organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages o1910-o1911

4-Amino-3-(o-tolyl­oxymeth­yl)-1H-1,2,4-triazole-5(4H)-thione

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bSeQuent Scientific Limited, No. 120 A&B, Industrial Area, Baikampady, New Mangalore, Karnataka 575 011, India, and cDepartment of Chemistry, National Institute of Technology-Karnataka, Surathkal, Mangalore 575 025, India
*Correspondence e-mail: hkfun@usm.my

(Received 10 July 2009; accepted 11 July 2009; online 18 July 2009)

The asymmetric unit of the title compound, C10H12N4OS, contains two independent mol­ecules, A and B, which differ significantly in the relative orientations of the benzene and triazole rings. The dihedral angle between the above two rings is 6.94 (5)° in mol­ecule A and 77.60 (5)° in mol­ecule B. In the crystal, mol­ecules are linked into a three-dimensional network by N—H⋯S, N—H⋯O, N—H⋯N and C—H⋯S hydrogen bonds and ππ inter­actions between the benzene and triazole rings [centroid–centroid distance = 3.5311 (6) Å] are also present.

Related literature

For the pharmaceutical activity of triazole derivatives, see: Amir et al. (2008[Amir, M., Kumar, H. & Javed, S. A. (2008). Eur. J. Med. Chem. 43, 2056-2066.]); Kuş et al. (2008[Kuş, S. C., Kılcıgil, G. A., Özbey, S., Kaynak, F. B., Kaya, M., Çoban, T. & Eke, B. C. (2008). Bioorg. Med. Chem. 16, 4294-4303.]); Padmavathi et al. (2008[Padmavathi, V., Thriveni, P., Reddy, G. S. & Deepti, D. (2008). Eur. J. Med. Chem. 43, 917-924.]); Sztanke et al. (2008[Sztanke, K., Tuzimski, T., Rzymowska, J., Pasternak, K. & Kandefer-Szerszeń, M. (2008). Eur. J. Med. Chem. 43, 404-419.]). For the preparation, see: Eweiss et al. (1986[Eweiss, N. F., Bahajaj, A. A. & Elsherbini, E. A. (1986). J. Heteroat. Chem. 23, 1451-1458.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For related structures, see: Fun et al. (2008a[Fun, H.-K., Jebas, S. R., Sujith, K. V., Patil, P. S., Kalluraya, B., Muralidharan, A. & Dharmaprakash, S. M. (2008a). Acta Cryst. E64, o1509.],b[Fun, H.-K., Sujith, K. V., Patil, P. S., Kalluraya, B. & Chantrapromma, S. (2008b). Acta Cryst. E64, o1590-o1591.], 2009[Fun, H.-K., Jebas, S. R., Rao, J. N. & Kalluraya, B. (2009). Acta Cryst. E65, o48.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C10H12N4OS

  • Mr = 236.30

  • Orthorhombic, P n a 21

  • a = 8.6908 (1) Å

  • b = 22.2551 (3) Å

  • c = 11.3771 (2) Å

  • V = 2200.50 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 100 K

  • 0.58 × 0.29 × 0.27 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.855, Tmax = 0.929

  • 41442 measured reflections

  • 9726 independent reflections

  • 9145 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.075

  • S = 1.01

  • 9726 reflections

  • 315 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.19 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 4628 Friedel pairs

  • Flack parameter: −0.02 (3)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4A—H1N4⋯N4Bi 0.88 (2) 2.46 (2) 3.2651 (12) 152 (2)
N4A—H2N4⋯O1B 0.83 (2) 2.53 (2) 3.3560 (11) 171 (2)
N4B—H4N4⋯S1Aii 0.95 (2) 2.72 (2) 3.6167 (10) 157 (2)
N2A—H2N1⋯S1Biii 0.87 (2) 2.30 (2) 3.1665 (9) 174 (2)
N2B—H2N2⋯N1Aiv 0.89 (2) 2.18 (2) 3.0589 (11) 166 (2)
C8A—H8AA⋯S1Av 0.93 2.86 3.4537 (10) 123
C3B—H3BB⋯S1A 0.97 2.86 3.8203 (10) 170
Symmetry codes: (i) [-x+1, -y+1, z-{\script{1\over 2}}]; (ii) x+1, y, z; (iii) x-1, y, z; (iv) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z]; (v) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

1,2,4-Triazole and its derivatives were reported to exhibit various pharmacological activities such as antimicrobial, analgesic, anticancer, anti-inflammatory and antioxidant properties (Amir et al., 2008; Kuş et al., 2008; Padmavathi et al., 2008; Sztanke et al., 2008). Some of the present day drugs such as ribavirin (antiviral agent), rizatriptan (antimigraine agent), alprazolam (anxiolytic agent), fluconazole and itraconazole (antifungal agents) are the best examples for potent molecules possessing triazole nucleus. The amino and mercapto groups of 1,2,4-triazoles serve as readily accessible nucleophilic centers for the preparation of N-bridged heterocycles. Keeping in view of this biological importance, the title compound was synthesized and its crystal structure is reported here.

In the title compound (Fig. 1), the bond lengths (Allen et al., 1987) and angles are found to have normal values and are comparable to closely related structures (Fun et al., 2008a,b,2009). The dihedral angle between the triazole ring (N1A-N3A/C1A/C2A) and the benzene ring (C4A-C9A) of molecule A is 6.94 (5)°, whereas the dihedral angle between the triazole ring (N1B—N3B/C1B/C2B) and the benzene ring (C4B—C9B) of molecule B is 77.60 (5)° indicating that for molecule B, these rings are significantly twisted from each other.

The crystal packing (Fig. 2) is consolidated by N—H···S, N—H···O, N—H···N and C—H···S hydrogen bonds, linking the molecules into a three-dimensional network (Table 1). The crystal packing is further strengthened by π-π interactions between the N1A-N3A/C1A/C2A (centroid Cg1) ring of molecule A at (x, y, z) and C4A-C9A (centroid Cg2) ring of molecule A at (x-1/2, 3/2-y, z), with a centroid-to-centroid distance of 3.5311 (6) Å.

Related literature top

For the pharmaceutical activity of triazole derivatives, see: Amir et al. (2008); Kuş et al. (2008); Padmavathi et al. (2008); Sztanke et al. (2008). For the preparation, see: Eweiss et al. (1986). For bond-length data, see: Allen et al. (1987). For related structures, see: Fun et al. (2008a,b, 2009). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

O-Cressoyloxyacetyl hydrazine (18.0 g, 0.1 mol) was added slowly to a solution of potassium hydroxide (8.4 g, 0.15 mol) in ethanol (150 ml). The resulting mixture was stirred well till a clear solution was obtained. Carbon disulfide (11.4 g, 0.15 mol) was added drop-wise and the contents were stirred vigorously. Further stirring was continued for 24 h. The resulting mixture was diluted with 100 ml of ether and the precipitate formed was collected by filtration, washed with dry ether and dried at 65 °C under vacuum. It was used for the next step without any purification.

A mixture of potassium dithiocarbazinate (29.4 g, 0.1 mol), hydrazine hydrate (99%, 0.2 mol) and water (2 ml) was gently heated to boil for 30 minutes. Heating was continued until the evacuation of hydrogen sulfide ceases. The reaction mixture was cooled to room temperature, diluted with water (100 ml) and acidified with HCl. The solid mass that separated was collected by filtration, washed with water and dried. Recrystallization was done from ethanol. Yield: 13.7 g, 58.0%, m.p. 400–402 K (Eweiss et al., 1986).

Refinement top

N-bound H atoms were located in a difference Fourier map and refined freely. C-bound H atoms were positioned geometrically [C-H = 0.93–0.97 Å] and refined using a riding model, with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(methyl C). A rotating group model was used for the methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The three-dimensional network of the title compound, viewed along the b axis. Hydrogen bonds are shown as dashed lines.
4-Amino-3-(o-tolyloxymethyl)-1H-1,2,4-triazole-5(4H)- thione top
Crystal data top
C10H12N4OSF(000) = 992
Mr = 236.30Dx = 1.427 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 9872 reflections
a = 8.6908 (1) Åθ = 2.5–35.1°
b = 22.2551 (3) ŵ = 0.28 mm1
c = 11.3771 (2) ÅT = 100 K
V = 2200.50 (5) Å3Block, colourless
Z = 80.58 × 0.29 × 0.27 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
9726 independent reflections
Radiation source: fine-focus sealed tube9145 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ϕ and ω scansθmax = 35.2°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1414
Tmin = 0.855, Tmax = 0.929k = 3535
41442 measured reflectionsl = 1818
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.075 w = 1/[σ2(Fo2) + (0.0433P)2 + 0.2689P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.002
9726 reflectionsΔρmax = 0.33 e Å3
315 parametersΔρmin = 0.19 e Å3
1 restraintAbsolute structure: Flack (1983), 4628 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (3)
Crystal data top
C10H12N4OSV = 2200.50 (5) Å3
Mr = 236.30Z = 8
Orthorhombic, Pna21Mo Kα radiation
a = 8.6908 (1) ŵ = 0.28 mm1
b = 22.2551 (3) ÅT = 100 K
c = 11.3771 (2) Å0.58 × 0.29 × 0.27 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
9726 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
9145 reflections with I > 2σ(I)
Tmin = 0.855, Tmax = 0.929Rint = 0.029
41442 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.028H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.075Δρmax = 0.33 e Å3
S = 1.01Δρmin = 0.19 e Å3
9726 reflectionsAbsolute structure: Flack (1983), 4628 Friedel pairs
315 parametersAbsolute structure parameter: 0.02 (3)
1 restraint
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S1A0.08512 (3)0.532701 (9)0.19019 (2)0.01524 (4)
O1A0.33838 (9)0.77054 (3)0.00794 (7)0.01789 (13)
N1A0.18273 (11)0.70334 (3)0.15180 (7)0.01539 (14)
N2A0.10587 (10)0.65525 (3)0.20140 (8)0.01580 (14)
N3A0.25603 (10)0.61737 (3)0.07393 (7)0.01237 (13)
N4A0.34200 (11)0.57827 (3)0.00333 (7)0.01508 (14)
C1A0.14799 (11)0.60200 (4)0.15681 (8)0.01298 (14)
C2A0.27309 (11)0.67851 (4)0.07402 (8)0.01336 (15)
C3A0.38198 (12)0.70933 (4)0.00655 (9)0.01540 (15)
H3AA0.48680.70510.02150.018*
H3AB0.37540.69230.08490.018*
C4A0.42434 (11)0.80824 (4)0.07765 (9)0.01387 (14)
C5A0.53343 (13)0.78880 (4)0.15850 (9)0.01853 (17)
H5AA0.55240.74800.16850.022*
C6A0.61434 (14)0.83133 (5)0.22470 (10)0.02183 (19)
H6AA0.68700.81880.27950.026*
C7A0.58630 (13)0.89233 (5)0.20862 (9)0.02055 (19)
H7AA0.64130.92070.25160.025*
C8A0.47564 (13)0.91072 (4)0.12798 (9)0.01740 (17)
H8AA0.45710.95160.11800.021*
C9A0.39210 (11)0.86951 (4)0.06189 (8)0.01362 (15)
C10A0.27083 (13)0.88901 (4)0.02363 (10)0.01894 (18)
H10A0.27610.93180.03400.028*
H10B0.28750.86950.09780.028*
H10C0.17120.87830.00610.028*
S1B0.89572 (3)0.691199 (11)0.41761 (2)0.01782 (5)
O1B0.57901 (9)0.49790 (3)0.17514 (7)0.01652 (13)
N1B0.53427 (11)0.63533 (4)0.24499 (8)0.01717 (15)
N2B0.63760 (11)0.67783 (4)0.28244 (8)0.01748 (15)
N3B0.71458 (10)0.59546 (3)0.35636 (7)0.01283 (13)
N4B0.79643 (11)0.55068 (4)0.41643 (9)0.01770 (14)
C1B0.74960 (12)0.65567 (4)0.35097 (8)0.01391 (15)
C2B0.58365 (11)0.58530 (4)0.29216 (8)0.01315 (15)
C3B0.50974 (11)0.52552 (4)0.27590 (8)0.01388 (15)
H3BA0.52560.50080.34500.017*
H3BB0.39990.53020.26370.017*
C4B0.53275 (11)0.43946 (4)0.15063 (8)0.01406 (15)
C5B0.40519 (12)0.41259 (4)0.20300 (9)0.01678 (16)
H5BA0.34700.43360.25790.020*
C6B0.36530 (13)0.35369 (4)0.17238 (9)0.01886 (18)
H6BA0.27940.33570.20600.023*
C7B0.45408 (14)0.32217 (4)0.09177 (9)0.01915 (18)
H7BA0.42870.28280.07230.023*
C8B0.58097 (13)0.34962 (4)0.04025 (9)0.01721 (17)
H8BA0.63960.32810.01370.021*
C9B0.62274 (12)0.40874 (4)0.06744 (8)0.01428 (15)
C10B0.75914 (14)0.43787 (5)0.00943 (9)0.02039 (18)
H10D0.82090.40770.02800.031*
H10E0.81950.45840.06760.031*
H10F0.72410.46620.04830.031*
H1N40.281 (2)0.5525 (8)0.0322 (16)0.028 (4)*
H2N40.403 (2)0.5622 (7)0.0500 (16)0.024 (4)*
H3N40.811 (2)0.5664 (7)0.4897 (18)0.034 (4)*
H4N40.892 (2)0.5482 (9)0.3764 (18)0.038 (5)*
H2N10.050 (2)0.6623 (8)0.2633 (17)0.029 (4)*
H2N20.638 (2)0.7148 (8)0.2518 (16)0.028 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S1A0.01653 (10)0.01155 (8)0.01764 (9)0.00295 (7)0.00062 (8)0.00233 (7)
O1A0.0183 (3)0.0099 (2)0.0255 (3)0.0003 (2)0.0083 (3)0.0032 (2)
N1A0.0178 (4)0.0107 (3)0.0176 (3)0.0016 (3)0.0030 (3)0.0003 (2)
N2A0.0175 (4)0.0120 (3)0.0179 (3)0.0015 (3)0.0046 (3)0.0002 (3)
N3A0.0128 (3)0.0096 (3)0.0147 (3)0.0002 (2)0.0010 (3)0.0000 (2)
N4A0.0162 (4)0.0122 (3)0.0168 (3)0.0013 (3)0.0016 (3)0.0019 (2)
C1A0.0129 (4)0.0119 (3)0.0141 (3)0.0011 (3)0.0001 (3)0.0012 (3)
C2A0.0146 (4)0.0098 (3)0.0156 (3)0.0012 (3)0.0005 (3)0.0006 (3)
C3A0.0166 (4)0.0099 (3)0.0197 (4)0.0000 (3)0.0035 (3)0.0013 (3)
C4A0.0146 (4)0.0114 (3)0.0157 (3)0.0012 (3)0.0016 (3)0.0022 (3)
C5A0.0207 (5)0.0161 (4)0.0188 (4)0.0001 (3)0.0055 (4)0.0002 (3)
C6A0.0237 (5)0.0241 (4)0.0176 (4)0.0014 (4)0.0069 (4)0.0033 (3)
C7A0.0217 (5)0.0220 (4)0.0180 (4)0.0039 (4)0.0027 (4)0.0068 (3)
C8A0.0193 (5)0.0140 (3)0.0189 (4)0.0024 (3)0.0007 (3)0.0053 (3)
C9A0.0135 (4)0.0120 (3)0.0153 (4)0.0004 (3)0.0009 (3)0.0018 (3)
C10A0.0184 (5)0.0138 (3)0.0246 (4)0.0001 (3)0.0047 (4)0.0004 (3)
S1B0.01796 (11)0.01668 (9)0.01883 (10)0.00401 (8)0.00217 (9)0.00556 (8)
O1B0.0195 (3)0.0124 (2)0.0176 (3)0.0037 (2)0.0050 (3)0.0036 (2)
N1B0.0191 (4)0.0138 (3)0.0186 (3)0.0014 (3)0.0034 (3)0.0004 (3)
N2B0.0212 (4)0.0110 (3)0.0202 (3)0.0016 (3)0.0026 (3)0.0004 (3)
N3B0.0142 (4)0.0101 (3)0.0141 (3)0.0004 (2)0.0005 (3)0.0001 (2)
N4B0.0175 (4)0.0150 (3)0.0206 (3)0.0016 (3)0.0039 (3)0.0023 (3)
C1B0.0168 (4)0.0112 (3)0.0137 (3)0.0004 (3)0.0020 (3)0.0018 (3)
C2B0.0136 (4)0.0127 (3)0.0131 (3)0.0009 (3)0.0001 (3)0.0012 (3)
C3B0.0146 (4)0.0129 (3)0.0141 (3)0.0005 (3)0.0012 (3)0.0009 (3)
C4B0.0155 (4)0.0115 (3)0.0152 (3)0.0004 (3)0.0013 (3)0.0009 (3)
C5B0.0169 (4)0.0148 (3)0.0186 (4)0.0018 (3)0.0020 (3)0.0009 (3)
C6B0.0194 (4)0.0152 (3)0.0220 (4)0.0033 (3)0.0005 (4)0.0000 (3)
C7B0.0235 (5)0.0128 (3)0.0212 (4)0.0021 (3)0.0032 (4)0.0010 (3)
C8B0.0212 (5)0.0142 (3)0.0163 (4)0.0013 (3)0.0028 (3)0.0027 (3)
C9B0.0153 (4)0.0143 (3)0.0132 (3)0.0009 (3)0.0007 (3)0.0011 (3)
C10B0.0222 (5)0.0212 (4)0.0178 (4)0.0025 (4)0.0049 (4)0.0027 (3)
Geometric parameters (Å, º) top
S1A—C1A1.6796 (9)S1B—C1B1.6771 (10)
O1A—C4A1.3751 (11)O1B—C4B1.3895 (11)
O1A—C3A1.4141 (11)O1B—C3B1.4334 (12)
N1A—C2A1.3057 (12)N1B—C2B1.3086 (12)
N1A—N2A1.3821 (11)N1B—N2B1.3720 (12)
N2A—C1A1.3401 (12)N2B—C1B1.3412 (14)
N2A—H2N10.869 (19)N2B—H2N20.894 (18)
N3A—C2A1.3687 (11)N3B—C2B1.3709 (13)
N3A—C1A1.3740 (12)N3B—C1B1.3754 (11)
N3A—N4A1.4003 (11)N3B—N4B1.4023 (11)
N4A—H1N40.879 (18)N4B—H3N40.91 (2)
N4A—H2N40.832 (18)N4B—H4N40.95 (2)
C2A—C3A1.4854 (13)C2B—C3B1.4888 (12)
C3A—H3AA0.97C3B—H3BA0.97
C3A—H3AB0.97C3B—H3BB0.97
C4A—C5A1.3901 (14)C4B—C5B1.3935 (14)
C4A—C9A1.4034 (12)C4B—C9B1.4054 (13)
C5A—C6A1.3992 (14)C5B—C6B1.4000 (13)
C5A—H5AA0.93C5B—H5BA0.93
C6A—C7A1.3914 (16)C6B—C7B1.3886 (15)
C6A—H6AA0.93C6B—H6BA0.93
C7A—C8A1.3908 (16)C7B—C8B1.3903 (16)
C7A—H7AA0.93C7B—H7BA0.93
C8A—C9A1.3905 (13)C8B—C9B1.3994 (13)
C8A—H8AA0.93C8B—H8BA0.93
C9A—C10A1.4986 (14)C9B—C10B1.5037 (15)
C10A—H10A0.96C10B—H10D0.96
C10A—H10B0.96C10B—H10E0.96
C10A—H10C0.96C10B—H10F0.96
C4A—O1A—C3A116.66 (8)C4B—O1B—C3B116.13 (7)
C2A—N1A—N2A103.87 (7)C2B—N1B—N2B104.16 (8)
C1A—N2A—N1A113.47 (8)C1B—N2B—N1B113.71 (8)
C1A—N2A—H2N1128.2 (12)C1B—N2B—H2N2124.2 (12)
N1A—N2A—H2N1117.4 (12)N1B—N2B—H2N2121.1 (12)
C2A—N3A—C1A108.73 (7)C2B—N3B—C1B108.71 (8)
C2A—N3A—N4A124.09 (8)C2B—N3B—N4B124.29 (8)
C1A—N3A—N4A127.12 (7)C1B—N3B—N4B127.00 (8)
N3A—N4A—H1N4110.4 (12)N3B—N4B—H3N4104.0 (11)
N3A—N4A—H2N4104.0 (12)N3B—N4B—H4N4104.5 (12)
H1N4—N4A—H2N4113.4 (15)H3N4—N4B—H4N4110.0 (17)
N2A—C1A—N3A103.07 (7)N2B—C1B—N3B102.92 (8)
N2A—C1A—S1A129.61 (7)N2B—C1B—S1B129.71 (7)
N3A—C1A—S1A127.31 (7)N3B—C1B—S1B127.36 (8)
N1A—C2A—N3A110.86 (8)N1B—C2B—N3B110.50 (8)
N1A—C2A—C3A127.30 (8)N1B—C2B—C3B124.61 (9)
N3A—C2A—C3A121.84 (8)N3B—C2B—C3B124.88 (8)
O1A—C3A—C2A106.32 (8)O1B—C3B—C2B107.54 (8)
O1A—C3A—H3AA110.5O1B—C3B—H3BA110.2
C2A—C3A—H3AA110.5C2B—C3B—H3BA110.2
O1A—C3A—H3AB110.5O1B—C3B—H3BB110.2
C2A—C3A—H3AB110.5C2B—C3B—H3BB110.2
H3AA—C3A—H3AB108.7H3BA—C3B—H3BB108.5
O1A—C4A—C5A124.21 (8)O1B—C4B—C5B123.10 (8)
O1A—C4A—C9A114.25 (8)O1B—C4B—C9B115.43 (8)
C5A—C4A—C9A121.54 (8)C5B—C4B—C9B121.46 (8)
C4A—C5A—C6A119.23 (9)C4B—C5B—C6B119.51 (9)
C4A—C5A—H5AA120.4C4B—C5B—H5BA120.2
C6A—C5A—H5AA120.4C6B—C5B—H5BA120.2
C7A—C6A—C5A120.08 (10)C7B—C6B—C5B119.98 (10)
C7A—C6A—H6AA120.0C7B—C6B—H6BA120.0
C5A—C6A—H6AA120.0C5B—C6B—H6BA120.0
C8A—C7A—C6A119.67 (9)C6B—C7B—C8B119.82 (9)
C8A—C7A—H7AA120.2C6B—C7B—H7BA120.1
C6A—C7A—H7AA120.2C8B—C7B—H7BA120.1
C9A—C8A—C7A121.58 (9)C7B—C8B—C9B121.72 (9)
C9A—C8A—H8AA119.2C7B—C8B—H8BA119.1
C7A—C8A—H8AA119.2C9B—C8B—H8BA119.1
C8A—C9A—C4A117.87 (9)C8B—C9B—C4B117.51 (9)
C8A—C9A—C10A121.82 (8)C8B—C9B—C10B120.86 (9)
C4A—C9A—C10A120.31 (8)C4B—C9B—C10B121.64 (8)
C9A—C10A—H10A109.5C9B—C10B—H10D109.5
C9A—C10A—H10B109.5C9B—C10B—H10E109.5
H10A—C10A—H10B109.5H10D—C10B—H10E109.5
C9A—C10A—H10C109.5C9B—C10B—H10F109.5
H10A—C10A—H10C109.5H10D—C10B—H10F109.5
H10B—C10A—H10C109.5H10E—C10B—H10F109.5
C2A—N1A—N2A—C1A0.60 (11)C2B—N1B—N2B—C1B0.20 (12)
N1A—N2A—C1A—N3A0.59 (11)N1B—N2B—C1B—N3B0.26 (11)
N1A—N2A—C1A—S1A179.77 (8)N1B—N2B—C1B—S1B178.52 (8)
C2A—N3A—C1A—N2A0.35 (10)C2B—N3B—C1B—N2B0.61 (10)
N4A—N3A—C1A—N2A177.58 (9)N4B—N3B—C1B—N2B179.33 (9)
C2A—N3A—C1A—S1A179.56 (7)C2B—N3B—C1B—S1B178.21 (7)
N4A—N3A—C1A—S1A3.21 (14)N4B—N3B—C1B—S1B1.85 (14)
N2A—N1A—C2A—N3A0.34 (11)N2B—N1B—C2B—N3B0.59 (11)
N2A—N1A—C2A—C3A179.47 (10)N2B—N1B—C2B—C3B179.27 (9)
C1A—N3A—C2A—N1A0.00 (11)C1B—N3B—C2B—N1B0.79 (11)
N4A—N3A—C2A—N1A177.34 (9)N4B—N3B—C2B—N1B179.15 (9)
C1A—N3A—C2A—C3A179.83 (9)C1B—N3B—C2B—C3B179.47 (9)
N4A—N3A—C2A—C3A2.84 (14)N4B—N3B—C2B—C3B0.47 (14)
C4A—O1A—C3A—C2A179.99 (8)C4B—O1B—C3B—C2B175.45 (8)
N1A—C2A—C3A—O1A16.61 (14)N1B—C2B—C3B—O1B90.26 (11)
N3A—C2A—C3A—O1A163.18 (9)N3B—C2B—C3B—O1B88.24 (11)
C3A—O1A—C4A—C5A10.15 (15)C3B—O1B—C4B—C5B13.09 (13)
C3A—O1A—C4A—C9A170.52 (9)C3B—O1B—C4B—C9B167.61 (8)
O1A—C4A—C5A—C6A179.92 (10)O1B—C4B—C5B—C6B179.26 (9)
C9A—C4A—C5A—C6A0.80 (16)C9B—C4B—C5B—C6B0.00 (15)
C4A—C5A—C6A—C7A0.55 (17)C4B—C5B—C6B—C7B1.03 (16)
C5A—C6A—C7A—C8A1.12 (17)C5B—C6B—C7B—C8B1.06 (16)
C6A—C7A—C8A—C9A0.37 (17)C6B—C7B—C8B—C9B0.06 (16)
C7A—C8A—C9A—C4A0.93 (15)C7B—C8B—C9B—C4B0.93 (14)
C7A—C8A—C9A—C10A178.93 (10)C7B—C8B—C9B—C10B179.14 (10)
O1A—C4A—C9A—C8A179.13 (9)O1B—C4B—C9B—C8B179.73 (9)
C5A—C4A—C9A—C8A1.52 (15)C5B—C4B—C9B—C8B0.96 (14)
O1A—C4A—C9A—C10A1.01 (13)O1B—C4B—C9B—C10B0.20 (13)
C5A—C4A—C9A—C10A178.34 (10)C5B—C4B—C9B—C10B179.11 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4A—H1N4···N4Bi0.88 (2)2.46 (2)3.2651 (12)152 (2)
N4A—H2N4···O1B0.83 (2)2.53 (2)3.3560 (11)171 (2)
N4B—H4N4···S1Aii0.95 (2)2.72 (2)3.6167 (10)157 (2)
N2A—H2N1···S1Biii0.87 (2)2.30 (2)3.1665 (9)174 (2)
N2B—H2N2···N1Aiv0.89 (2)2.18 (2)3.0589 (11)166 (2)
C8A—H8AA···S1Av0.932.863.4537 (10)123
C3B—H3BB···S1A0.972.863.8203 (10)170
Symmetry codes: (i) x+1, y+1, z1/2; (ii) x+1, y, z; (iii) x1, y, z; (iv) x+1/2, y+3/2, z; (v) x+1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC10H12N4OS
Mr236.30
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)100
a, b, c (Å)8.6908 (1), 22.2551 (3), 11.3771 (2)
V3)2200.50 (5)
Z8
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.58 × 0.29 × 0.27
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.855, 0.929
No. of measured, independent and
observed [I > 2σ(I)] reflections
41442, 9726, 9145
Rint0.029
(sin θ/λ)max1)0.810
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.075, 1.01
No. of reflections9726
No. of parameters315
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.19
Absolute structureFlack (1983), 4628 Friedel pairs
Absolute structure parameter0.02 (3)

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4A—H1N4···N4Bi0.88 (2)2.46 (2)3.2651 (12)152 (2)
N4A—H2N4···O1B0.83 (2)2.53 (2)3.3560 (11)171 (2)
N4B—H4N4···S1Aii0.95 (2)2.72 (2)3.6167 (10)157 (2)
N2A—H2N1···S1Biii0.87 (2)2.30 (2)3.1665 (9)174 (2)
N2B—H2N2···N1Aiv0.89 (2)2.18 (2)3.0589 (11)166 (2)
C8A—H8AA···S1Av0.932.863.4537 (10)123
C3B—H3BB···S1A0.972.863.8203 (10)170
Symmetry codes: (i) x+1, y+1, z1/2; (ii) x+1, y, z; (iii) x1, y, z; (iv) x+1/2, y+3/2, z; (v) x+1/2, y+1/2, z1/2.
 

Footnotes

Thomson Reuters Researcher ID: A-3561-2009.

§Current address: Department of Chemistry, National Institute of Technology-Karnataka, Surathkal, Mangalore 575 025, India.

Acknowledgements

HKF and WCL thank Universiti Sains Malaysia (USM) for the Research University Golden Goose Grant (No. 1001/PFIZIK/811012). WCL thanks USM for a student assistantship. AMI is grateful to the Head of the Department of Chemistry and the Director, NITK Surathkal, for providing research facilities.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAmir, M., Kumar, H. & Javed, S. A. (2008). Eur. J. Med. Chem. 43, 2056–2066.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationEweiss, N. F., Bahajaj, A. A. & Elsherbini, E. A. (1986). J. Heteroat. Chem. 23, 1451–1458.  CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Jebas, S. R., Rao, J. N. & Kalluraya, B. (2009). Acta Cryst. E65, o48.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Jebas, S. R., Sujith, K. V., Patil, P. S., Kalluraya, B., Muralidharan, A. & Dharmaprakash, S. M. (2008a). Acta Cryst. E64, o1509.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Sujith, K. V., Patil, P. S., Kalluraya, B. & Chantrapromma, S. (2008b). Acta Cryst. E64, o1590–o1591.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKuş, S. C., Kılcıgil, G. A., Özbey, S., Kaynak, F. B., Kaya, M., Çoban, T. & Eke, B. C. (2008). Bioorg. Med. Chem. 16, 4294–4303.  Web of Science PubMed Google Scholar
First citationPadmavathi, V., Thriveni, P., Reddy, G. S. & Deepti, D. (2008). Eur. J. Med. Chem. 43, 917–924.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSztanke, K., Tuzimski, T., Rzymowska, J., Pasternak, K. & Kandefer-Szerszeń, M. (2008). Eur. J. Med. Chem. 43, 404–419.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages o1910-o1911
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds