metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages m955-m956

Tetra­kis[μ-4-(di­ethyl­amino)benzoato-κ2O:O′]bis­­[(N,N-di­ethyl­nicotinamide-κN1)zinc(II)]

aDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, bDepartment of Chemistry, Faculty of Science, Anadolu University, 26470 Yenibağlar, Eskişehir, Turkey, cDepartment of Physics, Karabük University, 78050 Karabük, Turkey, and dDepartment of Chemistry, Kafkas University, 63100 Kars, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

(Received 10 July 2009; accepted 16 July 2009; online 18 July 2009)

In the centrosymmetric binuclear title complex, [Zn2(C11H14NO2)4(C10H14N2O)2], the two ZnII ions [Zn⋯Zn = 2.8874 (3) Å] are bridged by four 4-(diethyl­amino)benzoate (DEAB) ligands. The four nearest O atoms around each ZnII ion form a distorted square-planar arrangement, the distorted square-pyramidal coordination being completed by the pyridine N atom of an N,N-diethyl­nicotinamide (DENA) ligand at a distance of 2.0484 (12) Å. The dihedral angle between the benzene ring and the carboxyl­ate group is 4.89 (6)° in one of the independent DEAB ligands and 7.13 (7)° in the other. The benzene rings of the two independent DEAB ligands are oriented at a dihedral angle of 86.58 (5)°. The pyridine ring is oriented at dihedral angles of 31.17 (4) and 58.38 (4)° with respect to the two benzene rings. In the crystal, weak inter­molecular C—H⋯O inter­actions link the mol­ecules into a three-dimensional network. Two weak C—H⋯π inter­actions are also present. The two ethyl groups of one of the DEAB ligands are disordered over two orientations, with occupancy ratios of 0.798 (5):0.202 (5) and 0.890 (5):0.110 (5).

Related literature

For general background to transition metal complexes of nicotinamide, one form of niacin, and/or the nicotinic acid derivative N,N-diethyl­nicotinamide, see: Bigoli et al. (1972[Bigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962-966.]); Krishnamachari (1974[Krishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108-111.]). For related structures, see: Hökelek et al. (1995[Hökelek, T., Necefoğlu, H. & Balcı, M. (1995). Acta Cryst. C51, 2020-2023.]); Speier & Fulop (1989[Speier, G. & Fulop, V. (1989). J. Chem. Soc. Dalton Trans. pp. 2331-2333.]); Usubaliev et al. (1980[Usubaliev, B. T., Movsumov, E. M., Musaev, F. N., Nadzhafov, G. N., Amiraslanov, I. R. & Mamedov, Kh. S. (1980). Koord. Khim. 6, 1091-1096.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn2(C11H14NO2)4(C10H14N2O)2]

  • Mr = 1256.13

  • Monoclinic, P 21 /n

  • a = 10.3758 (2) Å

  • b = 13.4107 (2) Å

  • c = 22.4458 (3) Å

  • β = 93.837 (3)°

  • V = 3116.26 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.83 mm−1

  • T = 100 K

  • 0.54 × 0.31 × 0.27 mm

Data collection
  • Bruker Kappa APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.778, Tmax = 0.798

  • 28538 measured reflections

  • 7635 independent reflections

  • 6141 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.077

  • S = 1.04

  • 7635 reflections

  • 417 parameters

  • 30 restraints

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.50 e Å−3

Table 1
Selected bond lengths (Å)

Zn1—O1 2.0349 (10)
Zn1—O2 2.0251 (10)
Zn1—O3 2.0465 (10)
Zn1—O4 2.0337 (10)
Zn1—N1 2.0484 (12)
Symmetry code: (i) -x+1, -y, -z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10A⋯O5ii 0.99 2.49 3.390 (2) 151
C21—H21BCg1iii 0.99 2.94 3.879 (3) 163
C29—H29ACg1iv 0.99 2.87 3.637 (2) 137
Symmetry codes: (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) x, y+1, z; (iv) -x, -y, -z. Cg1 is the centroid of the C2–C7 ring.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

As a part of our ongoing investigation on transition metal complexes of nicotinamide (NA), one form of niacin (Krishnamachari, 1974), and/or the nicotinic acid derivative N,N-diethylnicotinamide (DENA), an important respiratory stimulant (Bigoli et al., 1972), the title compound was synthesized and its crystal structure is reported herein.

The title compound is a binuclear compound, consisting of two DENA and four diethylaminobenzoate (DEAB) ligands. The structures of similar complexes of the Cu2+ ion, [Cu(C6H5COO)2(C5H5N)]2 (Usubaliev et al., 1980); [Cu(C6H5CO2)2(py)]2 (Speier & Fulop, 1989) and [Cu2(C6H5COO)4(C10H14N2O)2] (Hökelek et al., 1995) have also been determined. In these structures, the benzoate ion acts as a bidentate ligand.

The title dimeric complex, [Zn2(DEAB)4(DENA)2], has a centre of symmetry and two ZnII atoms are surrounded by four DEAB groups and two DENA ligands. The DENA ligands are coordinated to ZnII ions through pyridine N atoms only. The DEAB groups act as bridging ligands. The Zn···Zn' distance is 2.8874 (3) Å. The average Zn—O distance is 2.0351 (10) Å, and four O atoms of the bridging DEAB ligands around each ZnII ion form a distorted square plane. The ZnII ion lies 0.3229 (2) Å below the least-squares plane. The average O—Zn—O bond angle is 88.56 (4)°. A distorted square-pyramidal arrangement around each ZnII ion is completed by the pyridine N atom of a DENA ligand at 2.0484 (12) Å from the ZnII ion. The N1—Zn1···Zn1' angle is 171.18 (3)° and the dihedral angle between plane through Zn1, O1, O4, C1, Zn1', O1', O4', C1' and the plane through Zn1, O2, O3, C12, Zn1', O2', O3', C12' is 89.53 (5)°. The dihedral angles between the planar carboxylate groups and the adjacent benzene rings A (C2—C7) and B (C13—C18) are 4.89 (6)° and 7.13 (7)°, respectively, while that between rings A and B is A/B = 86.58 (5)°. Ring C (N1/C23—C27) is oriented with respect to rings A and B at dihedral angles A/C = 31.17 (4) and B/C = 58.38 (4)°.

In the crystal structure, weak intermolecular C—H···O interactions (Table 1) link the molecules into a three-dimensional network, in which they may be effective in the stabilization of the structure. Two weak C—H···π interactions (Table 1) are also found.

Related literature top

For general backgroundto transition metal complexes of

nicotinamide, one form of niacin, and/or the nicotinic acid derivative N,N-diethylnicotinamide, see: Bigoli et al. (1972); Krishnamachari (1974). For related structures, see: Hökelek et al. (1995); Speier & Fulop (1989); Usubaliev et al. (1980). Cg1 is the centroid of the C2–C7 ring.

Experimental top

The title compound was prepared by the reaction of ZnSO4.H2O (0.9 g, 5 mmol) in H2O (50 ml) and DENA (1.78 g, 10 mmol) in H2O (50 ml) with sodium p-diethylaminobenzoate (2.16 g, 10 mmol) in H2O (100 ml). The mixture was filtered and set aside to crystallize at ambient temperature for one week, giving colorless single crystals.

Refinement top

The two ethyl groups attached at N4 are disordered over two orientations. During the refinement process, the disordered C19, H19A, H19B, C20, H20A, H20B, H20C and C19A, H19C, H19D, C20A, H20D, H20E, H20F atoms were refined with occupancies of 0.798 (5) and 0.202 (5), while C21, H21A, H21B, C22, H22A, H22B, H22C and C21A, H21C, H21D, C22A, H22D, H22E, H22F atoms were refined with occupancies of 0.890 (5) and 0.110 (5), respectively. The corresponding bond distances in the disorder components were restrained to be equal and the Uij parameters of atoms C19A, C21A and C22A were restrained to an approximate isotropic behaviour. H atoms were positioned geometrically, with C—H = 0.95, 0.99 and 0.98 Å, for aromatic, methylene and methyl H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Only the major disorder components are shown for clarity. Primed atoms are generated by the symmetry operator:(') 1 - x, -y, -z.
Tetrakis[µ-4-(diethylamino)benzoato- κ2O:O']bis[(N,N- diethylnicotinamide-κN1)zinc(II)] top
Crystal data top
[Zn2(C11H14NO2)4(C10H14N2O)2]F(000) = 1328
Mr = 1256.13Dx = 1.339 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 9966 reflections
a = 10.3758 (2) Åθ = 2.4–28.2°
b = 13.4107 (2) ŵ = 0.83 mm1
c = 22.4458 (3) ÅT = 100 K
β = 93.837 (3)°Block, colourless
V = 3116.26 (9) Å30.54 × 0.31 × 0.27 mm
Z = 2
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
7635 independent reflections
Radiation source: fine-focus sealed tube6141 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ϕ and ω scansθmax = 28.3°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1313
Tmin = 0.778, Tmax = 0.798k = 1714
28538 measured reflectionsl = 2929
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.077H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0361P)2 + 1.1231P]
where P = (Fo2 + 2Fc2)/3
7635 reflections(Δ/σ)max = 0.001
417 parametersΔρmax = 0.34 e Å3
30 restraintsΔρmin = 0.50 e Å3
Crystal data top
[Zn2(C11H14NO2)4(C10H14N2O)2]V = 3116.26 (9) Å3
Mr = 1256.13Z = 2
Monoclinic, P21/nMo Kα radiation
a = 10.3758 (2) ŵ = 0.83 mm1
b = 13.4107 (2) ÅT = 100 K
c = 22.4458 (3) Å0.54 × 0.31 × 0.27 mm
β = 93.837 (3)°
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
7635 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
6141 reflections with I > 2σ(I)
Tmin = 0.778, Tmax = 0.798Rint = 0.028
28538 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02930 restraints
wR(F2) = 0.077H-atom parameters constrained
S = 1.04Δρmax = 0.34 e Å3
7635 reflectionsΔρmin = 0.50 e Å3
417 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.590282 (14)0.001300 (11)0.051808 (7)0.01207 (5)
O10.71173 (9)0.04299 (8)0.01063 (5)0.0211 (2)
O20.62210 (10)0.14522 (8)0.02975 (5)0.0224 (2)
O30.51994 (10)0.14132 (8)0.04988 (5)0.0224 (2)
O40.42848 (9)0.04493 (9)0.09108 (5)0.0233 (2)
O50.89856 (10)0.27621 (8)0.22536 (5)0.0239 (2)
N10.70525 (11)0.01702 (9)0.12883 (5)0.0141 (2)
N21.04716 (11)0.21838 (9)0.16475 (5)0.0165 (3)
N31.07197 (11)0.22316 (9)0.20302 (5)0.0168 (3)
N40.69189 (18)0.58476 (12)0.07155 (8)0.0523 (5)
C10.68215 (13)0.05780 (11)0.06557 (7)0.0171 (3)
C20.78619 (13)0.09438 (10)0.10265 (6)0.0153 (3)
C30.90883 (13)0.11536 (11)0.07684 (6)0.0167 (3)
H3A0.92770.10080.03580.020*
C41.00401 (13)0.15681 (11)0.10930 (6)0.0163 (3)
H4A1.08620.17130.09010.020*
C50.98026 (13)0.17780 (11)0.17073 (6)0.0156 (3)
C60.85852 (13)0.14974 (11)0.19736 (6)0.0189 (3)
H6A0.84120.15820.23920.023*
C70.76393 (13)0.11015 (11)0.16366 (6)0.0178 (3)
H7A0.68220.09340.18260.021*
C81.04919 (14)0.23897 (12)0.26731 (6)0.0209 (3)
H8A1.00510.17930.28480.025*
H8B1.13390.24440.28490.025*
C90.96903 (15)0.33067 (13)0.28572 (7)0.0267 (4)
H9A0.95900.33460.32940.040*
H9B1.01290.39080.26990.040*
H9C0.88370.32560.26970.040*
C101.18098 (13)0.27590 (11)0.17287 (6)0.0178 (3)
H10A1.24770.28680.20170.021*
H10B1.21930.23330.14030.021*
C111.14461 (15)0.37612 (12)0.14676 (7)0.0241 (3)
H11A1.22170.40730.12720.036*
H11B1.08000.36590.11740.036*
H11C1.10880.41960.17880.036*
C120.56282 (13)0.18488 (11)0.01543 (6)0.0178 (3)
C130.59362 (14)0.29028 (11)0.02924 (6)0.0185 (3)
C140.68952 (15)0.34159 (12)0.00421 (7)0.0231 (3)
H14A0.73390.30920.03720.028*
C150.72204 (16)0.43823 (12)0.00909 (7)0.0281 (4)
H15A0.78860.47090.01460.034*
C160.65822 (19)0.48938 (12)0.05719 (8)0.0314 (4)
C170.55900 (16)0.43734 (12)0.09041 (7)0.0281 (4)
H17A0.51230.46970.12270.034*
C180.52914 (15)0.34049 (12)0.07659 (7)0.0215 (3)
H18A0.46280.30700.10000.026*
C190.6089 (3)0.6454 (2)0.11435 (12)0.0390 (8)0.798 (5)
H19A0.51770.62400.11350.047*0.798 (5)
H19B0.61450.71670.10320.047*0.798 (5)
C19A0.6650 (8)0.6238 (6)0.1345 (3)0.021 (2)0.202 (5)
H19C0.65010.56920.16380.025*0.202 (5)
H19D0.73500.66770.14690.025*0.202 (5)
C200.6553 (3)0.6304 (2)0.17580 (13)0.0488 (9)0.798 (5)
H20A0.60160.66970.20470.073*0.798 (5)
H20B0.74540.65220.17620.073*0.798 (5)
H20C0.64910.55960.18650.073*0.798 (5)
C20A0.5425 (8)0.6813 (7)0.1250 (4)0.025 (2)0.202 (5)
H20D0.51040.71200.16280.038*0.202 (5)
H20E0.47700.63580.11110.038*0.202 (5)
H20F0.56090.73350.09510.038*0.202 (5)
C210.8083 (2)0.63245 (14)0.04326 (9)0.0270 (5)0.890 (5)
H21A0.87580.58140.03460.032*0.890 (5)
H21B0.84210.68180.07100.032*0.890 (5)
C21A0.7424 (11)0.6515 (9)0.0200 (5)0.014 (3)0.110 (5)
H21C0.72040.62660.01960.017*0.110 (5)
H21D0.71650.72220.02520.017*0.110 (5)
C220.77785 (19)0.68377 (15)0.01393 (10)0.0317 (6)0.890 (5)
H22A0.85640.71500.03210.048*0.890 (5)
H22B0.71190.73500.00520.048*0.890 (5)
H22C0.74550.63470.04160.048*0.890 (5)
C22A0.8816 (13)0.6323 (12)0.0329 (7)0.023 (4)0.110 (5)
H22D0.93890.66770.00360.035*0.110 (5)
H22E0.89930.56060.03040.035*0.110 (5)
H22F0.89660.65620.07310.035*0.110 (5)
C230.78856 (12)0.09373 (11)0.13414 (6)0.0151 (3)
H23A0.79820.13530.10050.018*
C240.86084 (12)0.11458 (11)0.18662 (6)0.0146 (3)
C250.84666 (13)0.05239 (11)0.23546 (6)0.0176 (3)
H25A0.89480.06460.27220.021*
C260.76207 (14)0.02724 (11)0.23011 (7)0.0177 (3)
H26A0.75230.07100.26280.021*
C270.69193 (13)0.04194 (11)0.17624 (6)0.0156 (3)
H27A0.63220.09570.17270.019*
C280.93872 (13)0.20938 (11)0.19367 (6)0.0162 (3)
C291.10610 (13)0.13687 (11)0.13207 (6)0.0184 (3)
H29A1.05950.07400.13920.022*
H29B1.19700.12830.14760.022*
C301.10256 (16)0.15648 (13)0.06565 (7)0.0272 (4)
H30A1.14250.10050.04570.041*
H30B1.15020.21790.05830.041*
H30C1.01270.16380.04990.041*
C311.11704 (14)0.31346 (11)0.17016 (7)0.0218 (3)
H31A1.20630.30330.15840.026*
H31B1.12220.33470.21250.026*
C321.05431 (16)0.39602 (12)0.13212 (8)0.0309 (4)
H32A1.10520.45730.13760.046*
H32B0.96650.40770.14420.046*
H32C1.05070.37630.09000.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.01304 (8)0.01106 (9)0.01221 (9)0.00028 (6)0.00165 (6)0.00082 (6)
O10.0216 (5)0.0223 (6)0.0204 (5)0.0014 (5)0.0085 (4)0.0013 (5)
O20.0304 (6)0.0132 (5)0.0238 (6)0.0017 (5)0.0019 (4)0.0040 (5)
O30.0274 (6)0.0142 (5)0.0257 (6)0.0067 (4)0.0026 (4)0.0000 (5)
O40.0168 (5)0.0281 (6)0.0256 (6)0.0040 (5)0.0057 (4)0.0017 (5)
O50.0239 (5)0.0195 (6)0.0292 (6)0.0031 (5)0.0091 (4)0.0091 (5)
N10.0142 (5)0.0124 (6)0.0160 (6)0.0015 (4)0.0030 (4)0.0008 (5)
N20.0143 (5)0.0152 (6)0.0199 (6)0.0008 (5)0.0010 (5)0.0042 (5)
N30.0159 (5)0.0193 (7)0.0157 (6)0.0015 (5)0.0039 (4)0.0010 (5)
N40.0780 (12)0.0235 (8)0.0499 (10)0.0278 (9)0.0370 (9)0.0196 (8)
C10.0198 (7)0.0104 (7)0.0219 (8)0.0016 (6)0.0075 (6)0.0015 (6)
C20.0169 (6)0.0110 (7)0.0186 (7)0.0010 (5)0.0052 (5)0.0002 (6)
C30.0204 (7)0.0141 (7)0.0157 (7)0.0011 (6)0.0033 (5)0.0005 (6)
C40.0159 (6)0.0158 (7)0.0173 (7)0.0001 (6)0.0014 (5)0.0003 (6)
C50.0161 (6)0.0128 (7)0.0184 (7)0.0013 (6)0.0053 (5)0.0000 (6)
C60.0189 (7)0.0219 (8)0.0158 (7)0.0000 (6)0.0017 (5)0.0021 (6)
C70.0149 (6)0.0177 (7)0.0210 (7)0.0007 (6)0.0015 (5)0.0005 (6)
C80.0193 (7)0.0275 (8)0.0165 (7)0.0014 (6)0.0055 (6)0.0027 (7)
C90.0261 (8)0.0297 (9)0.0240 (8)0.0027 (7)0.0007 (6)0.0073 (7)
C100.0161 (6)0.0188 (8)0.0190 (7)0.0021 (6)0.0039 (5)0.0004 (6)
C110.0305 (8)0.0205 (8)0.0215 (8)0.0008 (7)0.0022 (6)0.0001 (7)
C120.0207 (7)0.0141 (7)0.0195 (7)0.0015 (6)0.0080 (6)0.0015 (6)
C130.0240 (7)0.0127 (7)0.0191 (7)0.0027 (6)0.0040 (6)0.0002 (6)
C140.0318 (8)0.0168 (8)0.0200 (8)0.0033 (7)0.0039 (6)0.0032 (7)
C150.0370 (9)0.0191 (8)0.0266 (9)0.0099 (7)0.0102 (7)0.0026 (7)
C160.0457 (10)0.0163 (8)0.0304 (9)0.0118 (7)0.0102 (8)0.0068 (7)
C170.0375 (9)0.0196 (8)0.0256 (8)0.0074 (7)0.0111 (7)0.0078 (7)
C180.0258 (7)0.0172 (8)0.0211 (8)0.0057 (6)0.0022 (6)0.0006 (6)
C190.048 (2)0.0193 (14)0.0468 (17)0.0109 (14)0.0154 (15)0.0123 (13)
C19A0.029 (4)0.011 (3)0.024 (4)0.000 (3)0.008 (3)0.000 (3)
C200.0493 (15)0.0474 (17)0.0470 (19)0.0233 (13)0.0163 (12)0.0227 (14)
C20A0.022 (4)0.019 (5)0.035 (5)0.004 (4)0.005 (4)0.004 (4)
C210.0295 (12)0.0161 (9)0.0355 (11)0.0056 (8)0.0039 (9)0.0024 (8)
C21A0.021 (5)0.011 (5)0.010 (5)0.005 (4)0.003 (4)0.000 (4)
C220.0302 (10)0.0230 (10)0.0419 (13)0.0001 (8)0.0021 (9)0.0014 (9)
C22A0.017 (5)0.022 (5)0.030 (5)0.000 (4)0.001 (4)0.002 (4)
C230.0147 (6)0.0136 (7)0.0173 (7)0.0009 (5)0.0041 (5)0.0000 (6)
C240.0130 (6)0.0135 (7)0.0176 (7)0.0016 (5)0.0029 (5)0.0032 (6)
C250.0183 (7)0.0184 (8)0.0157 (7)0.0032 (6)0.0010 (5)0.0022 (6)
C260.0205 (7)0.0163 (7)0.0166 (7)0.0030 (6)0.0024 (6)0.0027 (6)
C270.0161 (6)0.0119 (7)0.0192 (7)0.0012 (6)0.0033 (5)0.0001 (6)
C280.0152 (6)0.0164 (7)0.0168 (7)0.0002 (6)0.0010 (5)0.0011 (6)
C290.0146 (6)0.0174 (8)0.0234 (8)0.0015 (6)0.0028 (5)0.0038 (6)
C300.0322 (8)0.0264 (9)0.0235 (8)0.0083 (7)0.0062 (6)0.0033 (7)
C310.0188 (7)0.0198 (8)0.0271 (8)0.0049 (6)0.0037 (6)0.0067 (7)
C320.0342 (9)0.0162 (8)0.0427 (10)0.0041 (7)0.0059 (8)0.0002 (8)
Geometric parameters (Å, º) top
Zn1—Zn1i2.8874 (3)C14—H14A0.95
Zn1—O12.0349 (10)C15—C161.407 (2)
Zn1—O22.0251 (10)C15—H15A0.95
Zn1—O32.0465 (10)C16—C171.414 (2)
Zn1—O42.0337 (10)C17—C181.376 (2)
Zn1—N12.0484 (12)C17—H17A0.95
O1—C11.2664 (18)C18—H18A0.95
O2—C121.2673 (18)C19—C201.504 (4)
O3—C12i1.2599 (18)C19—H19A0.99
O4—C1i1.2599 (17)C19—H19B0.99
O5—C281.2339 (17)C19A—C20A1.514 (7)
N1—C231.3439 (18)C19A—H19C0.99
N1—C271.3403 (19)C19A—H19D0.99
N2—C281.3415 (17)C20—H20A0.98
N2—C291.4721 (18)C20—H20B0.98
N2—C311.4678 (19)C20—H20C0.98
N3—C51.3760 (17)C20A—H20D0.98
N3—C81.4620 (18)C20A—H20E0.98
N3—C101.4612 (18)C20A—H20F0.98
N4—C161.370 (2)C21—C221.508 (3)
N4—C191.488 (3)C21—H21A0.99
N4—C19A1.515 (6)C21—H21B0.99
N4—C211.472 (2)C21A—C22A1.514 (8)
N4—C21A1.527 (8)C21A—H21C0.99
C1—O4i1.2599 (17)C21A—H21D0.99
C1—C21.4896 (19)C22—H22A0.98
C2—C31.391 (2)C22—H22B0.98
C2—C71.390 (2)C22—H22C0.98
C3—C41.3826 (19)C22A—H22D0.98
C3—H3A0.95C22A—H22E0.98
C4—C51.413 (2)C22A—H22F0.98
C4—H4A0.95C23—C241.382 (2)
C5—C61.412 (2)C23—H23A0.95
C6—C71.3845 (19)C24—C251.393 (2)
C6—H6A0.95C24—C281.509 (2)
C7—H7A0.95C25—C261.382 (2)
C8—C91.526 (2)C25—H25A0.95
C8—H8A0.99C26—C271.383 (2)
C8—H8B0.99C26—H26A0.95
C9—H9A0.98C27—H27A0.95
C9—H9B0.98C29—C301.512 (2)
C9—H9C0.98C29—H29A0.99
C10—C111.524 (2)C29—H29B0.99
C10—H10A0.99C30—H30A0.98
C10—H10B0.99C30—H30B0.98
C11—H11A0.98C30—H30C0.98
C11—H11B0.98C31—C321.518 (2)
C11—H11C0.98C31—H31A0.99
C12—O3i1.2599 (18)C31—H31B0.99
C12—C131.486 (2)C32—H32A0.98
C13—C141.388 (2)C32—H32B0.98
C13—C181.391 (2)C32—H32C0.98
C14—C151.377 (2)
O2—Zn1—O489.12 (4)C18—C17—C16120.93 (15)
O2—Zn1—O189.50 (4)C18—C17—H17A119.5
O4—Zn1—O1161.75 (4)C16—C17—H17A119.5
O2—Zn1—O3161.66 (4)C17—C18—C13121.68 (14)
O4—Zn1—O388.54 (4)C17—C18—H18A119.2
O1—Zn1—O387.08 (4)C13—C18—H18A119.2
O2—Zn1—N1103.03 (4)N4—C19—C20108.2 (3)
O4—Zn1—N196.87 (4)N4—C19—H19A110.1
O1—Zn1—N1101.17 (4)C20—C19—H19A110.1
O3—Zn1—N195.31 (4)N4—C19—H19B110.1
O2—Zn1—Zn1i85.53 (3)C20—C19—H19B110.1
O4—Zn1—Zn1i80.95 (3)H19A—C19—H19B108.4
O1—Zn1—Zn1i80.80 (3)C19—C20—H20A109.5
O3—Zn1—Zn1i76.14 (3)C19—C20—H20B109.5
N1—Zn1—Zn1i171.18 (3)H20A—C20—H20B109.5
C1—O1—Zn1126.55 (9)C19—C20—H20C109.5
C12—O2—Zn1121.15 (9)H20A—C20—H20C109.5
C12i—O3—Zn1132.36 (10)H20B—C20—H20C109.5
C1i—O4—Zn1126.57 (10)C20A—C19A—N498.6 (6)
C27—N1—C23118.75 (12)C20A—C19A—H19C112.0
C27—N1—Zn1120.95 (9)N4—C19A—H19C112.0
C23—N1—Zn1120.09 (10)C20A—C19A—H19D112.0
C28—N2—C31117.63 (12)N4—C19A—H19D112.0
C28—N2—C29124.34 (12)H19C—C19A—H19D109.7
C31—N2—C29117.84 (11)C19A—C20A—H20D109.5
C5—N3—C10120.74 (12)C19A—C20A—H20E109.5
C5—N3—C8120.81 (12)H20D—C20A—H20E109.5
C10—N3—C8117.13 (11)C19A—C20A—H20F109.5
C16—N4—C21121.25 (15)H20D—C20A—H20F109.5
C16—N4—C19121.07 (16)H20E—C20A—H20F109.5
C21—N4—C19117.63 (16)N4—C21—C22110.67 (18)
C16—N4—C19A120.6 (4)N4—C21—H21A109.5
C21—N4—C19A110.3 (4)C22—C21—H21A109.5
C16—N4—C21A116.7 (5)N4—C21—H21B109.5
C19—N4—C21A108.9 (5)C22—C21—H21B109.5
C19A—N4—C21A122.4 (6)H21A—C21—H21B108.1
O4i—C1—O1125.11 (13)C21—C22—H22A109.5
O4i—C1—C2117.60 (13)C21—C22—H22B109.5
O1—C1—C2117.28 (12)H22A—C22—H22B109.5
C7—C2—C3117.82 (12)C21—C22—H22C109.5
C7—C2—C1121.46 (13)H22A—C22—H22C109.5
C3—C2—C1120.71 (13)H22B—C22—H22C109.5
C4—C3—C2121.84 (13)C22A—C21A—N492.2 (9)
C4—C3—H3A119.1C22A—C21A—H21C113.2
C2—C3—H3A119.1N4—C21A—H21C113.2
C3—C4—C5120.69 (13)C22A—C21A—H21D113.2
C3—C4—H4A119.7N4—C21A—H21D113.2
C5—C4—H4A119.7H21C—C21A—H21D110.6
N3—C5—C6121.70 (13)C21A—C22A—H22D109.5
N3—C5—C4121.37 (13)C21A—C22A—H22E109.5
C6—C5—C4116.93 (12)H22D—C22A—H22E109.5
C7—C6—C5121.17 (13)C21A—C22A—H22F109.5
C7—C6—H6A119.4H22D—C22A—H22F109.5
C5—C6—H6A119.4H22E—C22A—H22F109.5
C6—C7—C2121.32 (13)N1—C23—C24122.65 (13)
C6—C7—H7A119.3N1—C23—H23A118.7
C2—C7—H7A119.3C24—C23—H23A118.7
N3—C8—C9115.68 (13)C23—C24—C25118.02 (13)
N3—C8—H8A108.4C23—C24—C28121.06 (13)
C9—C8—H8A108.4C25—C24—C28120.39 (13)
N3—C8—H8B108.4C26—C25—C24119.61 (13)
C9—C8—H8B108.4C26—C25—H25A120.2
H8A—C8—H8B107.4C24—C25—H25A120.2
C8—C9—H9A109.5C25—C26—C27118.67 (14)
C8—C9—H9B109.5C25—C26—H26A120.7
H9A—C9—H9B109.5C27—C26—H26A120.7
C8—C9—H9C109.5N1—C27—C26122.28 (13)
H9A—C9—H9C109.5N1—C27—H27A118.9
H9B—C9—H9C109.5C26—C27—H27A118.9
N3—C10—C11113.65 (12)O5—C28—N2122.70 (13)
N3—C10—H10A108.8O5—C28—C24118.24 (12)
C11—C10—H10A108.8N2—C28—C24119.05 (12)
N3—C10—H10B108.8N2—C29—C30112.26 (12)
C11—C10—H10B108.8N2—C29—H29A109.2
H10A—C10—H10B107.7C30—C29—H29A109.2
C10—C11—H11A109.5N2—C29—H29B109.2
C10—C11—H11B109.5C30—C29—H29B109.2
H11A—C11—H11B109.5H29A—C29—H29B107.9
C10—C11—H11C109.5C29—C30—H30A109.5
H11A—C11—H11C109.5C29—C30—H30B109.5
H11B—C11—H11C109.5H30A—C30—H30B109.5
O3i—C12—O2124.80 (14)C29—C30—H30C109.5
O3i—C12—C13117.40 (13)H30A—C30—H30C109.5
O2—C12—C13117.79 (13)H30B—C30—H30C109.5
C14—C13—C18117.65 (14)N2—C31—C32113.34 (13)
C14—C13—C12120.99 (13)N2—C31—H31A108.9
C18—C13—C12121.36 (13)C32—C31—H31A108.9
C15—C14—C13121.76 (15)N2—C31—H31B108.9
C15—C14—H14A119.1C32—C31—H31B108.9
C13—C14—H14A119.1H31A—C31—H31B107.7
C14—C15—C16121.05 (15)C31—C32—H32A109.5
C14—C15—H15A119.5C31—C32—H32B109.5
C16—C15—H15A119.5H32A—C32—H32B109.5
N4—C16—C15121.43 (15)C31—C32—H32C109.5
N4—C16—C17121.65 (15)H32A—C32—H32C109.5
C15—C16—C17116.92 (14)H32B—C32—H32C109.5
O2—Zn1—O1—C186.39 (12)O2—C12—C13—C18177.38 (13)
O4—Zn1—O1—C10.7 (2)C18—C13—C14—C151.0 (2)
O3—Zn1—O1—C175.59 (12)C12—C13—C14—C15177.97 (15)
N1—Zn1—O1—C1170.43 (12)C13—C14—C15—C160.5 (3)
Zn1i—Zn1—O1—C10.84 (11)C21—N4—C16—C159.2 (3)
O4—Zn1—O2—C1280.83 (11)C19—N4—C16—C15168.0 (2)
O1—Zn1—O2—C1280.97 (11)C19A—N4—C16—C15155.2 (4)
O3—Zn1—O2—C121.8 (2)C21A—N4—C16—C1531.6 (6)
N1—Zn1—O2—C12177.68 (10)C21—N4—C16—C17169.95 (19)
Zn1i—Zn1—O2—C120.16 (10)C19—N4—C16—C1712.8 (3)
O2—Zn1—O3—C12i3.0 (2)C19A—N4—C16—C1724.0 (5)
O4—Zn1—O3—C12i79.71 (13)C21A—N4—C16—C17149.3 (5)
O1—Zn1—O3—C12i82.56 (13)C14—C15—C16—N4178.53 (19)
N1—Zn1—O3—C12i176.48 (13)C14—C15—C16—C170.7 (3)
Zn1i—Zn1—O3—C12i1.32 (12)N4—C16—C17—C18177.90 (19)
O2—Zn1—O4—C1i84.71 (12)C15—C16—C17—C181.3 (3)
O1—Zn1—O4—C1i1.0 (2)C16—C17—C18—C130.8 (3)
O3—Zn1—O4—C1i77.11 (12)C14—C13—C18—C170.4 (2)
N1—Zn1—O4—C1i172.28 (12)C12—C13—C18—C17178.60 (15)
Zn1i—Zn1—O4—C1i0.91 (12)C16—N4—C19—C2092.3 (3)
O2—Zn1—N1—C2756.86 (11)C21—N4—C19—C2090.3 (2)
O4—Zn1—N1—C2733.82 (11)C19A—N4—C19—C206.4 (7)
O1—Zn1—N1—C27148.95 (10)C21A—N4—C19—C20128.3 (5)
O3—Zn1—N1—C27122.98 (10)C16—N4—C19A—C20A99.3 (6)
O2—Zn1—N1—C23128.42 (10)C21—N4—C19A—C20A111.4 (5)
O4—Zn1—N1—C23140.90 (10)C19—N4—C19A—C20A1.3 (4)
O1—Zn1—N1—C2336.33 (11)C21A—N4—C19A—C20A73.6 (8)
O3—Zn1—N1—C2351.73 (10)C16—N4—C21—C2288.0 (2)
Zn1—O1—C1—O4i1.8 (2)C19—N4—C21—C2289.4 (3)
Zn1—O1—C1—C2177.44 (9)C19A—N4—C21—C22123.0 (4)
O4i—C1—C2—C72.5 (2)C21A—N4—C21—C225.3 (8)
O1—C1—C2—C7178.20 (13)C16—N4—C21A—C22A98.4 (8)
O4i—C1—C2—C3176.53 (13)C21—N4—C21A—C22A8.8 (6)
O1—C1—C2—C32.8 (2)C19—N4—C21A—C22A120.2 (8)
C7—C2—C3—C44.3 (2)C19A—N4—C21A—C22A88.5 (9)
C1—C2—C3—C4174.77 (13)C27—N1—C23—C240.2 (2)
C2—C3—C4—C51.2 (2)Zn1—N1—C23—C24174.59 (10)
C10—N3—C5—C6163.01 (13)N1—C23—C24—C250.6 (2)
C8—N3—C5—C63.5 (2)N1—C23—C24—C28171.13 (12)
C10—N3—C5—C417.2 (2)C23—C24—C25—C260.1 (2)
C8—N3—C5—C4176.24 (13)C28—C24—C25—C26171.85 (13)
C3—C4—C5—N3177.03 (13)C24—C25—C26—C271.0 (2)
C3—C4—C5—C63.2 (2)C23—N1—C27—C260.8 (2)
N3—C5—C6—C7175.71 (14)Zn1—N1—C27—C26175.60 (10)
C4—C5—C6—C74.5 (2)C25—C26—C27—N11.5 (2)
C5—C6—C7—C21.5 (2)C31—N2—C28—O52.0 (2)
C3—C2—C7—C62.9 (2)C29—N2—C28—O5172.87 (13)
C1—C2—C7—C6176.11 (14)C31—N2—C28—C24176.98 (12)
C5—N3—C8—C982.09 (17)C29—N2—C28—C248.2 (2)
C10—N3—C8—C984.90 (15)C23—C24—C28—O5106.09 (16)
C5—N3—C10—C1174.11 (17)C25—C24—C28—O565.45 (18)
C8—N3—C10—C1192.88 (15)C23—C24—C28—N272.92 (18)
Zn1—O2—C12—O3i0.69 (19)C25—C24—C28—N2115.54 (15)
Zn1—O2—C12—C13178.81 (9)C28—N2—C29—C30114.21 (15)
O3i—C12—C13—C14175.86 (14)C31—N2—C29—C3070.95 (16)
O2—C12—C13—C143.7 (2)C28—N2—C31—C3276.65 (17)
O3i—C12—C13—C183.1 (2)C29—N2—C31—C32108.16 (15)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10A···O5ii0.992.493.390 (2)151
C21—H21B···Cg1iii0.992.943.879 (3)163
C29—H29A···Cg1iv0.992.873.637 (2)137
Symmetry codes: (ii) x+1/2, y+1/2, z1/2; (iii) x, y+1, z; (iv) x, y, z.

Experimental details

Crystal data
Chemical formula[Zn2(C11H14NO2)4(C10H14N2O)2]
Mr1256.13
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)10.3758 (2), 13.4107 (2), 22.4458 (3)
β (°) 93.837 (3)
V3)3116.26 (9)
Z2
Radiation typeMo Kα
µ (mm1)0.83
Crystal size (mm)0.54 × 0.31 × 0.27
Data collection
DiffractometerBruker Kappa APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.778, 0.798
No. of measured, independent and
observed [I > 2σ(I)] reflections
28538, 7635, 6141
Rint0.028
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.077, 1.04
No. of reflections7635
No. of parameters417
No. of restraints30
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.50

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Selected bond lengths (Å) top
Zn1—Zn1i2.8874 (3)Zn1—O32.0465 (10)
Zn1—O12.0349 (10)Zn1—O42.0337 (10)
Zn1—O22.0251 (10)Zn1—N12.0484 (12)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10A···O5ii0.992.493.390 (2)151
C21—H21B···Cg1iii0.992.943.879 (3)163
C29—H29A···Cg1iv0.992.873.637 (2)137
Symmetry codes: (ii) x+1/2, y+1/2, z1/2; (iii) x, y+1, z; (iv) x, y, z.
 

Acknowledgements

The authors are indebted to Anadolu University and the Medicinal Plants and Medicine Research Centre of Anadolu University, Eskişehir, Turkey, for the use of X-ray diffractometer.

References

First citationBigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962–966.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHökelek, T., Necefoğlu, H. & Balcı, M. (1995). Acta Cryst. C51, 2020–2023.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationKrishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108–111.  CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpeier, G. & Fulop, V. (1989). J. Chem. Soc. Dalton Trans. pp. 2331–2333.  CSD CrossRef Web of Science Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUsubaliev, B. T., Movsumov, E. M., Musaev, F. N., Nadzhafov, G. N., Amiraslanov, I. R. & Mamedov, Kh. S. (1980). Koord. Khim. 6, 1091–1096.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages m955-m956
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds