organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages o2028-o2029

Methyl 3-(4-bromo­phen­yl)-1-methyl-1,2,3,3a,4,9b-hexa­hydro­benzo[f]chromeno[4,3-b]pyrrole-3a-carboxyl­ate

aDepartment of Physics, Easwari Engineering College, Ramapuram, Chennai 600 089, India, bDepartment of Physics, SRM University, Ramapuram Campus, Chennai 600 089, India, and cDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: sudharose18@gmail.com

(Received 17 July 2009; accepted 23 July 2009; online 29 July 2009)

In the title compound, C24H22BrNO3, the dihydro­pyran ring adopts a half-chair conformation, whereas the pyrrolidine ring is in an envelope conformation. The bromo­phenyl group is oriented at an angle of 66.44 (4)° with respect to the naphthalene ring system. In the crystal structure, mol­ecules are linked into centrosymmetric dimers by C—H⋯π inter­actions and the dimers are connected via C—H⋯Br hydrogen bonds. The crystal structure is further stabilized by ππ inter­actions [centroid–centroid distance = 3.453 (1) Å].

Related literature

For the biological activity of pyrrole derivatives, see: Biava et al. (2005[Biava, M., Porretta, G. C., Poce, G., Deidda, D., Pompei, R., Tafi, A. & Manetti, F. (2005). Bioorg. Med. Chem. 13, 1221-1230.]); Borthwick et al. (2000[Borthwick, A. D., Angier, S. J., Crame, A. J., Exall, A. M., Haley, T. M., Hart, G. J., Mason, A. M., Pennell, A. M. K. & Weingarten, G. G. (2000). J. Med. Chem. 43, 4452-4464.]); Caine (1993[Caine, B. (1993). Science, 260, 1814-1816.]); Carlson (1993[Carlson, J. (1993). Neur. Transm. 94, 11-19.]); Fernandes et al. (2004[Fernandes, E., Costa, D., Toste, S. A., Lima, J. L. & Reis, S. (2004). Free Radical Biol. Med. 37, 1895-1905.]); Jiang et al. (2004[Jiang, S., Lu, H., Liu, S., Zhao, Q., He, Y. & Debnath, A. K. (2004). Antimicrob. Agents Chemother. 48, 4349-4359.]); Sokoloff et al. (1990[Sokoloff, P., Giros, B., Martres, M. P., Bouthenet, M. L. & Schwartz, J. C. (1990). Nature (London), 347, 147-151.]); Tidey (1992[Tidey, J. W. (1992). Behav. Pharm. 3, 553-566.]); Wilner (1985[Wilner, P. (1985). Clin. Neuropharm. 18, suppl.1, 549-556.]). For a related structure, see: Nirmala et al. (2009[Nirmala, S., Kamala, E. T. S., Sudha, L., Kathiravan, S. & Raghunathan, R. (2009). Acta Cryst. E65, o1811.]). For ring-puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C24H22BrNO3

  • Mr = 452.34

  • Monoclinic, P 21 /c

  • a = 12.7856 (4) Å

  • b = 19.9348 (6) Å

  • c = 8.0189 (3) Å

  • β = 106.163 (2)°

  • V = 1963.06 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.12 mm−1

  • T = 293 K

  • 0.25 × 0.20 × 0.15 mm

Data collection
  • Bruker Kappa APEXII area-detector diffractometer

  • Absorption correction: multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.619, Tmax = 0.742

  • 49847 measured reflections

  • 6162 independent reflections

  • 4068 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.102

  • S = 1.02

  • 6162 reflections

  • 262 parameters

  • H-atom parameters constrained

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.51 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C24—H24A⋯Br1i 0.96 2.84 3.789 (3) 172
C20—H20⋯Cg1ii 0.93 2.77 3.653 (2) 160
Symmetry codes: (i) [x+1, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) -x+1, -y, -z+2. Cg1 is the centroid of the C3–C8 ring.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Chromenopyrrole compounds are used in the treatment of impulsive disorders (Caine, 1993), aggressiveness (Tidey, 1992), parkinson's disease (Carlson, 1993), psychoses, memory disorders (Sokoloff et al., 1990), anxiety and depression (Wilner, 1985). Pyrrole derivatives have good in vitro activities against mycobacteria and candidae (Biava et al., 2005). These derivatives also possess anti-inflammatory (Fernandes et al., 2004) and antiviral (Borthwick et al., 2000) activities. It has also been shown that N-substituted pyrrole derivatives inhibit human immuno deficiency virus type-I (HIV-I) (Jiang et al., 2004). In view of its medicinal importance, the crystal structure determination of the title compound was undertaken.

The geometric parameters of the title molecule (Fig. 1) agree well with those reported for a similar structure (Nirmala et al., 2009). The sum of bond angles around atom N1 [332.0 (8)°] is in accordance with sp3 hybridization. The naphthalene ring system (C2-C11) and the bromophenyl group (Br1/C16-C21) are oriented at an angle of 66.44 (4)° with respect to each other. The heterocyclic ring (O1/C1/C2/C11-C13) of the chromenopyrrole unit adopts a half chair conformation with puckering parameters Q = 0.468 (2) Å, θ = 132.5 (2)° and ϕ = 83.1 (3)° (Cremer & Pople, 1975). The pyrrolidine ring (N1/C1/C13-C15) adopts an envelope conformation with puckering parameters q2 = 0.433 (2) Å and ϕ = 214.5 (3)° (Cremer & Pople, 1975). Atom C1 deviates by -0.654 Å from the least-square plane through the remaining four atoms.

The crystal packing is stabilized by intermolecular C—H···Br hydrogen bonds. The molecules are linked into centrosymmetric dimers by C—H···π (C20—H20···Cg1; Cg1 is the centroid of the C3—C8 ring) interactions (Table 1). In addition, ππ interactions between C3—C8 rings at (x, y, z) and (2 -x, 1 -y, 2 -z) stabilize the structure, with a centroid-to-centroid distance of 3.453 (1) Å.

Related literature top

For the biological activity of pyrrole derivatives, see: Biava et al. (2005); Borthwick et al. (2000); Caine (1993); Carlson (1993); Fernandes et al. (2004); Jiang et al. (2004); Sokoloff et al. (1990); Tidey (1992); Wilner (1985). For a related structure, see: Nirmala et al. (2009). For ring-puckering parameters, see: Cremer & Pople (1975). Cg1 is the centroid of the C3–C8 ring.

Experimental top

A mixture of (Z)-methyl 2-((1-formylnaphthalen-2-yloxy)methyl)-3-(4-bromophenyl)acrylate (20 mmol) and sarcosine (30 mmol) were refluxed in benzene for 20 h and the solvent was removed under reduced pressure. The crude product was subjected to column chromatography to get the pure product. Chloroform and methanol (1:1) solvent mixture was used for the crystallization under slow evaporation method.

Refinement top

H atoms were placed in idealized positions and allowed to ride on their parent atoms, with C-H = 0.93, 0.98, 0.97 and 0.96 Å for aromatic, methine, methylene and methyl H respectively, and Uiso(H) = 1.5Ueq(C) for methyl H and Uiso(H) = 1.2Ueq(C) for all other H atoms. Reflections 110 and 100 were omitted during the final cycles of refinement since they were seriously effected by the beamstop.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The packing of the molecules viewed down a axis. H atoms not involed in C—H···Br and C—H···π interactions have been omitted.
Methyl 3-(4-bromophenyl)-1-methyl-1,2,3,3a,4,9b- hexahydrobenzo[f]chromeno[4,3-b]pyrrole-3a-carboxylate top
Crystal data top
C24H22BrNO3F(000) = 928
Mr = 452.34Dx = 1.531 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 14860 reflections
a = 12.7856 (4) Åθ = 2.6–25.2°
b = 19.9348 (6) ŵ = 2.12 mm1
c = 8.0189 (3) ÅT = 293 K
β = 106.163 (2)°Prism, colourless
V = 1963.06 (11) Å30.25 × 0.20 × 0.15 mm
Z = 4
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
6162 independent reflections
Radiation source: fine-focus sealed tube4068 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω and ϕ scansθmax = 30.9°, θmin = 2.0°
Absorption correction: multi-scan
(Blessing, 1995)
h = 1818
Tmin = 0.619, Tmax = 0.742k = 1628
49847 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0439P)2 + 0.7192P]
where P = (Fo2 + 2Fc2)/3
6162 reflections(Δ/σ)max = 0.001
262 parametersΔρmax = 0.58 e Å3
0 restraintsΔρmin = 0.51 e Å3
Crystal data top
C24H22BrNO3V = 1963.06 (11) Å3
Mr = 452.34Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.7856 (4) ŵ = 2.12 mm1
b = 19.9348 (6) ÅT = 293 K
c = 8.0189 (3) Å0.25 × 0.20 × 0.15 mm
β = 106.163 (2)°
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
6162 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
4068 reflections with I > 2σ(I)
Tmin = 0.619, Tmax = 0.742Rint = 0.031
49847 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 1.02Δρmax = 0.58 e Å3
6162 reflectionsΔρmin = 0.51 e Å3
262 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.68758 (13)0.58289 (8)0.6893 (2)0.0281 (3)
H10.74330.61710.69400.034*
C20.73957 (13)0.52048 (8)0.7836 (2)0.0287 (3)
C30.84557 (13)0.49812 (8)0.7827 (2)0.0306 (3)
C40.91361 (15)0.53431 (10)0.7029 (2)0.0381 (4)
H40.88890.57450.64700.046*
C51.01452 (16)0.51164 (11)0.7061 (2)0.0455 (5)
H51.05760.53670.65300.055*
C61.05416 (17)0.45149 (12)0.7878 (3)0.0510 (5)
H61.12260.43600.78690.061*
C70.99246 (17)0.41579 (11)0.8685 (3)0.0474 (5)
H71.01950.37590.92410.057*
C80.88813 (15)0.43783 (9)0.8699 (2)0.0357 (4)
C90.82649 (16)0.40202 (9)0.9600 (3)0.0425 (4)
H90.85350.36201.01490.051*
C100.72848 (16)0.42484 (9)0.9681 (2)0.0417 (4)
H100.68930.40131.03090.050*
C110.68588 (14)0.48451 (8)0.8811 (2)0.0329 (3)
C120.52824 (14)0.55294 (8)0.7923 (2)0.0338 (4)
H12A0.47140.57000.83960.041*
H12B0.49350.53240.68100.041*
C130.59903 (13)0.61089 (8)0.7656 (2)0.0289 (3)
C140.53395 (14)0.65915 (8)0.6186 (2)0.0333 (4)
H140.56950.70310.64030.040*
C150.55720 (16)0.63062 (10)0.4547 (2)0.0424 (4)
H15A0.48960.61890.36920.051*
H15B0.59520.66350.40400.051*
C160.41597 (13)0.66967 (8)0.6127 (2)0.0308 (3)
C170.38794 (16)0.72456 (9)0.6967 (3)0.0449 (5)
H170.44200.75440.75360.054*
C180.28173 (17)0.73619 (10)0.6981 (3)0.0491 (5)
H180.26450.77320.75580.059*
C190.20242 (15)0.69243 (9)0.6136 (2)0.0379 (4)
C200.22678 (14)0.63726 (9)0.5282 (2)0.0362 (4)
H200.17210.60770.47150.043*
C210.33319 (14)0.62635 (8)0.5280 (2)0.0337 (4)
H210.34990.58920.46990.040*
C220.68903 (16)0.55698 (9)0.3883 (2)0.0385 (4)
H22A0.73260.51770.42590.058*
H22B0.73570.59450.38580.058*
H22C0.64130.54960.27400.058*
C230.63964 (14)0.65052 (8)0.9323 (2)0.0338 (4)
C240.7836 (2)0.71536 (12)1.1053 (3)0.0631 (7)
H24A0.85550.72991.10720.095*
H24B0.78690.68961.20780.095*
H24C0.73780.75381.10180.095*
N10.62481 (12)0.57086 (7)0.50776 (18)0.0322 (3)
O10.58933 (10)0.50339 (6)0.90663 (17)0.0412 (3)
O20.73947 (11)0.67466 (8)0.9542 (2)0.0529 (4)
O30.58771 (13)0.66160 (9)1.03113 (19)0.0594 (4)
Br10.056104 (18)0.708461 (13)0.61041 (4)0.06427 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0292 (8)0.0257 (7)0.0314 (8)0.0020 (6)0.0121 (6)0.0029 (6)
C20.0324 (8)0.0275 (7)0.0275 (8)0.0002 (6)0.0103 (7)0.0006 (6)
C30.0332 (8)0.0333 (8)0.0255 (8)0.0009 (6)0.0085 (6)0.0059 (6)
C40.0382 (9)0.0452 (10)0.0322 (9)0.0007 (7)0.0118 (7)0.0013 (7)
C50.0370 (10)0.0638 (13)0.0382 (10)0.0007 (9)0.0144 (8)0.0083 (9)
C60.0379 (10)0.0685 (14)0.0469 (12)0.0140 (10)0.0121 (9)0.0119 (10)
C70.0477 (11)0.0486 (11)0.0429 (11)0.0169 (9)0.0076 (9)0.0056 (9)
C80.0382 (9)0.0375 (9)0.0297 (9)0.0063 (7)0.0064 (7)0.0052 (7)
C90.0523 (11)0.0324 (9)0.0405 (10)0.0103 (8)0.0092 (9)0.0053 (8)
C100.0512 (11)0.0344 (9)0.0426 (10)0.0008 (8)0.0181 (9)0.0105 (8)
C110.0362 (9)0.0315 (8)0.0326 (9)0.0004 (7)0.0124 (7)0.0030 (7)
C120.0304 (8)0.0343 (8)0.0397 (9)0.0005 (6)0.0146 (7)0.0089 (7)
C130.0278 (8)0.0288 (7)0.0324 (8)0.0006 (6)0.0122 (6)0.0043 (6)
C140.0322 (8)0.0302 (8)0.0375 (9)0.0009 (6)0.0100 (7)0.0072 (7)
C150.0399 (10)0.0523 (11)0.0375 (10)0.0099 (8)0.0150 (8)0.0143 (8)
C160.0321 (8)0.0260 (7)0.0334 (9)0.0029 (6)0.0077 (7)0.0028 (6)
C170.0396 (10)0.0328 (9)0.0559 (12)0.0008 (7)0.0024 (9)0.0141 (8)
C180.0480 (11)0.0385 (10)0.0585 (13)0.0110 (8)0.0106 (10)0.0155 (9)
C190.0348 (9)0.0392 (9)0.0401 (10)0.0095 (7)0.0110 (8)0.0041 (7)
C200.0348 (9)0.0346 (9)0.0373 (9)0.0027 (7)0.0068 (7)0.0015 (7)
C210.0377 (9)0.0293 (8)0.0346 (9)0.0016 (7)0.0110 (7)0.0045 (7)
C220.0453 (10)0.0421 (10)0.0315 (9)0.0002 (8)0.0164 (8)0.0016 (7)
C230.0333 (9)0.0317 (8)0.0367 (9)0.0059 (7)0.0103 (7)0.0042 (7)
C240.0480 (13)0.0636 (14)0.0739 (16)0.0068 (10)0.0107 (11)0.0321 (12)
N10.0346 (7)0.0358 (7)0.0280 (7)0.0006 (6)0.0118 (6)0.0051 (6)
O10.0393 (7)0.0416 (7)0.0498 (8)0.0059 (5)0.0238 (6)0.0190 (6)
O20.0394 (7)0.0582 (9)0.0646 (9)0.0116 (6)0.0203 (7)0.0283 (7)
O30.0555 (9)0.0822 (11)0.0476 (8)0.0085 (8)0.0263 (7)0.0169 (8)
Br10.04256 (13)0.07000 (17)0.0859 (2)0.01747 (10)0.02724 (12)0.00945 (12)
Geometric parameters (Å, º) top
C1—N11.473 (2)C14—C161.511 (2)
C1—C21.510 (2)C14—C151.536 (3)
C1—C131.534 (2)C14—H140.98
C1—H10.98C15—N11.464 (2)
C2—C111.377 (2)C15—H15A0.97
C2—C31.429 (2)C15—H15B0.97
C3—C41.413 (2)C16—C171.383 (2)
C3—C81.421 (2)C16—C211.388 (2)
C4—C51.361 (3)C17—C181.381 (3)
C4—H40.93C17—H170.93
C5—C61.392 (3)C18—C191.366 (3)
C5—H50.93C18—H180.93
C6—C71.353 (3)C19—C201.376 (3)
C6—H60.93C19—Br11.8910 (18)
C7—C81.408 (3)C20—C211.378 (2)
C7—H70.93C20—H200.93
C8—C91.403 (3)C21—H210.93
C9—C101.352 (3)C22—N11.452 (2)
C9—H90.93C22—H22A0.96
C10—C111.410 (2)C22—H22B0.96
C10—H100.93C22—H22C0.96
C11—O11.360 (2)C23—O31.188 (2)
C12—O11.424 (2)C23—O21.329 (2)
C12—C131.519 (2)C24—O21.437 (3)
C12—H12A0.97C24—H24A0.96
C12—H12B0.97C24—H24B0.96
C13—C231.514 (2)C24—H24C0.96
C13—C141.569 (2)
N1—C1—C2113.78 (13)C16—C14—C13115.15 (13)
N1—C1—C13101.17 (13)C15—C14—C13103.15 (13)
C2—C1—C13111.80 (13)C16—C14—H14107.0
N1—C1—H1109.9C15—C14—H14107.0
C2—C1—H1109.9C13—C14—H14107.0
C13—C1—H1109.9N1—C15—C14106.96 (14)
C11—C2—C3117.65 (15)N1—C15—H15A110.3
C11—C2—C1119.57 (14)C14—C15—H15A110.3
C3—C2—C1122.72 (14)N1—C15—H15B110.3
C4—C3—C8117.08 (16)C14—C15—H15B110.3
C4—C3—C2123.20 (15)H15A—C15—H15B108.6
C8—C3—C2119.69 (15)C17—C16—C21117.69 (16)
C5—C4—C3121.46 (18)C17—C16—C14119.11 (15)
C5—C4—H4119.3C21—C16—C14123.20 (15)
C3—C4—H4119.3C18—C17—C16121.72 (17)
C4—C5—C6120.93 (19)C18—C17—H17119.1
C4—C5—H5119.5C16—C17—H17119.1
C6—C5—H5119.5C19—C18—C17118.97 (17)
C7—C6—C5119.57 (18)C19—C18—H18120.5
C7—C6—H6120.2C17—C18—H18120.5
C5—C6—H6120.2C18—C19—C20121.18 (17)
C6—C7—C8121.30 (19)C18—C19—Br1119.58 (14)
C6—C7—H7119.4C20—C19—Br1119.23 (14)
C8—C7—H7119.4C19—C20—C21119.14 (16)
C9—C8—C7120.97 (17)C19—C20—H20120.4
C9—C8—C3119.39 (16)C21—C20—H20120.4
C7—C8—C3119.61 (18)C20—C21—C16121.29 (15)
C10—C9—C8120.98 (17)C20—C21—H21119.4
C10—C9—H9119.5C16—C21—H21119.4
C8—C9—H9119.5N1—C22—H22A109.5
C9—C10—C11119.71 (17)N1—C22—H22B109.5
C9—C10—H10120.1H22A—C22—H22B109.5
C11—C10—H10120.1N1—C22—H22C109.5
O1—C11—C2123.97 (15)H22A—C22—H22C109.5
O1—C11—C10113.62 (15)H22B—C22—H22C109.5
C2—C11—C10122.39 (16)O3—C23—O2122.60 (17)
O1—C12—C13112.14 (14)O3—C23—C13124.61 (16)
O1—C12—H12A109.2O2—C23—C13112.73 (14)
C13—C12—H12A109.2O2—C24—H24A109.5
O1—C12—H12B109.2O2—C24—H24B109.5
C13—C12—H12B109.2H24A—C24—H24B109.5
H12A—C12—H12B107.9O2—C24—H24C109.5
C23—C13—C12110.09 (14)H24A—C24—H24C109.5
C23—C13—C1115.59 (13)H24B—C24—H24C109.5
C12—C13—C1108.33 (13)C22—N1—C15111.10 (13)
C23—C13—C14108.83 (13)C22—N1—C1115.52 (14)
C12—C13—C14111.11 (13)C15—N1—C1105.67 (13)
C1—C13—C14102.70 (13)C11—O1—C12116.96 (12)
C16—C14—C15117.01 (15)C23—O2—C24116.95 (16)
N1—C1—C2—C1194.11 (18)C12—C13—C14—C1637.3 (2)
C13—C1—C2—C1119.7 (2)C1—C13—C14—C16152.89 (14)
N1—C1—C2—C388.72 (18)C23—C13—C14—C15147.21 (14)
C13—C1—C2—C3157.44 (15)C12—C13—C14—C1591.41 (16)
C11—C2—C3—C4173.26 (16)C1—C13—C14—C1524.21 (16)
C1—C2—C3—C44.0 (2)C16—C14—C15—N1125.38 (15)
C11—C2—C3—C84.7 (2)C13—C14—C15—N12.14 (18)
C1—C2—C3—C8178.13 (15)C15—C14—C16—C17143.63 (18)
C8—C3—C4—C51.5 (3)C13—C14—C16—C1794.9 (2)
C2—C3—C4—C5179.42 (16)C15—C14—C16—C2137.0 (2)
C3—C4—C5—C60.3 (3)C13—C14—C16—C2184.4 (2)
C4—C5—C6—C71.5 (3)C21—C16—C17—C180.5 (3)
C5—C6—C7—C80.7 (3)C14—C16—C17—C18178.94 (19)
C6—C7—C8—C9177.30 (18)C16—C17—C18—C190.3 (3)
C6—C7—C8—C31.1 (3)C17—C18—C19—C200.2 (3)
C4—C3—C8—C9176.27 (16)C17—C18—C19—Br1178.80 (16)
C2—C3—C8—C91.8 (2)C18—C19—C20—C210.2 (3)
C4—C3—C8—C72.1 (2)Br1—C19—C20—C21178.80 (13)
C2—C3—C8—C7179.83 (16)C19—C20—C21—C160.3 (3)
C7—C8—C9—C10176.89 (18)C17—C16—C21—C200.5 (3)
C3—C8—C9—C101.5 (3)C14—C16—C21—C20178.91 (16)
C8—C9—C10—C111.8 (3)C12—C13—C23—O337.5 (2)
C3—C2—C11—O1173.77 (15)C1—C13—C23—O3160.58 (17)
C1—C2—C11—O13.5 (3)C14—C13—C23—O384.5 (2)
C3—C2—C11—C104.5 (3)C12—C13—C23—O2145.27 (15)
C1—C2—C11—C10178.16 (16)C1—C13—C23—O222.1 (2)
C9—C10—C11—O1177.08 (17)C14—C13—C23—O292.74 (17)
C9—C10—C11—C21.4 (3)C14—C15—N1—C22155.30 (15)
O1—C12—C13—C2367.90 (18)C14—C15—N1—C129.30 (18)
O1—C12—C13—C159.38 (18)C2—C1—N1—C2272.26 (17)
O1—C12—C13—C14171.46 (13)C13—C1—N1—C22167.70 (13)
N1—C1—C13—C23160.07 (13)C2—C1—N1—C15164.50 (13)
C2—C1—C13—C2378.49 (17)C13—C1—N1—C1544.46 (15)
N1—C1—C13—C1275.89 (15)C2—C11—O1—C1216.4 (2)
C2—C1—C13—C1245.55 (18)C10—C11—O1—C12165.22 (16)
N1—C1—C13—C1441.73 (14)C13—C12—O1—C1145.0 (2)
C2—C1—C13—C14163.17 (13)O3—C23—O2—C240.2 (3)
C23—C13—C14—C1684.11 (17)C13—C23—O2—C24177.54 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C24—H24A···Br1i0.962.843.789 (3)172
C20—H20···Cg1ii0.932.773.653 (2)160
Symmetry codes: (i) x+1, y+3/2, z+1/2; (ii) x+1, y, z+2.

Experimental details

Crystal data
Chemical formulaC24H22BrNO3
Mr452.34
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)12.7856 (4), 19.9348 (6), 8.0189 (3)
β (°) 106.163 (2)
V3)1963.06 (11)
Z4
Radiation typeMo Kα
µ (mm1)2.12
Crystal size (mm)0.25 × 0.20 × 0.15
Data collection
DiffractometerBruker Kappa APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.619, 0.742
No. of measured, independent and
observed [I > 2σ(I)] reflections
49847, 6162, 4068
Rint0.031
(sin θ/λ)max1)0.722
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.102, 1.02
No. of reflections6162
No. of parameters262
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.58, 0.51

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C24—H24A···Br1i0.962.843.789 (3)172
C20—H20···Cg1ii0.932.773.653 (2)160
Symmetry codes: (i) x+1, y+3/2, z+1/2; (ii) x+1, y, z+2.
 

Acknowledgements

SN thanks Dr Babu Vargheese, SAIF, IIT Madras, India, for his help with the data collection and SRM management, India, for their support.

References

First citationBiava, M., Porretta, G. C., Poce, G., Deidda, D., Pompei, R., Tafi, A. & Manetti, F. (2005). Bioorg. Med. Chem. 13, 1221–1230.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBorthwick, A. D., Angier, S. J., Crame, A. J., Exall, A. M., Haley, T. M., Hart, G. J., Mason, A. M., Pennell, A. M. K. & Weingarten, G. G. (2000). J. Med. Chem. 43, 4452–4464.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCaine, B. (1993). Science, 260, 1814–1816.  CrossRef CAS PubMed Web of Science Google Scholar
First citationCarlson, J. (1993). Neur. Transm. 94, 11–19.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFernandes, E., Costa, D., Toste, S. A., Lima, J. L. & Reis, S. (2004). Free Radical Biol. Med. 37, 1895–1905.  Web of Science CrossRef CAS Google Scholar
First citationJiang, S., Lu, H., Liu, S., Zhao, Q., He, Y. & Debnath, A. K. (2004). Antimicrob. Agents Chemother. 48, 4349–4359.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNirmala, S., Kamala, E. T. S., Sudha, L., Kathiravan, S. & Raghunathan, R. (2009). Acta Cryst. E65, o1811.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSokoloff, P., Giros, B., Martres, M. P., Bouthenet, M. L. & Schwartz, J. C. (1990). Nature (London), 347, 147–151.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTidey, J. W. (1992). Behav. Pharm. 3, 553–566.  CrossRef CAS Google Scholar
First citationWilner, P. (1985). Clin. Neuropharm. 18, suppl.1, 549–556.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages o2028-o2029
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds