organic compounds
4,6-Dimethoxy-2-(methylsulfanyl)pyrimidine
aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my
The title compound, C7H10N2O2S, is essentially planar [maximum deviation 0.018 (4) Å]. In the crystal, molecules are linked into chains by C—H⋯N hydrogen bonds and the chains are arranged in layers parallel to the ab plane.
Related literature
For general background to substituted pyrimidines, see: Salas et al. (1995); Holy et al. (1974); Hunt et al. (1980); Baker & Santi, (1965) For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2005); cell SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536809027263/ci2850sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809027263/ci2850Isup2.hkl
Hot methanol solution (20 ml) of 4,6-dimethoxy-2-methylthiopyrimidine (46 mg, Aldrich) was warmed over a heating magnetic stirrer for 5 minutes. The resulting solution was allowed to cool slowly at room temperature. Crystals of the title compound appeared from the mother liquor after a few days.
H atoms were positioned geometrically [C–H = 0.93–0.96 Å] and refined using a riding model with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(methyl C). A rotating–group model was used for the methyl groups.
Data collection: APEX2 (Bruker, 2005); cell
SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).C7H10N2O2S | F(000) = 392 |
Mr = 186.23 | Dx = 1.425 Mg m−3 |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 3133 reflections |
a = 3.9537 (2) Å | θ = 2.7–30.7° |
b = 7.1822 (4) Å | µ = 0.33 mm−1 |
c = 30.5723 (15) Å | T = 100 K |
V = 868.14 (8) Å3 | Plate, yellow |
Z = 4 | 0.55 × 0.31 × 0.05 mm |
Bruker SMART APEXII CCD area-detector diffractometer | 1620 independent reflections |
Radiation source: fine-focus sealed tube | 1555 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.033 |
ϕ and ω scans | θmax = 26.0°, θmin = 1.3° |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | h = −4→4 |
Tmin = 0.838, Tmax = 0.985 | k = −6→8 |
4467 measured reflections | l = −37→37 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.056 | H-atom parameters constrained |
wR(F2) = 0.133 | w = 1/[σ2(Fo2) + 2.7239P] where P = (Fo2 + 2Fc2)/3 |
S = 1.28 | (Δ/σ)max = 0.001 |
1620 reflections | Δρmax = 0.42 e Å−3 |
112 parameters | Δρmin = −0.47 e Å−3 |
0 restraints | Absolute structure: Flack (1983), 584 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.2 (2) |
C7H10N2O2S | V = 868.14 (8) Å3 |
Mr = 186.23 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 3.9537 (2) Å | µ = 0.33 mm−1 |
b = 7.1822 (4) Å | T = 100 K |
c = 30.5723 (15) Å | 0.55 × 0.31 × 0.05 mm |
Bruker SMART APEXII CCD area-detector diffractometer | 1620 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | 1555 reflections with I > 2σ(I) |
Tmin = 0.838, Tmax = 0.985 | Rint = 0.033 |
4467 measured reflections |
R[F2 > 2σ(F2)] = 0.056 | H-atom parameters constrained |
wR(F2) = 0.133 | Δρmax = 0.42 e Å−3 |
S = 1.28 | Δρmin = −0.47 e Å−3 |
1620 reflections | Absolute structure: Flack (1983), 584 Friedel pairs |
112 parameters | Absolute structure parameter: 0.2 (2) |
0 restraints |
Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K. |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.6163 (3) | 0.16537 (16) | 0.05410 (4) | 0.0194 (3) | |
O1 | 0.7269 (9) | 0.2088 (4) | 0.21365 (10) | 0.0207 (8) | |
O2 | 1.1384 (9) | −0.3287 (4) | 0.14636 (9) | 0.0200 (7) | |
N1 | 0.6864 (9) | 0.1795 (5) | 0.13848 (11) | 0.0140 (8) | |
N2 | 0.8979 (11) | −0.0980 (5) | 0.10377 (11) | 0.0177 (8) | |
C1 | 0.7499 (12) | 0.0691 (6) | 0.10392 (14) | 0.0163 (9) | |
C2 | 0.9874 (12) | −0.1607 (7) | 0.14346 (14) | 0.0190 (10) | |
C3 | 0.9362 (12) | −0.0645 (6) | 0.18210 (14) | 0.0184 (10) | |
H3A | 0.9998 | −0.1113 | 0.2092 | 0.022* | |
C4 | 0.7818 (11) | 0.1081 (7) | 0.17698 (13) | 0.0159 (9) | |
C5 | 0.7262 (13) | −0.0160 (7) | 0.01606 (14) | 0.0206 (10) | |
H5A | 0.6651 | 0.0217 | −0.0130 | 0.031* | |
H5B | 0.6069 | −0.1279 | 0.0236 | 0.031* | |
H5C | 0.9653 | −0.0385 | 0.0173 | 0.031* | |
C6 | 0.5624 (13) | 0.3873 (6) | 0.20817 (14) | 0.0200 (10) | |
H6A | 0.5276 | 0.4436 | 0.2363 | 0.030* | |
H6B | 0.3481 | 0.3699 | 0.1940 | 0.030* | |
H6C | 0.7023 | 0.4670 | 0.1906 | 0.030* | |
C7 | 1.1937 (13) | −0.4273 (7) | 0.10586 (14) | 0.0210 (11) | |
H7A | 1.3211 | −0.5385 | 0.1115 | 0.032* | |
H7B | 1.3170 | −0.3492 | 0.0860 | 0.032* | |
H7C | 0.9797 | −0.4598 | 0.0931 | 0.032* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0226 (6) | 0.0161 (5) | 0.0194 (5) | 0.0009 (6) | −0.0013 (5) | 0.0026 (5) |
O1 | 0.0265 (19) | 0.0147 (16) | 0.0207 (15) | 0.0071 (14) | 0.0014 (14) | −0.0017 (12) |
O2 | 0.0249 (17) | 0.0127 (14) | 0.0225 (14) | 0.0059 (18) | 0.0005 (14) | 0.0001 (13) |
N1 | 0.0059 (18) | 0.0141 (17) | 0.0221 (17) | −0.0036 (16) | 0.0012 (13) | 0.0001 (15) |
N2 | 0.019 (2) | 0.0143 (17) | 0.0200 (17) | 0.0012 (19) | −0.0030 (17) | 0.0004 (14) |
C1 | 0.019 (2) | 0.012 (2) | 0.019 (2) | −0.006 (2) | −0.0011 (19) | 0.0031 (16) |
C2 | 0.018 (2) | 0.016 (2) | 0.023 (2) | 0.000 (2) | 0.0023 (17) | 0.005 (2) |
C3 | 0.020 (3) | 0.016 (2) | 0.019 (2) | 0.001 (2) | 0.0027 (19) | 0.0040 (18) |
C4 | 0.010 (2) | 0.019 (2) | 0.018 (2) | −0.0014 (19) | 0.0056 (17) | 0.0014 (17) |
C5 | 0.017 (3) | 0.024 (2) | 0.021 (2) | 0.001 (2) | −0.0007 (19) | 0.0000 (19) |
C6 | 0.022 (3) | 0.012 (2) | 0.026 (2) | 0.010 (2) | 0.003 (2) | −0.0018 (18) |
C7 | 0.021 (3) | 0.017 (2) | 0.026 (2) | 0.007 (2) | −0.0007 (19) | −0.0013 (18) |
S1—C1 | 1.754 (4) | C3—C4 | 1.390 (7) |
S1—C5 | 1.799 (5) | C3—H3A | 0.93 |
O1—C4 | 1.352 (5) | C5—H5A | 0.96 |
O1—C6 | 1.448 (5) | C5—H5B | 0.96 |
O2—C2 | 1.349 (6) | C5—H5C | 0.96 |
O2—C7 | 1.443 (5) | C6—H6A | 0.96 |
N1—C4 | 1.338 (5) | C6—H6B | 0.96 |
N1—C1 | 1.345 (6) | C6—H6C | 0.96 |
N2—C1 | 1.335 (6) | C7—H7A | 0.96 |
N2—C2 | 1.342 (6) | C7—H7B | 0.96 |
C2—C3 | 1.384 (6) | C7—H7C | 0.96 |
C1—S1—C5 | 101.7 (2) | S1—C5—H5B | 109.5 |
C4—O1—C6 | 116.8 (3) | H5A—C5—H5B | 109.5 |
C2—O2—C7 | 116.7 (3) | S1—C5—H5C | 109.5 |
C4—N1—C1 | 114.4 (4) | H5A—C5—H5C | 109.5 |
C1—N2—C2 | 114.5 (4) | H5B—C5—H5C | 109.5 |
N2—C1—N1 | 127.9 (4) | O1—C6—H6A | 109.5 |
N2—C1—S1 | 118.9 (3) | O1—C6—H6B | 109.5 |
N1—C1—S1 | 113.2 (3) | H6A—C6—H6B | 109.5 |
N2—C2—O2 | 118.4 (4) | O1—C6—H6C | 109.5 |
N2—C2—C3 | 124.5 (4) | H6A—C6—H6C | 109.5 |
O2—C2—C3 | 117.1 (4) | H6B—C6—H6C | 109.5 |
C2—C3—C4 | 114.4 (4) | O2—C7—H7A | 109.5 |
C2—C3—H3A | 122.8 | O2—C7—H7B | 109.5 |
C4—C3—H3A | 122.8 | H7A—C7—H7B | 109.5 |
N1—C4—O1 | 118.6 (4) | O2—C7—H7C | 109.5 |
N1—C4—C3 | 124.4 (4) | H7A—C7—H7C | 109.5 |
O1—C4—C3 | 117.0 (4) | H7B—C7—H7C | 109.5 |
S1—C5—H5A | 109.5 | ||
C2—N2—C1—N1 | 0.9 (7) | C7—O2—C2—C3 | −179.4 (4) |
C2—N2—C1—S1 | −179.3 (3) | N2—C2—C3—C4 | −0.3 (7) |
C4—N1—C1—N2 | −1.1 (7) | O2—C2—C3—C4 | 179.6 (4) |
C4—N1—C1—S1 | 179.1 (3) | C1—N1—C4—O1 | −179.7 (4) |
C5—S1—C1—N2 | 1.6 (4) | C1—N1—C4—C3 | 0.4 (6) |
C5—S1—C1—N1 | −178.5 (3) | C6—O1—C4—N1 | 0.9 (6) |
C1—N2—C2—O2 | 179.9 (4) | C6—O1—C4—C3 | −179.3 (4) |
C1—N2—C2—C3 | −0.2 (7) | C2—C3—C4—N1 | 0.1 (7) |
C7—O2—C2—N2 | 0.4 (6) | C2—C3—C4—O1 | −179.7 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
C7—H7A···N1i | 0.96 | 2.62 | 3.573 (6) | 171 |
Symmetry code: (i) x+1, y−1, z. |
Experimental details
Crystal data | |
Chemical formula | C7H10N2O2S |
Mr | 186.23 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 100 |
a, b, c (Å) | 3.9537 (2), 7.1822 (4), 30.5723 (15) |
V (Å3) | 868.14 (8) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.33 |
Crystal size (mm) | 0.55 × 0.31 × 0.05 |
Data collection | |
Diffractometer | Bruker SMART APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2005) |
Tmin, Tmax | 0.838, 0.985 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4467, 1620, 1555 |
Rint | 0.033 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.056, 0.133, 1.28 |
No. of reflections | 1620 |
No. of parameters | 112 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.42, −0.47 |
Absolute structure | Flack (1983), 584 Friedel pairs |
Absolute structure parameter | 0.2 (2) |
Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
C7—H7A···N1i | 0.96 | 2.62 | 3.573 (6) | 171 |
Symmetry code: (i) x+1, y−1, z. |
Footnotes
‡Thomson Reuters ResearcherID: A-3561-2009.
Acknowledgements
KBS and HKF thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. KBS thanks Universiti Sains Malaysia for a post–doctoral research fellowship. HKF also thanks Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Baker, B. R. & Santi, D. V. (1965). J. Pharm. Sci. 54, 1252–1257. CrossRef CAS PubMed Web of Science Google Scholar
Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107. CrossRef CAS Web of Science IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Holy, A., Votruba, I. & Jost, K. (1974). Collect. Czech. Chem. Commun. 39, 634–646. CAS Google Scholar
Hunt, W. E., Schwalbe, C. H., Bird, K. & Mallinson, P. D. (1980). Biochem. J. 187, 533–536. CAS PubMed Web of Science Google Scholar
Salas, J. M., Romero, M. A. & Faure, R. (1995). Acta Cryst. C51, 2532–2534. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Purine and pyrimidine derivatives are the constituents of nucleic acids and play important roles in many biological systems (Salas et al., 1995). 2-Thiopyrimidine shows a strong bacteriostatic activity in vitro on E. coli (Holy et al., 1974). Some aminopyrimidine derivatives are used as antifolate drugs (Hunt et al., 1980; Baker & Santi, 1965). The crystal structure of the title compound is presented here.
The molecule (Fig.1) is essentially planar, with atom N1 deviating a maximum of 0.018 (4) Å. The bond lengths (Allen et al., 1987) and angles are normal.
The molecules are linked into chains by C—H···N hydrogen bonds (Table 1). The chains are arranged in layers parallel to the ab plane (Fig.2).