organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl (E)-N′-[1-(2,4-di­hydroxy­phen­yl)ethyl­­idene]hydrazine­carboxyl­ate

aDepartment of Chemical Engineering, Hangzhou Vocational and Technical College, Hangzhou 310018, People's Republic of China, and bResearch Center for Analysis and Measurement, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
*Correspondence e-mail: zgdhxc@126.com

(Received 11 July 2009; accepted 11 July 2009; online 18 July 2009)

The mol­ecule of the title compound, C10H12N2O4, adopts a trans configuration with respect to the C=N bond. The dihedral angle between the benzene ring and the methyl hydrazinecarboxyl­ate plane is 3.01 (6)°. An intra­molecular O—H⋯N hydrogen bond is observed. In the crystal, mol­ecules are linked into a two-dimensional network parallel to (10[\overline{1}]) by O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds.

Related literature

For general background to the properties of benzaldehyde­hydrazone derivatives, see: Parashar et al. (1988[Parashar, R. K., Sharma, R. C., Kumar, A. & Mohanm, G. (1988). Inorg. Chim. Acta, 151, 201-208.]); Hadjoudis et al. (1987[Hadjoudis, E., Vittorakis, M. & Moustakali-Mavridis, J. (1987). Tetrahedron, 43, 1345-1360.]); Borg et al. (1999[Borg, S., Vollinga, R. C., Labarre, M., Payza, K., Terenius, L. & Luthman, K. (1999). J. Med. Chem. 42, 4331-4342.]). For a related structure, see: Lv et al. (2008[Lv, L.-P., Yu, W.-P., Yu, W.-B., Zhou, X.-F. & Hu, X.-C. (2008). Acta Cryst. E64, o1676.]).

[Scheme 1]

Experimental

Crystal data
  • C10H12N2O4

  • Mr = 224.22

  • Monoclinic, P 21 /n

  • a = 10.714 (5) Å

  • b = 8.700 (4) Å

  • c = 11.682 (6) Å

  • β = 107.872 (6)°

  • V = 1036.3 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 223 K

  • 0.24 × 0.23 × 0.19 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS, Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.977, Tmax = 0.980

  • 5096 measured reflections

  • 1815 independent reflections

  • 1355 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.131

  • S = 1.05

  • 1815 reflections

  • 149 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯N1 0.82 1.84 2.557 (2) 145
O1—H1⋯O3i 0.82 1.98 2.791 (2) 170
N2—H2B⋯O2ii 0.86 2.35 3.185 (2) 164
C2—H2A⋯O3i 0.93 2.42 3.141 (3) 135
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z-{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Benzaldehydehydrazone derivatives have received considerable attention for a long time, due to their pharmacological activities (Parashar et al., 1988) and their photochromic properties (Hadjoudis et al., 1987). They are important intermidiates for 1,3,4-oxadiazoles, which have been reported to be versatile compounds with many properties (Borg et al., 1999). As a further investigation of this type of derivatives, we report herein the crystal structure of the title compound.

The title molecule (Fig. 1) adopts a trans configuration with respect to the CN double bond. The bond lengths and angles are comparable to those observed for (E)-methyl N'-[1-(4-methoxyphenyl)ethylidene]hydrazinecarboxylate (Lv et al., 2008). The dihedral angle between benzene (C1-C6) and O3/O4/N1/N2/C7-C10 planes is 3.01 (6)°. An intramolecular O2—H2···N1 hydrogen bond is observed.

In the crystal structure, intermolecular O—H···O, N—H···O and C–H···O hydrogen bonds (Table 1) link the molecules into a two-dimensional network parallel to the (101) (Fig. 2).

Related literature top

For general background to the properties of benzaldehydehydrazone derivatives, see: Parashar et al. (1988); Hadjoudis et al. (1987); Borg et al. (1999). For a related structure, see: Lv et al. (2008).

Experimental top

2,4-Dihydroxy-acetophenone (1.52 g, 0.01 mol) and methyl hydrazinecarboxylate (0.90 g, 0.01 mol) were dissolved in stirred methanol (15 ml) and left for 2.5 h at room temperature. The resulting solid was filtered off and recrystallized from ethanol to give the title compound (yield 93%, m.p. 475-478 K). Single crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution.

Refinement top

H atoms were positioned geometrically (N-H = 0.86 Å, O-H = 0.82Å and C-H =0.93 and 0.96 Å) and constrained to ride on their parent atoms with Uiso(H) = xUeq(C,N), where x = 1.5 for methyl H and x = 1.2 for all other H atoms. A rotating group model was used for the methyl groups.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level. The dashed line indicates a hydrogen bond.
[Figure 2] Fig. 2. A packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
Methyl (E)-N'-[1-(2,4-dihydroxyphenyl)ethylidene]hydrazinecarboxylate top
Crystal data top
C10H12N2O4F(000) = 472
Mr = 224.22Dx = 1.437 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1915 reflections
a = 10.714 (5) Åθ = 2.3–25.0°
b = 8.700 (4) ŵ = 0.11 mm1
c = 11.682 (6) ÅT = 223 K
β = 107.872 (6)°Block, colourless
V = 1036.3 (9) Å30.24 × 0.23 × 0.19 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
1815 independent reflections
Radiation source: fine-focus sealed tube1355 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS, Bruker, 2002)
h = 1212
Tmin = 0.977, Tmax = 0.980k = 1010
5096 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0586P)2 + 0.2997P]
where P = (Fo2 + 2Fc2)/3
1815 reflections(Δ/σ)max = 0.025
149 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C10H12N2O4V = 1036.3 (9) Å3
Mr = 224.22Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.714 (5) ŵ = 0.11 mm1
b = 8.700 (4) ÅT = 223 K
c = 11.682 (6) Å0.24 × 0.23 × 0.19 mm
β = 107.872 (6)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1815 independent reflections
Absorption correction: multi-scan
(SADABS, Bruker, 2002)
1355 reflections with I > 2σ(I)
Tmin = 0.977, Tmax = 0.980Rint = 0.027
5096 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.131H-atom parameters constrained
S = 1.05Δρmax = 0.23 e Å3
1815 reflectionsΔρmin = 0.18 e Å3
149 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O40.75341 (14)0.02754 (18)0.04159 (13)0.0531 (4)
O20.30274 (15)0.34157 (19)0.17412 (12)0.0549 (5)
H20.37100.29900.13550.082*
O10.00973 (15)0.70770 (19)0.13812 (14)0.0615 (5)
H10.03900.68730.21000.092*
O30.59381 (15)0.1012 (2)0.12508 (13)0.0592 (5)
C60.32217 (19)0.4395 (2)0.02586 (17)0.0403 (5)
C70.44242 (19)0.3525 (2)0.08526 (18)0.0426 (5)
C20.1513 (2)0.5234 (2)0.15377 (18)0.0461 (5)
H2A0.11390.52030.23690.055*
C90.64512 (19)0.1050 (2)0.01725 (18)0.0443 (5)
C10.26013 (19)0.4342 (2)0.09982 (17)0.0404 (5)
C30.0972 (2)0.6171 (2)0.08632 (19)0.0458 (5)
C50.2630 (2)0.5360 (3)0.09052 (19)0.0501 (6)
H50.30020.54220.17350.060*
C40.1528 (2)0.6219 (3)0.03705 (19)0.0522 (6)
H40.11600.68290.08360.063*
C100.8151 (2)0.0586 (3)0.0320 (2)0.0615 (7)
H10A0.75090.12170.08740.092*
H10B0.88300.12250.01840.092*
H10C0.85260.01130.07600.092*
C80.5058 (2)0.3622 (3)0.21894 (19)0.0646 (7)
H8A0.59880.34850.23740.097*
H8B0.47080.28330.25770.097*
H8C0.48820.46110.24710.097*
N20.60110 (16)0.1850 (2)0.06181 (15)0.0469 (5)
H2B0.64180.18310.13770.056*
N10.48811 (16)0.2697 (2)0.01548 (15)0.0448 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O40.0468 (9)0.0614 (10)0.0448 (9)0.0087 (7)0.0047 (7)0.0031 (7)
O20.0550 (9)0.0643 (11)0.0377 (8)0.0175 (8)0.0030 (7)0.0073 (7)
O10.0555 (10)0.0627 (11)0.0593 (10)0.0148 (8)0.0072 (8)0.0074 (8)
O30.0557 (9)0.0700 (11)0.0409 (9)0.0038 (8)0.0012 (7)0.0013 (8)
C60.0421 (11)0.0408 (12)0.0367 (11)0.0074 (9)0.0102 (9)0.0013 (9)
C70.0427 (11)0.0445 (12)0.0380 (11)0.0073 (9)0.0084 (9)0.0079 (9)
C20.0478 (12)0.0482 (13)0.0362 (11)0.0001 (10)0.0041 (9)0.0042 (9)
C90.0403 (11)0.0470 (13)0.0401 (12)0.0083 (10)0.0044 (9)0.0045 (10)
C10.0432 (11)0.0401 (12)0.0361 (11)0.0026 (9)0.0096 (9)0.0024 (9)
C30.0423 (11)0.0439 (12)0.0489 (12)0.0008 (9)0.0107 (10)0.0023 (10)
C50.0568 (13)0.0568 (14)0.0357 (11)0.0069 (11)0.0127 (10)0.0018 (10)
C40.0574 (13)0.0538 (14)0.0482 (13)0.0002 (11)0.0202 (11)0.0081 (11)
C100.0548 (14)0.0669 (16)0.0635 (16)0.0034 (12)0.0191 (12)0.0028 (13)
C80.0664 (15)0.0796 (18)0.0404 (13)0.0092 (13)0.0053 (11)0.0068 (12)
N20.0413 (10)0.0562 (11)0.0370 (9)0.0021 (8)0.0031 (8)0.0065 (8)
N10.0377 (9)0.0485 (11)0.0435 (10)0.0013 (8)0.0055 (7)0.0078 (8)
Geometric parameters (Å, º) top
O4—C91.335 (2)C2—H2A0.93
O4—C101.445 (3)C9—N21.352 (3)
O2—C11.362 (2)C3—C41.381 (3)
O2—H20.82C5—C41.375 (3)
O1—C31.369 (2)C5—H50.93
O1—H10.82C4—H40.93
O3—C91.210 (2)C10—H10A0.96
C6—C51.404 (3)C10—H10B0.96
C6—C11.414 (3)C10—H10C0.96
C6—C71.472 (3)C8—H8A0.96
C7—N11.291 (3)C8—H8B0.96
C7—C81.502 (3)C8—H8C0.96
C2—C31.378 (3)N2—N11.378 (2)
C2—C11.381 (3)N2—H2B0.86
C9—O4—C10116.06 (17)C4—C5—H5118.4
C1—O2—H2109.5C6—C5—H5118.4
C3—O1—H1109.5C5—C4—C3119.5 (2)
C5—C6—C1115.61 (19)C5—C4—H4120.2
C5—C6—C7121.90 (19)C3—C4—H4120.2
C1—C6—C7122.48 (19)O4—C10—H10A109.5
N1—C7—C6115.85 (18)O4—C10—H10B109.5
N1—C7—C8123.37 (19)H10A—C10—H10B109.5
C6—C7—C8120.8 (2)O4—C10—H10C109.5
C3—C2—C1121.02 (19)H10A—C10—H10C109.5
C3—C2—H2A119.5H10B—C10—H10C109.5
C1—C2—H2A119.5C7—C8—H8A109.5
O3—C9—O4124.6 (2)C7—C8—H8B109.5
O3—C9—N2125.6 (2)H8A—C8—H8B109.5
O4—C9—N2109.78 (17)C7—C8—H8C109.5
O2—C1—C2116.30 (17)H8A—C8—H8C109.5
O2—C1—C6122.56 (18)H8B—C8—H8C109.5
C2—C1—C6121.14 (19)C9—N2—N1117.11 (17)
O1—C3—C2121.94 (19)C9—N2—H2B121.4
O1—C3—C4118.56 (19)N1—N2—H2B121.4
C2—C3—C4119.5 (2)C7—N1—N2120.52 (17)
C4—C5—C6123.2 (2)
C5—C6—C7—N1178.96 (18)C1—C2—C3—O1179.24 (19)
C1—C6—C7—N10.3 (3)C1—C2—C3—C40.1 (3)
C5—C6—C7—C80.9 (3)C1—C6—C5—C40.6 (3)
C1—C6—C7—C8179.6 (2)C7—C6—C5—C4178.17 (19)
C10—O4—C9—O33.7 (3)C6—C5—C4—C31.2 (3)
C10—O4—C9—N2177.44 (17)O1—C3—C4—C5177.7 (2)
C3—C2—C1—O2177.60 (19)C2—C3—C4—C51.5 (3)
C3—C2—C1—C62.0 (3)O3—C9—N2—N10.1 (3)
C5—C6—C1—O2177.40 (18)O4—C9—N2—N1178.99 (16)
C7—C6—C1—O23.8 (3)C6—C7—N1—N2179.30 (16)
C5—C6—C1—C22.2 (3)C8—C7—N1—N20.5 (3)
C7—C6—C1—C2176.56 (19)C9—N2—N1—C7178.00 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N10.821.842.557 (2)145
O1—H1···O3i0.821.982.791 (2)170
N2—H2B···O2ii0.862.353.185 (2)164
C2—H2A···O3i0.932.423.141 (3)135
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC10H12N2O4
Mr224.22
Crystal system, space groupMonoclinic, P21/n
Temperature (K)223
a, b, c (Å)10.714 (5), 8.700 (4), 11.682 (6)
β (°) 107.872 (6)
V3)1036.3 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.24 × 0.23 × 0.19
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS, Bruker, 2002)
Tmin, Tmax0.977, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
5096, 1815, 1355
Rint0.027
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.131, 1.05
No. of reflections1815
No. of parameters149
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.18

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N10.821.842.557 (2)145
O1—H1···O3i0.821.982.791 (2)170
N2—H2B···O2ii0.862.353.185 (2)164
C2—H2A···O3i0.932.423.141 (3)135
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

The authors thank Hangzhou Vocational and Technical College, China, for financial support.

References

First citationBorg, S., Vollinga, R. C., Labarre, M., Payza, K., Terenius, L. & Luthman, K. (1999). J. Med. Chem. 42, 4331–4342.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHadjoudis, E., Vittorakis, M. & Moustakali-Mavridis, J. (1987). Tetrahedron, 43, 1345–1360.  CrossRef CAS Web of Science Google Scholar
First citationLv, L.-P., Yu, W.-P., Yu, W.-B., Zhou, X.-F. & Hu, X.-C. (2008). Acta Cryst. E64, o1676.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationParashar, R. K., Sharma, R. C., Kumar, A. & Mohanm, G. (1988). Inorg. Chim. Acta, 151, 201–208.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds