acid hydrogen, H1O3, is hydrogen-bonded to the carboxylate oxygen atom of 4-nitrobenzoate through O—H···O bonds. The 4-nitrobenzoic acid carbon atoms (C1B & C4B) are involved in C—H···O hydrogen bonding with the carboxylic acid and nitro group O atoms O4B and O1B, to form an R22(10) ring motif (Bernstein et al., 1995). The O—H···O, N—H···O and C—H···O hydrogen bonds (Table 1) link all the constituent units to form a two-dimensional network parallel to the (001). The crystal structure is further stabilized by π-π interactions. The inversion related 4-nitrobenzoic acid molecules are stacked with a centroid-to-centroid distance of 3.7325 (8) Å. Similarly, the inversion related 4-nitrobenzoate molecules are stacked with a centroid-to-centroid distance of 3.7124 (8) Å.

Related literature top

For general background to substituted pyridines, see: Pozharski et al. (1997); Katritzky et al. (1996); For related structures, see: Opozda et al. (2006); Rubin-Preminger & Englert (2007); Koleva et al. (2007, 2008); Fun & Balasubramani (2009). For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

Hot methanol solutions (20 ml) of 3,4-diaminopyridine (27 mg, Aldrich) and 4-nitrobenzoic acid (42 mg, Merck) were mixed and warmed over a heating magnetic stirrer for 5 minutes. The resulting solution was allowed to cool slowly at room temperature. Crystals of (I) appeared from the mother liquor after a few days.

Refinement top

All the H atoms (except carboxyl oxygen) were located from the difference Fourier map [N–H = 0.89 (2)–1.05 (3) Å, C–H = 0.89 (2)–1.00 (2) Å and allowed to refine freely. The oxygen H atom was positioned geometrically (O–H = 0.82 Å) and refined using a riding model Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. Part of the crystal packing in the title compound, showing a two-dimensional network parallel to the (001). Hydrogen bonds are shown as dashed lines.
3,4-Diaminopyridinium 4-nitrobenzoate–4-nitrobenzoic acid (1/1) top
Crystal data top
C5H8N3+·C7H4NO4·C7H5NO4Z = 2
Mr = 443.38F(000) = 460
Triclinic, P1Dx = 1.568 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.8073 (2) ÅCell parameters from 7405 reflections
b = 6.8087 (2) Åθ = 3.1–33.7°
c = 21.0171 (5) ŵ = 0.13 mm1
α = 80.859 (1)°T = 100 K
β = 83.253 (1)°Block, yellow
γ = 78.549 (1)°0.56 × 0.20 × 0.17 mm
V = 938.88 (5) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5435 independent reflections
Radiation source: fine-focus sealed tube4025 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
ϕ and ω scansθmax = 30.0°, θmin = 1.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 99
Tmin = 0.934, Tmax = 0.979k = 99
27907 measured reflectionsl = 2928
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.190H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.1091P)2 + 0.3802P]
where P = (Fo2 + 2Fc2)/3
5435 reflections(Δ/σ)max = 0.001
353 parametersΔρmax = 0.81 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
C5H8N3+·C7H4NO4·C7H5NO4γ = 78.549 (1)°
Mr = 443.38V = 938.88 (5) Å3
Triclinic, P1Z = 2
a = 6.8073 (2) ÅMo Kα radiation
b = 6.8087 (2) ŵ = 0.13 mm1
c = 21.0171 (5) ÅT = 100 K
α = 80.859 (1)°0.56 × 0.20 × 0.17 mm
β = 83.253 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5435 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
4025 reflections with I > 2σ(I)
Tmin = 0.934, Tmax = 0.979Rint = 0.041
27907 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.190H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.81 e Å3
5435 reflectionsΔρmin = 0.44 e Å3
353 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1A1.39968 (18)0.6458 (2)0.56237 (6)0.0292 (3)
O2A1.1299 (2)0.6247 (2)0.62692 (6)0.0282 (3)
O3A0.84687 (17)0.9461 (2)0.30121 (6)0.0235 (3)
O4A0.56283 (19)0.8966 (2)0.36256 (7)0.0342 (4)
C7A0.7456 (2)0.8934 (2)0.35545 (8)0.0193 (3)
C1A0.8875 (2)0.7614 (2)0.52810 (8)0.0175 (3)
C2A0.7744 (2)0.8188 (2)0.47485 (8)0.0178 (3)
C3A0.8705 (2)0.8287 (2)0.41221 (7)0.0160 (3)
C4A1.0802 (2)0.7779 (2)0.40257 (8)0.0173 (3)
C5A1.1946 (2)0.7216 (2)0.45525 (7)0.0166 (3)
C6A1.0950 (2)0.7158 (2)0.51679 (7)0.0155 (3)
N1A1.2168 (2)0.6579 (2)0.57258 (7)0.0186 (3)
O1B0.08979 (19)0.3360 (2)0.05503 (7)0.0309 (3)
O2B0.3609 (2)0.3677 (2)0.11725 (6)0.0285 (3)
O3B0.64656 (17)0.0180 (2)0.20718 (6)0.0239 (3)
H1O30.71840.00140.23700.036*
O4B0.91654 (18)0.1156 (2)0.14870 (6)0.0276 (3)
C7B0.7393 (2)0.0931 (2)0.15458 (8)0.0185 (3)
C1B0.2910 (2)0.2478 (2)0.05366 (8)0.0177 (3)
C2B0.4051 (2)0.1875 (2)0.10658 (7)0.0170 (3)
C3B0.6149 (2)0.1559 (2)0.09760 (8)0.0164 (3)
C4B0.7116 (2)0.1852 (2)0.03518 (8)0.0180 (3)
C5B0.5997 (2)0.2440 (2)0.01814 (8)0.0177 (3)
C6B0.3922 (2)0.2731 (2)0.00739 (7)0.0163 (3)
N1B0.2727 (2)0.3303 (2)0.06376 (7)0.0188 (3)
N20.3773 (2)0.7229 (2)0.23610 (7)0.0261 (3)
N30.0247 (2)0.4644 (3)0.21167 (9)0.0355 (4)
N40.2251 (2)0.1578 (2)0.28541 (7)0.0254 (3)
C80.4928 (3)0.5748 (3)0.27289 (9)0.0243 (4)
C90.4450 (3)0.3893 (3)0.28994 (9)0.0242 (4)
C100.2719 (2)0.3463 (3)0.27034 (8)0.0204 (3)
C110.1493 (2)0.5011 (3)0.23126 (8)0.0229 (3)
C120.2073 (3)0.6893 (3)0.21562 (9)0.0241 (4)
H1N30.023 (4)0.312 (4)0.2071 (13)0.048 (7)*
H2N30.080 (4)0.564 (4)0.1805 (15)0.060 (8)*
H1N20.431 (3)0.851 (4)0.2220 (12)0.036 (6)*
H1N40.312 (3)0.070 (3)0.3102 (11)0.028 (5)*
H2N40.098 (3)0.146 (3)0.2834 (11)0.028 (6)*
H1A0.820 (3)0.765 (3)0.5715 (11)0.027 (5)*
H2A0.630 (4)0.852 (3)0.4818 (11)0.034 (6)*
H4A1.145 (3)0.772 (3)0.3597 (11)0.023 (5)*
H5A1.333 (3)0.687 (3)0.4501 (11)0.027 (5)*
H8A0.599 (4)0.613 (4)0.2850 (14)0.052 (8)*
H1B0.150 (4)0.265 (3)0.0608 (11)0.033 (6)*
H2B0.340 (3)0.173 (3)0.1505 (11)0.029 (6)*
H4B0.857 (4)0.163 (4)0.0290 (12)0.036 (6)*
H5B0.668 (4)0.250 (4)0.0633 (12)0.036 (6)*
H90.524 (4)0.285 (4)0.3184 (12)0.041 (7)*
H120.147 (3)0.800 (4)0.1914 (12)0.034 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.0199 (6)0.0440 (8)0.0234 (7)0.0055 (5)0.0076 (5)0.0003 (6)
O2A0.0303 (7)0.0390 (7)0.0133 (6)0.0033 (5)0.0016 (5)0.0015 (5)
O3A0.0195 (6)0.0354 (7)0.0147 (6)0.0023 (5)0.0024 (4)0.0030 (5)
O4A0.0216 (6)0.0494 (8)0.0304 (7)0.0152 (6)0.0123 (5)0.0159 (6)
C7A0.0211 (7)0.0166 (7)0.0216 (8)0.0049 (6)0.0082 (6)0.0007 (6)
C1A0.0199 (7)0.0178 (7)0.0150 (7)0.0043 (5)0.0003 (6)0.0026 (5)
C2A0.0156 (7)0.0178 (7)0.0201 (8)0.0033 (5)0.0021 (6)0.0022 (6)
C3A0.0173 (7)0.0151 (6)0.0158 (7)0.0034 (5)0.0034 (5)0.0010 (5)
C4A0.0194 (7)0.0183 (7)0.0140 (7)0.0032 (5)0.0020 (5)0.0018 (5)
C5A0.0156 (7)0.0186 (7)0.0158 (7)0.0029 (5)0.0015 (5)0.0029 (5)
C6A0.0178 (7)0.0154 (6)0.0138 (7)0.0029 (5)0.0043 (5)0.0017 (5)
N1A0.0223 (7)0.0190 (6)0.0151 (6)0.0033 (5)0.0047 (5)0.0026 (5)
O1B0.0201 (6)0.0475 (8)0.0244 (7)0.0067 (5)0.0078 (5)0.0025 (6)
O2B0.0286 (6)0.0405 (7)0.0124 (6)0.0004 (5)0.0014 (5)0.0008 (5)
O3B0.0206 (6)0.0375 (7)0.0136 (6)0.0041 (5)0.0057 (4)0.0020 (5)
O4B0.0197 (6)0.0396 (7)0.0237 (6)0.0069 (5)0.0077 (5)0.0014 (5)
C7B0.0193 (7)0.0195 (7)0.0172 (7)0.0010 (6)0.0052 (6)0.0042 (6)
C1B0.0146 (7)0.0212 (7)0.0179 (7)0.0024 (5)0.0019 (5)0.0050 (6)
C2B0.0182 (7)0.0206 (7)0.0125 (7)0.0033 (5)0.0023 (5)0.0034 (5)
C3B0.0173 (7)0.0165 (7)0.0158 (7)0.0025 (5)0.0038 (5)0.0028 (5)
C4B0.0164 (7)0.0206 (7)0.0174 (7)0.0028 (5)0.0022 (5)0.0040 (6)
C5B0.0199 (7)0.0189 (7)0.0143 (7)0.0040 (5)0.0011 (5)0.0025 (5)
C6B0.0185 (7)0.0170 (7)0.0137 (7)0.0025 (5)0.0047 (5)0.0019 (5)
N1B0.0214 (6)0.0186 (6)0.0161 (6)0.0015 (5)0.0054 (5)0.0021 (5)
N20.0330 (8)0.0230 (7)0.0230 (8)0.0063 (6)0.0024 (6)0.0071 (6)
N30.0229 (8)0.0494 (11)0.0333 (9)0.0102 (7)0.0129 (7)0.0087 (8)
N40.0211 (7)0.0290 (8)0.0251 (8)0.0062 (6)0.0041 (6)0.0025 (6)
C80.0315 (9)0.0230 (8)0.0215 (8)0.0065 (7)0.0059 (7)0.0080 (6)
C90.0279 (8)0.0240 (8)0.0204 (8)0.0003 (7)0.0063 (6)0.0049 (6)
C100.0203 (7)0.0244 (8)0.0156 (7)0.0019 (6)0.0019 (6)0.0057 (6)
C110.0168 (7)0.0332 (9)0.0177 (8)0.0018 (6)0.0002 (6)0.0048 (6)
C120.0248 (8)0.0243 (8)0.0202 (8)0.0018 (6)0.0007 (6)0.0036 (6)
Geometric parameters (Å, º) top
O1A—N1A1.2269 (18)C2B—C3B1.396 (2)
O2A—N1A1.2317 (18)C2B—H2B0.98 (2)
O3A—C7A1.299 (2)C3B—C4B1.400 (2)
O4A—C7A1.232 (2)C4B—C5B1.390 (2)
C7A—C3A1.504 (2)C4B—H4B0.97 (2)
C1A—C6A1.386 (2)C5B—C6B1.384 (2)
C1A—C2A1.393 (2)C5B—H5B1.00 (2)
C1A—H1A0.97 (2)C6B—N1B1.473 (2)
C2A—C3A1.397 (2)N2—C81.347 (2)
C2A—H2A0.96 (2)N2—C121.353 (2)
C3A—C4A1.399 (2)N2—H1N21.00 (2)
C4A—C5A1.389 (2)N3—C111.379 (2)
C4A—H4A0.96 (2)N3—H1N31.05 (3)
C5A—C6A1.386 (2)N3—H2N30.92 (3)
C5A—H5A0.92 (2)N4—C101.364 (2)
C6A—N1A1.4727 (19)N4—H1N40.90 (2)
O1B—N1B1.2307 (18)N4—H2N40.89 (2)
O2B—N1B1.2247 (18)C8—C91.349 (2)
O3B—C7B1.2913 (19)C8—H8A0.89 (3)
O3B—H1O30.82C9—C101.390 (2)
O4B—C7B1.2355 (19)C9—H90.97 (2)
C7B—C3B1.505 (2)C10—C111.421 (2)
C1B—C6B1.386 (2)C11—C121.394 (3)
C1B—C2B1.393 (2)C12—H120.89 (2)
C1B—H1B0.94 (2)
O4A—C7A—O3A125.20 (15)C5B—C4B—C3B120.32 (14)
O4A—C7A—C3A120.56 (15)C5B—C4B—H4B119.7 (14)
O3A—C7A—C3A114.22 (13)C3B—C4B—H4B120.0 (14)
C6A—C1A—C2A118.09 (14)C6B—C5B—C4B118.05 (14)
C6A—C1A—H1A122.4 (13)C6B—C5B—H5B121.0 (14)
C2A—C1A—H1A119.3 (13)C4B—C5B—H5B120.6 (14)
C1A—C2A—C3A120.10 (14)C5B—C6B—C1B123.32 (14)
C1A—C2A—H2A119.2 (14)C5B—C6B—N1B118.39 (14)
C3A—C2A—H2A120.7 (14)C1B—C6B—N1B118.28 (13)
C2A—C3A—C4A120.26 (14)O2B—N1B—O1B123.15 (14)
C2A—C3A—C7A119.19 (14)O2B—N1B—C6B118.26 (13)
C4A—C3A—C7A120.55 (14)O1B—N1B—C6B118.58 (13)
C5A—C4A—C3A120.19 (14)C8—N2—C12120.32 (15)
C5A—C4A—H4A119.4 (12)C8—N2—H1N2116.5 (14)
C3A—C4A—H4A120.3 (12)C12—N2—H1N2122.9 (14)
C6A—C5A—C4A118.16 (14)C11—N3—H1N3114.8 (14)
C6A—C5A—H5A120.1 (14)C11—N3—H2N3112.8 (18)
C4A—C5A—H5A121.7 (14)H1N3—N3—H2N3119 (2)
C1A—C6A—C5A123.18 (14)C10—N4—H1N4113.8 (14)
C1A—C6A—N1A118.74 (13)C10—N4—H2N4117.7 (14)
C5A—C6A—N1A118.08 (13)H1N4—N4—H2N4124 (2)
O1A—N1A—O2A123.50 (14)N2—C8—C9121.67 (17)
O1A—N1A—C6A118.07 (13)N2—C8—H8A113.6 (18)
O2A—N1A—C6A118.43 (13)C9—C8—H8A124.7 (18)
C7B—O3B—H1O3109.5C8—C9—C10120.49 (16)
O4B—C7B—O3B125.03 (14)C8—C9—H9121.6 (14)
O4B—C7B—C3B119.89 (14)C10—C9—H9117.7 (14)
O3B—C7B—C3B115.08 (13)N4—C10—C9121.17 (15)
C6B—C1B—C2B117.96 (14)N4—C10—C11120.42 (16)
C6B—C1B—H1B123.3 (15)C9—C10—C11118.34 (16)
C2B—C1B—H1B118.7 (15)N3—C11—C12121.98 (16)
C1B—C2B—C3B120.33 (14)N3—C11—C10119.85 (16)
C1B—C2B—H2B120.5 (13)C12—C11—C10118.13 (16)
C3B—C2B—H2B119.1 (13)N2—C12—C11121.03 (16)
C2B—C3B—C4B120.01 (14)N2—C12—H12110.3 (14)
C2B—C3B—C7B120.67 (14)C11—C12—H12128.6 (15)
C4B—C3B—C7B119.31 (13)
C6A—C1A—C2A—C3A0.1 (2)O3B—C7B—C3B—C4B162.32 (14)
C1A—C2A—C3A—C4A1.0 (2)C2B—C3B—C4B—C5B0.6 (2)
C1A—C2A—C3A—C7A179.27 (14)C7B—C3B—C4B—C5B179.72 (14)
O4A—C7A—C3A—C2A15.2 (2)C3B—C4B—C5B—C6B0.3 (2)
O3A—C7A—C3A—C2A163.72 (14)C4B—C5B—C6B—C1B0.4 (2)
O4A—C7A—C3A—C4A164.48 (16)C4B—C5B—C6B—N1B178.44 (13)
O3A—C7A—C3A—C4A16.6 (2)C2B—C1B—C6B—C5B0.8 (2)
C2A—C3A—C4A—C5A1.4 (2)C2B—C1B—C6B—N1B178.02 (13)
C7A—C3A—C4A—C5A178.91 (14)C5B—C6B—N1B—O2B6.6 (2)
C3A—C4A—C5A—C6A0.6 (2)C1B—C6B—N1B—O2B174.52 (14)
C2A—C1A—C6A—C5A1.0 (2)C5B—C6B—N1B—O1B172.62 (14)
C2A—C1A—C6A—N1A179.05 (13)C1B—C6B—N1B—O1B6.3 (2)
C4A—C5A—C6A—C1A0.7 (2)C12—N2—C8—C90.6 (3)
C4A—C5A—C6A—N1A179.40 (13)N2—C8—C9—C100.7 (3)
C1A—C6A—N1A—O1A169.88 (14)C8—C9—C10—N4177.85 (16)
C5A—C6A—N1A—O1A10.2 (2)C8—C9—C10—C111.0 (3)
C1A—C6A—N1A—O2A10.0 (2)N4—C10—C11—N34.0 (3)
C5A—C6A—N1A—O2A169.97 (14)C9—C10—C11—N3179.15 (16)
C6B—C1B—C2B—C3B0.5 (2)N4—C10—C11—C12178.05 (16)
C1B—C2B—C3B—C4B0.2 (2)C9—C10—C11—C121.2 (2)
C1B—C2B—C3B—C7B179.27 (14)C8—N2—C12—C110.8 (3)
O4B—C7B—C3B—C2B161.34 (15)N3—C11—C12—N2179.05 (17)
O3B—C7B—C3B—C2B18.6 (2)C10—C11—C12—N21.1 (2)
O4B—C7B—C3B—C4B17.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3B—H1O3···O3Ai0.821.652.463 (2)173
N3—H1N3···O4Bii1.05 (3)2.08 (3)3.008 (3)146 (2)
N3—H2N3···O2Biii0.92 (3)2.39 (3)3.129 (2)138 (2)
N2—H1N2···O3Biv1.00 (2)2.00 (2)2.929 (2)154 (2)
N4—H1N4···O4Ai0.90 (2)2.18 (2)3.068 (2)169 (2)
N4—H2N4···O3Av0.89 (2)2.35 (2)3.152 (2)150 (2)
C1B—H1B···O4Bii0.94 (2)2.52 (2)3.231 (2)133 (2)
C4B—H4B···O1Bvi0.97 (2)2.54 (2)3.250 (2)130 (2)
C12—H12···O4Bvii0.89 (2)2.50 (2)3.376 (2)165 (2)
Symmetry codes: (i) x, y1, z; (ii) x1, y, z; (iii) x, y+1, z; (iv) x, y+1, z; (v) x1, y1, z; (vi) x+1, y, z; (vii) x1, y+1, z.

Experimental details

Crystal data
Chemical formulaC5H8N3+·C7H4NO4·C7H5NO4
Mr443.38
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)6.8073 (2), 6.8087 (2), 21.0171 (5)
α, β, γ (°)80.859 (1), 83.253 (1), 78.549 (1)
V3)938.88 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.56 × 0.20 × 0.17
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.934, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
27907, 5435, 4025
Rint0.041
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.190, 1.05
No. of reflections5435
No. of parameters353
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.81, 0.44

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3B—H1O3···O3Ai0.821.652.463 (2)173
N3—H1N3···O4Bii1.05 (3)2.08 (3)3.008 (3)146 (2)
N3—H2N3···O2Biii0.92 (3)2.39 (3)3.129 (2)138 (2)
N2—H1N2···O3Biv1.00 (2)2.00 (2)2.929 (2)154 (2)
N4—H1N4···O4Ai0.90 (2)2.18 (2)3.068 (2)169 (2)
N4—H2N4···O3Av0.89 (2)2.35 (2)3.152 (2)150 (2)
C1B—H1B···O4Bii0.94 (2)2.52 (2)3.231 (2)133 (2)
C4B—H4B···O1Bvi0.97 (2)2.54 (2)3.250 (2)130 (2)
C12—H12···O4Bvii0.89 (2)2.50 (2)3.376 (2)165 (2)
Symmetry codes: (i) x, y1, z; (ii) x1, y, z; (iii) x, y+1, z; (iv) x, y+1, z; (v) x1, y1, z; (vi) x+1, y, z; (vii) x1, y+1, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and KB thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. KB thanks Universiti Sains Malaysia for a post–doctoral research fellowship. HKF also thanks Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K. & Balasubramani, K. (2009). Acta Cryst. E65, o1531–o1532.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKatritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). Editors. Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon Press.  Google Scholar
First citationKoleva, B., Kolev, T., Tsanev, T., Kotov, S., Mayer-Figge, H., Seidel, R. W. & Sheldrich, W. S. (2008). J. Mol. Struct. 881, 146–155.  Web of Science CSD CrossRef CAS Google Scholar
First citationKoleva, B., Tsanev, T., Kolev, T., Mayer-Figge, H. & Sheldrick, W. S. (2007). Acta Cryst. E63, o3356.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOpozda, E. M., Lasocha, W. & Wlodarczyk–Gajda, B. (2006). J. Mol. Struct. 784, 149–156.  Web of Science CSD CrossRef CAS Google Scholar
First citationPozharski, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). Heterocycles in Life and Society. New York: Wiley.  Google Scholar
First citationRubin-Preminger, J. M. & Englert, U. (2007). Acta Cryst. E63, o757–o758.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages o1887-o1888
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds