organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-[(E)-(4-Ethyl­phen­yl)imino­meth­yl]benzene-1,2-diol

aDepartment of Physics, Ondokuz Mayıs University, TR-55139 Samsun, Turkey, bSinop University, Sinop Faculty of Education, Sinop, Turkey, and cPamukkale University, Denizli Technical Vocational School, Denizli, Turkey
*Correspondence e-mail: zeynep.kelesoglu@omu.edu.tr

(Received 21 July 2009; accepted 28 July 2009; online 31 July 2009)

The title compound, C15H15NO2, adopts the enol–imine tautomeric form. The dihedral angle between the two benzene rings is 48.1 (1)°. Intra­molecular O—H⋯N and O—H⋯O hydrogen bonds generate S(6) and S(5) ring motifs, respectively. In the crystal, mol­ecules are linked into centrosymmetric R22(10) dimers via pairs of O—H⋯O hydrogen bonds and the dimers may interact through very weak by ππ inter­actions [centroid–centroid distance = 4.150 (1) Å]. The ethyl group is disordered over two orientations, with occupancies of 0.587 (11) and 0.413 (11).

Related literature

For the photochromic and thermochromic properties of Schiff base compounds, see: Elmali et al. (1999[Elmali, A., Kabak, M., Kavlakoglu, E., Elerman, Y. & Durlu, T. N. (1999). J. Mol. Struct. 510, 207-214.]); Guha et al. (2000[Guha, D., Mandal, A., Koll, A., Filarowski, A. & Mukherjee, S. (2000). Spectrochim. Acta A, 56, 2669-2677.]); Kletski et al. (1997[Kletski, M., Milov, A., Metelisa, A. & Knyazhansky, M. (1997). J. Photochem. Photobiol. A, 110, 267-270.]); Kownacki et al. (1994[Kownacki, K., Mordzinski, A., Wilbrandt, R. & Grobowska, A. (1994). Chem. Phys. Lett. 227, 270-276.]); Zgierski et al. (2000[Zgierski, M. & Grobowska, A. (2000). J. Chem. Phys. 113, 7845-7852.]). For Schiff base tautomerism, see: Alarcon et al. (1995[Alarcon, S. H., Olivieri, A. C. & Nordon, A. (1995). Tetrahedron, 51, 4619-4626.]); Dudek et al., (1966[Dudek, G. O. & Dudek, E. P. (1966). J. Am. Chem. Soc. 88, 2407-2412.]); Salman et al. (1991[Salman, S. R., Lindon, J. C. & Farrant, R. D. (1991). Spectrosc. Lett. 24, 1071-1078.], 1993[Salman, S. R., Lindon, J. C. & Farrant, R. D. (1993). Magn. Reson. Chem. 31, 991-994.]). For a related structure, see: Özek et al. (2009[Özek, A., Büyükgüngör, O., Albayrak, Ç. & Odabaşoğlu, M. (2009). Acta Cryst. E65, o791.]). For graph-set motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C15H15NO2

  • Mr = 241.28

  • Triclinic, [P \overline 1]

  • a = 6.1893 (4) Å

  • b = 8.7704 (6) Å

  • c = 12.7605 (9) Å

  • α = 87.326 (6)°

  • β = 86.397 (6)°

  • γ = 69.394 (5)°

  • V = 646.85 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.54 × 0.41 × 0.31 mm

Data collection
  • Stoe IPDS II diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.966, Tmax = 0.979

  • 8683 measured reflections

  • 2668 independent reflections

  • 1896 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.148

  • S = 1.03

  • 2668 reflections

  • 191 parameters

  • 28 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.95 (3) 1.72 (3) 2.596 (2) 152 (2)
O2—H2⋯O1 0.88 (3) 2.29 (3) 2.7307 (19) 111 (2)
O2—H2⋯O1i 0.88 (3) 2.06 (3) 2.818 (2) 143 (2)
Symmetry code: (i) -x, -y+1, -z+1.

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

There has been considerable interest in some Schiff bases derived from salicylaldehyde and substituted salicylaldehyde because they show thermochromism and photochromism in the solid state (Kownacki et al., 1994). The tautomerism in the Schiff base ligands plays an important role for distinguishing their photochromic (Guha et al., 2000) and thermochromic (Zgierski et al., 2000) characteristics. It has been proposed that molecules showing thermochromism are planar, while those showing photochromism are non-planar (Kletski et al., 1997), both phenomena being associated with a proton transfer (Elmali et al., 1999). Schiff bases derived from the condensation of salicylaldehyde with aniline and substituted aniline, and naphthaldehyde with aniline exists as enol-imine (Dudek et al., 1966), keto-amine (Salman et al., 1991), or enol-imine/keto-amine form (Salman et al., 1993; Alarcon et al., 1995) in all solvents.

The X-ray analysis shows that the title compound prefers an enol-imine tautomeric form, with a strong intramolecular O1—H1···N1 hydrogen bond. This is also confirmed by the C2—O1 [1.361 (2) Å], C7—N1 [1.278 (2) Å], C1—C7 [1.445 (2) Å] and C1—C2 [1.399 (2) Å] bond lengths (Fig. 1). The C2—O1 bond length of 1.361 (2) Å indicates a single-bond character and the C7—N1 bond length of 1.278 (2) Å indicates a high degree of double-bond character. Similar results were observed for (E)-4-methoxy-2-[(o-tolilimino)methyl]phenol [C—O = 1.357 (2) Å, CN= 1.286 (2) Å; Özek et al., 2009]. An intramolecular O2—H2···O1 hydrogen bond is also observed. The O—H···N and O—H···O hydrogen bonds generate S(6) and S(5) ring motifs, respectively (Bernstein et al., 1995).

The dihedral angle between benzene rings A(C1-C6) and B(C8-C13) is 48.1 (1)°. The nearly planar S(6) ring C(O1/H1/N1/C1/C2/C7) is oriented with respect to rings A and B at dihedral angles of A/C = 1.89 (42)° and B/C = 46.23 (25)°. It is known that Schiff bases may exhibit thermochromism or photochromism, depending on the planarity or non-planarity of the molecule, respectively. Since the title moleclule is non-planar, one can expect photochromic properties in title compound.

In the crystal structure, molecules are linked into centrosymmetric R22(10) dimers via O—H···O hydrogen bonds (Table 2). A very weak ππ interaction occurs between A(C1-C6) rings at (x, y, z) and (1-x, 1-y, 1-z), with a ring centroid-to centroid distance of 4.150 (1) Å; only atoms C1, C2 and C3 are involved in the interactions as the rings are displaced.

Related literature top

For the photochromic and thermochromic properties of Schiff base compounds, see: Elmali et al. (1999); Guha et al. (2000); Kletski et al. (1997); Kownacki et al. (1994); Zgierski et al. (2000). For Schiff base tautomerism, see: Alarcon et al. (1995); Dudek et al., (1966); Salman et al. (1991, 1993). For a related structure, see: Özek et al. (2009). For graph-set motifs, see: Bernstein et al. (1995).

Experimental top

Compound (I) was prepared by refluxing a mixture of 2,3-dihidroxy benzalaldehyde (0.5 g 0.0036 mol) in ethanol (20 ml) and 4-ethylaniline (0.436 g 0.0036 mol) in ethanol (20 ml). The reaction mixture was stirred for 1 h under reflux. Single crystals of (I) suitable for X-ray analysis were obtained by slow evaporation of a methanol solution (yield 87%, m.p. 378-379 K).

Refinement top

The ethyl group is disordered over two orientations, with occupancies of 0.587 (11) and 0.413 (11). The Uij parameters of the disordered atoms were restrained to an approximate isotropic behaviour. The C—C distances involving disordered atoms were restrained to 1.54 (2) Å. The hydroxyl H atoms were located in a difference Fourier map and were refined freely. All other H-atoms were refined using a riding model with d(C-H) = 0.93–0.96 Å (Uiso = 1.2Ueq of the parent atom) for aromatic and ethyl C atoms and d(C-H) = 0.97 Å (Uiso=1.5Ueq of the parent atom) for methyl C atoms.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme. Only the major disorder component of the ethyl group is shown. Dashed lines indicate hydrogen bonds.
[Figure 2] Fig. 2. A packing diagram for (I), showing the formation dimers through O—H···O hydrogen bonds and ππ interactions. [Symmetry code: (i) -x, 1 - y, 1 - z; (ii) 1 - x, 1 - y, 1 - z]. H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity. Cg1 and Cg2 are centroids of the C1-C6 and C8-C13 rings, respectively.
3-[(E)-(4-Ethylphenyl)iminomethyl]benzene-1,2-diol top
Crystal data top
C15H15NO2Z = 2
Mr = 241.28F(000) = 256
Triclinic, P1Dx = 1.239 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.1893 (4) ÅCell parameters from 8683 reflections
b = 8.7704 (6) Åθ = 1.6–28.0°
c = 12.7605 (9) ŵ = 0.08 mm1
α = 87.326 (6)°T = 296 K
β = 86.397 (6)°Prism, red
γ = 69.394 (5)°0.54 × 0.41 × 0.31 mm
V = 646.85 (8) Å3
Data collection top
Stoe IPDS II
diffractometer
2668 independent reflections
Radiation source: fine-focus sealed tube1896 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
Detector resolution: 6.67 pixels mm-1θmax = 26.5°, θmin = 1.6°
rotation method scansh = 77
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 1111
Tmin = 0.966, Tmax = 0.979l = 1515
8683 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.148 w = 1/[σ2(Fo2) + (0.0674P)2 + 0.1042P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
2668 reflectionsΔρmax = 0.24 e Å3
191 parametersΔρmin = 0.13 e Å3
28 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.030 (7)
Crystal data top
C15H15NO2γ = 69.394 (5)°
Mr = 241.28V = 646.85 (8) Å3
Triclinic, P1Z = 2
a = 6.1893 (4) ÅMo Kα radiation
b = 8.7704 (6) ŵ = 0.08 mm1
c = 12.7605 (9) ÅT = 296 K
α = 87.326 (6)°0.54 × 0.41 × 0.31 mm
β = 86.397 (6)°
Data collection top
Stoe IPDS II
diffractometer
2668 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
1896 reflections with I > 2σ(I)
Tmin = 0.966, Tmax = 0.979Rint = 0.042
8683 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05128 restraints
wR(F2) = 0.148H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.24 e Å3
2668 reflectionsΔρmin = 0.13 e Å3
191 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.5280 (3)0.5619 (2)0.34375 (15)0.0590 (5)
C20.3189 (3)0.5824 (2)0.40019 (14)0.0557 (4)
C30.2107 (3)0.7228 (2)0.45769 (15)0.0583 (5)
C40.3058 (3)0.8430 (2)0.45564 (17)0.0664 (5)
H40.23220.93720.49320.080*
C50.5101 (4)0.8250 (2)0.39809 (18)0.0717 (6)
H50.57190.90760.39640.086*
C60.6212 (4)0.6859 (2)0.34379 (17)0.0700 (5)
H60.76000.67360.30650.084*
C70.6472 (3)0.4135 (2)0.28805 (15)0.0636 (5)
H70.79130.39960.25540.076*
C80.6932 (3)0.1541 (2)0.23042 (15)0.0629 (5)
C90.9261 (4)0.0745 (3)0.24457 (18)0.0752 (6)
H91.00260.11690.28920.090*
C101.0450 (4)0.0671 (3)0.1929 (2)0.0914 (8)
H101.20100.12020.20410.110*
C110.9377 (5)0.1323 (3)0.1246 (2)0.0994 (8)
C120.7038 (5)0.0553 (3)0.1148 (2)0.0949 (8)
H120.62630.09940.07180.114*
C130.5816 (4)0.0857 (3)0.16706 (18)0.0789 (6)
H130.42330.13470.15950.095*
C14A1.0861 (17)0.2683 (8)0.0432 (7)0.120 (3)0.587 (11)
H14A0.99520.27140.01530.144*0.587 (11)
H14B1.22350.24740.01640.144*0.587 (11)
C15A1.1473 (16)0.4208 (9)0.1053 (5)0.143 (3)0.587 (11)
H15A1.21550.51120.05970.214*0.587 (11)
H15B1.01070.42960.14090.214*0.587 (11)
H15C1.25580.42160.15610.214*0.587 (11)
C14B1.0391 (18)0.3057 (11)0.0870 (10)0.116 (4)0.413 (11)
H14C1.02390.37870.14410.139*0.413 (11)
H14D0.94930.31720.03030.139*0.413 (11)
C15B1.273 (2)0.3543 (17)0.0517 (11)0.164 (5)0.413 (11)
H15D1.29970.42730.00530.246*0.413 (11)
H15E1.36860.40850.10820.246*0.413 (11)
H15F1.30900.26010.02820.246*0.413 (11)
N10.5630 (3)0.30067 (18)0.28177 (13)0.0637 (4)
O10.2152 (2)0.46864 (15)0.40254 (11)0.0659 (4)
O20.0118 (2)0.74271 (17)0.51685 (13)0.0749 (5)
H10.314 (5)0.386 (3)0.358 (2)0.099 (8)*
H20.027 (5)0.655 (4)0.515 (2)0.111 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0606 (11)0.0534 (10)0.0622 (11)0.0192 (8)0.0047 (9)0.0012 (8)
C20.0577 (10)0.0463 (9)0.0641 (11)0.0189 (8)0.0078 (8)0.0009 (7)
C30.0546 (10)0.0491 (9)0.0695 (12)0.0150 (8)0.0065 (8)0.0049 (8)
C40.0681 (12)0.0502 (10)0.0818 (13)0.0197 (9)0.0128 (10)0.0079 (9)
C50.0766 (13)0.0580 (11)0.0896 (15)0.0339 (10)0.0112 (11)0.0003 (10)
C60.0674 (12)0.0667 (12)0.0807 (14)0.0301 (10)0.0005 (10)0.0004 (10)
C70.0628 (11)0.0606 (11)0.0638 (12)0.0185 (9)0.0036 (9)0.0008 (9)
C80.0712 (12)0.0564 (10)0.0585 (11)0.0195 (9)0.0014 (9)0.0034 (8)
C90.0736 (13)0.0669 (12)0.0793 (14)0.0156 (10)0.0063 (10)0.0143 (10)
C100.0826 (16)0.0733 (14)0.1042 (19)0.0078 (12)0.0029 (13)0.0206 (13)
C110.112 (2)0.0714 (14)0.104 (2)0.0159 (14)0.0015 (15)0.0307 (13)
C120.117 (2)0.0750 (15)0.0955 (18)0.0321 (15)0.0172 (15)0.0207 (13)
C130.0826 (15)0.0695 (13)0.0861 (15)0.0265 (11)0.0127 (12)0.0062 (11)
C14A0.144 (6)0.085 (4)0.129 (5)0.042 (4)0.014 (4)0.013 (3)
C15A0.182 (7)0.098 (5)0.114 (4)0.007 (4)0.007 (4)0.021 (3)
C14B0.137 (6)0.059 (5)0.136 (7)0.016 (4)0.034 (5)0.044 (5)
C15B0.156 (8)0.135 (7)0.185 (9)0.036 (6)0.038 (7)0.029 (6)
N10.0668 (10)0.0559 (9)0.0655 (10)0.0181 (7)0.0016 (7)0.0054 (7)
O10.0642 (8)0.0517 (7)0.0840 (10)0.0234 (6)0.0090 (7)0.0149 (6)
O20.0646 (9)0.0587 (8)0.1033 (12)0.0236 (7)0.0119 (7)0.0265 (7)
Geometric parameters (Å, º) top
C1—C21.399 (3)C11—C121.376 (4)
C1—C61.399 (3)C11—C14B1.514 (7)
C1—C71.445 (3)C11—C14A1.603 (8)
C2—O11.361 (2)C12—C131.379 (3)
C2—C31.395 (2)C12—H120.93
C3—O21.364 (2)C13—H130.93
C3—C41.375 (3)C14A—C15A1.464 (11)
C4—C51.385 (3)C14A—H14A0.97
C4—H40.93C14A—H14B0.97
C5—C61.367 (3)C15A—H15A0.96
C5—H50.93C15A—H15B0.96
C6—H60.93C15A—H15C0.96
C7—N11.278 (2)C14B—C15B1.405 (15)
C7—H70.93C14B—H14C0.97
C8—C131.378 (3)C14B—H14D0.97
C8—C91.382 (3)C15B—H15D0.96
C8—N11.419 (2)C15B—H15E0.96
C9—C101.375 (3)C15B—H15F0.96
C9—H90.93O1—H10.95 (3)
C10—C111.383 (4)O2—H20.88 (3)
C10—H100.93
C2—C1—C6118.93 (17)C10—C11—C14A121.0 (4)
C2—C1—C7120.31 (17)C11—C12—C13121.7 (2)
C6—C1—C7120.76 (18)C11—C12—H12119.2
O1—C2—C3117.70 (17)C13—C12—H12119.2
O1—C2—C1122.45 (16)C8—C13—C12120.2 (2)
C3—C2—C1119.85 (16)C8—C13—H13119.9
O2—C3—C4119.15 (17)C12—C13—H13119.9
O2—C3—C2121.02 (16)C15A—C14A—C11104.1 (6)
C4—C3—C2119.83 (18)C15A—C14A—H14A110.9
C3—C4—C5120.55 (18)C11—C14A—H14A110.9
C3—C4—H4119.7C15A—C14A—H14B110.9
C5—C4—H4119.7C11—C14A—H14B110.9
C6—C5—C4120.14 (19)H14A—C14A—H14B109.0
C6—C5—H5119.9C14A—C15A—H15A109.5
C4—C5—H5119.9C14A—C15A—H15B109.5
C5—C6—C1120.7 (2)H15A—C15A—H15B109.5
C5—C6—H6119.7C14A—C15A—H15C109.5
C1—C6—H6119.7H15A—C15A—H15C109.5
N1—C7—C1122.76 (18)H15B—C15A—H15C109.5
N1—C7—H7118.6C15B—C14B—C11114.5 (9)
C1—C7—H7118.6C15B—C14B—H14C108.6
C13—C8—C9118.79 (18)C11—C14B—H14C108.6
C13—C8—N1118.77 (19)C15B—C14B—H14D108.6
C9—C8—N1122.40 (18)C11—C14B—H14D108.6
C10—C9—C8120.3 (2)H14C—C14B—H14D107.6
C10—C9—H9119.9C14B—C15B—H15D109.5
C8—C9—H9119.9C14B—C15B—H15E109.5
C9—C10—C11121.5 (2)H15D—C15B—H15E109.5
C9—C10—H10119.3C14B—C15B—H15F109.5
C11—C10—H10119.3H15D—C15B—H15F109.5
C12—C11—C10117.4 (2)H15E—C15B—H15F109.5
C12—C11—C14B116.2 (5)C7—N1—C8120.19 (17)
C10—C11—C14B123.6 (5)C2—O1—H1103.8 (15)
C12—C11—C14A120.4 (4)C3—O2—H2111.0 (18)
C6—C1—C2—O1178.84 (17)C9—C10—C11—C123.7 (4)
C7—C1—C2—O12.3 (3)C9—C10—C11—C14B164.1 (6)
C6—C1—C2—C31.9 (3)C9—C10—C11—C14A164.1 (4)
C7—C1—C2—C3177.02 (17)C10—C11—C12—C132.8 (4)
O1—C2—C3—O22.1 (3)C14B—C11—C12—C13164.7 (6)
C1—C2—C3—O2177.26 (17)C14A—C11—C12—C13165.0 (4)
O1—C2—C3—C4178.37 (17)C9—C8—C13—C123.3 (3)
C1—C2—C3—C42.3 (3)N1—C8—C13—C12179.0 (2)
O2—C3—C4—C5178.65 (18)C11—C12—C13—C80.6 (4)
C2—C3—C4—C50.9 (3)C12—C11—C14A—C15A109.9 (7)
C3—C4—C5—C60.9 (3)C10—C11—C14A—C15A82.7 (8)
C4—C5—C6—C11.4 (3)C14B—C11—C14A—C15A21.5 (12)
C2—C1—C6—C50.0 (3)C12—C11—C14B—C15B151.7 (11)
C7—C1—C6—C5178.83 (18)C10—C11—C14B—C15B47.7 (16)
C2—C1—C7—N14.6 (3)C14A—C11—C14B—C15B45.5 (13)
C6—C1—C7—N1176.53 (19)C1—C7—N1—C8176.85 (17)
C13—C8—C9—C102.5 (3)C13—C8—N1—C7139.4 (2)
N1—C8—C9—C10179.9 (2)C9—C8—N1—C743.0 (3)
C8—C9—C10—C111.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.95 (3)1.72 (3)2.596 (2)152 (2)
O2—H2···O10.88 (3)2.29 (3)2.7307 (19)111 (2)
O2—H2···O1i0.88 (3)2.06 (3)2.818 (2)143 (2)
Symmetry code: (i) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC15H15NO2
Mr241.28
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)6.1893 (4), 8.7704 (6), 12.7605 (9)
α, β, γ (°)87.326 (6), 86.397 (6), 69.394 (5)
V3)646.85 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.54 × 0.41 × 0.31
Data collection
DiffractometerStoe IPDS II
diffractometer
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.966, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
8683, 2668, 1896
Rint0.042
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.148, 1.03
No. of reflections2668
No. of parameters191
No. of restraints28
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.13

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.95 (3)1.72 (3)2.596 (2)152 (2)
O2—H2···O10.88 (3)2.29 (3)2.7307 (19)111 (2)
O2—H2···O1i0.88 (3)2.06 (3)2.818 (2)143 (2)
Symmetry code: (i) x, y+1, z+1.
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS II diffractometer (purchased under grant F.279 of the University Research Fund).

References

First citationAlarcon, S. H., Olivieri, A. C. & Nordon, A. (1995). Tetrahedron, 51, 4619–4626.  CrossRef CAS Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationDudek, G. O. & Dudek, E. P. (1966). J. Am. Chem. Soc. 88, 2407–2412.  CrossRef CAS Web of Science Google Scholar
First citationElmali, A., Kabak, M., Kavlakoglu, E., Elerman, Y. & Durlu, T. N. (1999). J. Mol. Struct. 510, 207–214.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGuha, D., Mandal, A., Koll, A., Filarowski, A. & Mukherjee, S. (2000). Spectrochim. Acta A, 56, 2669–2677.  Web of Science CrossRef CAS Google Scholar
First citationKletski, M., Milov, A., Metelisa, A. & Knyazhansky, M. (1997). J. Photochem. Photobiol. A, 110, 267–270.  Web of Science CrossRef Google Scholar
First citationKownacki, K., Mordzinski, A., Wilbrandt, R. & Grobowska, A. (1994). Chem. Phys. Lett. 227, 270–276.  CrossRef CAS Web of Science Google Scholar
First citationÖzek, A., Büyükgüngör, O., Albayrak, Ç. & Odabaşoğlu, M. (2009). Acta Cryst. E65, o791.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSalman, S. R., Lindon, J. C. & Farrant, R. D. (1991). Spectrosc. Lett. 24, 1071–1078.  CrossRef CAS Web of Science Google Scholar
First citationSalman, S. R., Lindon, J. C. & Farrant, R. D. (1993). Magn. Reson. Chem. 31, 991–994.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationZgierski, M. & Grobowska, A. (2000). J. Chem. Phys. 113, 7845–7852.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds