organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-3-[(4-Butyl­phen­yl)imino­meth­yl]benzene-1,2-diol

aDepartment of Physics, Ondokuz Mayıs University, TR-55139 Samsun, Turkey, bSinop University, Sinop Faculty of Education, Sinop, Turkey, and cPamukkale University, Denizli Technical Vocational School, Denizli, Turkey
*Correspondence e-mail: zeynep.kelesoglu@omu.edu.tr

(Received 21 July 2009; accepted 23 July 2009; online 29 July 2009)

The title compound, C17H19NO2, exists as an enol–imine tautomer. The dihedral angle between the two benzene rings is 4.6 (2)°. The mol­ecular structure is stabilized by intramol­ecular O—H⋯O and O—H⋯N hydrogen bonds which generate S(5) and S(6) ring motifs, respectively. In the crystal, mol­ecules are linked into centrosymmetric dimers by pairs of O—H⋯O hydrogen bonds. In addition, C—H⋯π inter­actions involving both benzene rings are observed.

Related literature

For general background to Schiff bases, see: Lozier et al. (1975[Lozier, R., Bogomolni, R. A. & Stoekenius, W. (1975). Biophys. J. 15, 955-962.]); Calligaris et al. (1972[Calligaris, M., Nardin, G. & Randaccio, L. (1972). Coord. Chem. Rev. 7, 385-403.]); Maslen & Waters (1975[Maslen, H. S. & Waters, T. N. (1975). Coord. Chem. Rev. 17, 137-176.]); Steward & Lingafelter (1959[Stewart, J. M. & Lingafelter, E. C. (1959). Acta Cryst. 12, 842-845.]). For the photochromic and thermochromic characteristics of Schiff base compounds, see: Hadjoudis et al. (1987[Hadjoudis, E., Vitterakis, M. & Mavridis, I. M. (1987). Tetrahedron, 43, 1345-1360.]); Moustakali-Mavridis et al. (1980[Moustakali-Mavridis, I., Hadjoudis, B. & Mavridis, A. (1980). Acta Cryst. B36, 1126-1130.]). For graph-set motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For related structures, see: Temel et al. (2007[Temel, E., Albayrak, Ç., Odabaşoğlu, M. & Büyükgüngör, O. (2007). Acta Cryst. E63, o2642.]); Koşar et al. (2005[Koşar, B., Albayrak, C., Odabaşoğlu, M. & Büyükgüngör, O. (2005). Acta Cryst. E61, o2109-o2111.]).

[Scheme 1]

Experimental

Crystal data
  • C17H19NO2

  • Mr = 269.33

  • Monoclinic, P 21 /c

  • a = 16.2774 (13) Å

  • b = 6.0148 (6) Å

  • c = 17.6166 (14) Å

  • β = 121.476 (5)°

  • V = 1471.0 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.50 × 0.45 × 0.03 mm

Data collection
  • Stoe IPDSII diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.954, Tmax = 0.998

  • 8711 measured reflections

  • 3061 independent reflections

  • 1643 reflections with I > 2σ(I)

  • Rint = 0.062

Refinement
  • R[F2 > 2σ(F2)] = 0.064

  • wR(F2) = 0.163

  • S = 1.07

  • 3061 reflections

  • 189 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1 0.86 (2) 2.21 (3) 2.728 (2) 118 (3)
O2—H2⋯O1i 0.86 (2) 2.08 (3) 2.802 (3) 141 (3)
O1—H1⋯N1 0.88 (2) 1.74 (2) 2.555 (2) 155 (3)
C6—H6⋯Cg2ii 0.93 2.85 3.645 (3) 144
C10—H10⋯Cg1ii 0.93 2.80 3.491 (3) 132
Symmetry codes: (i) -x+1, -y+3, -z; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]. Cg1 and Cg2 are the centroids of the C1–C6 and C8–C13 rings, respectively.

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Schiff bases are widely used as ligands in the field of coordination chemistry and they play an important role in various field of chemistry due to their biological activities (Lozier et al., 1975). o-Hydroxy Schiff bases derived from the reaction of o-hydroxy aldehydes with aniline have been examined extensively (Steward & Lingafelter, 1959; Calligaris et al., 1972; Maslen & Waters, 1975). Some Schiff bases derived from salicylaldehyde have attracted the interest of chemists and physicists because they show thermochromism and photochromism in the solid state by H-atom transfer from the hydroxy O atom to the N atom (Hadjoudis, et al., 1987). It has been proposed that molecules showing thermochromism are planar while those showing photochromism are non-planar (Moustakali-Mavridis et al., 1980). There are two types of intramolecular hydrogen bonds in Schiff bases arising from the keto-amine (N—H···O) and enol-imine (N···H—O) tautomeric forms.

X-ray analysis shows that compound (I) prefers the enol-imine tautomeric form with a strong intramolecular O—H···N hydrogen bond. A H atom is located on atom O1, thus the enol-imine tautomer is favoured over the keto-amine form, as indicated by the C2—O1 [1.333 (2) Å], C7—N1 [1.297 (2) Å], C1—C7 [1.433 (2) Å] and C1—C2 [1.406 (2) Å] bond lengths (Fig. 1). The C2—O1 bond length of 1.333 (2) Å indicates a single-bond character, whereas the C7—N1 bond length of 1.297 (2) Å indicates a high degree of double-bond character. Similar results were observed for (E)-3-[(2-fluorophenylimino)methyl]benzene-1,2-diol [C—O = 1.354 (19) Å, C—N = 1.285 (2) Å; Temel et al., 2007].

The molecule of (I) is nearly planar, with a dihedral angle between the benzene rings A(C1-C6) and B(C8-C13) of 4.6 (2) Å. Intramolecular O—H···O and O—H···N hydrogen bonds generate S(5) and S(6) ring motifs, respectively (Bernstein et al., 1995) (Fig. 1). The nearly planar S(6) ring forms dihedral angles of 2.3 (4)° and 2.5 (5)° with the rings A and B, respectively.

In the crystal, molecules of (I) are linked by intermolecular O—H···O hydrogen bonds forming centrosymmetric dimers (Fig.2). In addition, C6—H6···Cg2 and C10—H10···Cg1 interactions (Cg1 and Cg2 are the centroids of the C1—C6 and C8—C13 rings, respectively) are observed (Table 1).

Related literature top

For general background to Schiff bases, see: Lozier et al. (1975); Calligaris et al. (1972); Maslen & Waters (1975); Steward & Lingafelter (1959). For the photochromic and thermochromic characteristics of Schiff base compounds, see: Hadjoudis et al. (1987); Moustakali-Mavridis et al. (1980). For graph-set motifs, see: Bernstein et al. (1995). For related structures, see: Temel et al. (2007); Koşar et al. (2005). Cg1 and Cg2 are the centroids of the C1–C6 and C8–C13 rings, respectively.

Experimental top

Compound (I) was prepared by refluxing a mixture of 2,3-dihydroxy benzaldehyde (0.5 g, 0.0036 mol) in ethanol (20 ml) and 4-butilanilyne (0.54 g 0.0036 mol) in ethanol (20 ml). The reaction mixture was stirred for 1 h under reflux. The crystals of (I) suitable for X-ray analysis were obtained from a methanol solution by slow evaporation (yield 85%; m.p. 363–364 K).

Refinement top

The hydroxyl H atoms were located in a difference Fourier map and were refined with a O-H distance restraint of 0.83 (2) Å. All other H-atoms were refined using a riding model with C-H = 0.93–0.96 Å (Uiso = 1.2Ueq of the parent atom) for aromatic and ethyl C atoms and C-H = 0.97 Å (Uiso = 1.5Ueq of the parent atom) for methyl C atoms.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. An ORTEP view of (I), with the atom-numbering scheme and 30% probability displacement ellipsoids. Dashed lines indicate H-bonds.
[Figure 2] Fig. 2. A packing diagram for (I), showing the formation of dimers through O—H···O hydrogen bonds. H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity [symmetry code (i): 1-x, 3-y, -z].
(E)-3-[(4-Butylphenyl)iminomethyl]benzene-1,2-diol top
Crystal data top
C17H19NO2F(000) = 576
Mr = 269.33Dx = 1.216 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8711 reflections
a = 16.2774 (13) Åθ = 1.4–27.4°
b = 6.0148 (6) ŵ = 0.08 mm1
c = 17.6166 (14) ÅT = 296 K
β = 121.476 (5)°Thin plate, red
V = 1471.0 (2) Å30.50 × 0.45 × 0.03 mm
Z = 4
Data collection top
Stoe IPDSII
diffractometer
3061 independent reflections
Radiation source: fine-focus sealed tube1643 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.062
Detector resolution: 6.67 pixels mm-1θmax = 26.5°, θmin = 1.5°
rotation method scansh = 2020
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 77
Tmin = 0.954, Tmax = 0.998l = 2222
8711 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.064H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.163 w = 1/[σ2(Fo2) + (0.0648P)2 + 0.0507P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.044
3061 reflectionsΔρmax = 0.15 e Å3
189 parametersΔρmin = 0.15 e Å3
2 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0060 (18)
Crystal data top
C17H19NO2V = 1471.0 (2) Å3
Mr = 269.33Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.2774 (13) ŵ = 0.08 mm1
b = 6.0148 (6) ÅT = 296 K
c = 17.6166 (14) Å0.50 × 0.45 × 0.03 mm
β = 121.476 (5)°
Data collection top
Stoe IPDSII
diffractometer
3061 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
1643 reflections with I > 2σ(I)
Tmin = 0.954, Tmax = 0.998Rint = 0.062
8711 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0642 restraints
wR(F2) = 0.163H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.15 e Å3
3061 reflectionsΔρmin = 0.15 e Å3
189 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.57490 (18)0.9538 (4)0.13401 (17)0.0578 (6)
C20.57322 (18)1.1547 (4)0.09238 (17)0.0572 (6)
C30.64541 (18)1.1943 (4)0.07262 (18)0.0613 (7)
C40.71906 (19)1.0448 (5)0.0989 (2)0.0690 (8)
H40.76771.07490.08760.083*
C50.7222 (2)0.8493 (5)0.1423 (2)0.0733 (8)
H50.77260.74960.15970.088*
C60.65099 (19)0.8032 (4)0.15939 (18)0.0666 (7)
H60.65300.67150.18800.080*
C70.49848 (19)0.9019 (4)0.14886 (18)0.0621 (7)
H70.49910.76630.17460.074*
C80.34786 (18)0.9936 (4)0.13574 (17)0.0586 (6)
C90.3369 (2)0.8029 (5)0.1736 (2)0.0760 (8)
H90.38380.69260.19470.091*
C100.2569 (2)0.7761 (5)0.1801 (2)0.0787 (9)
H100.25110.64770.20640.094*
C110.1851 (2)0.9339 (5)0.1489 (2)0.0697 (8)
C120.1964 (2)1.1213 (5)0.1113 (2)0.0789 (9)
H120.14901.23050.08980.095*
C130.2768 (2)1.1527 (4)0.1044 (2)0.0732 (8)
H130.28261.28190.07850.088*
C140.0994 (2)0.9044 (5)0.1604 (3)0.0939 (10)
H14A0.12230.91250.22340.113*
H14B0.05551.02780.13140.113*
C150.0450 (2)0.6941 (6)0.1246 (2)0.0910 (10)
H15A0.08800.57060.15570.109*
H15B0.02470.68220.06230.109*
C160.0432 (2)0.6723 (6)0.1326 (3)0.0975 (11)
H16A0.02300.68260.19490.117*
H16B0.08620.79590.10180.117*
C170.0972 (3)0.4600 (6)0.0956 (3)0.1137 (13)
H17A0.11260.44200.03540.171*
H17B0.15550.46400.09670.171*
H17C0.05810.33750.13100.171*
N10.42843 (15)1.0402 (3)0.12717 (14)0.0599 (6)
O10.50446 (13)1.3071 (3)0.06822 (13)0.0666 (5)
O20.64235 (14)1.3817 (3)0.02744 (15)0.0767 (6)
H10.466 (2)1.247 (5)0.083 (2)0.115*
H20.5901 (17)1.449 (5)0.016 (2)0.115*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0654 (15)0.0468 (13)0.0619 (17)0.0011 (12)0.0337 (14)0.0022 (12)
C20.0608 (15)0.0481 (13)0.0663 (17)0.0007 (12)0.0355 (14)0.0042 (12)
C30.0708 (16)0.0471 (13)0.0725 (19)0.0035 (12)0.0421 (15)0.0018 (13)
C40.0678 (16)0.0638 (16)0.083 (2)0.0022 (14)0.0445 (16)0.0101 (16)
C50.0736 (18)0.0612 (17)0.088 (2)0.0099 (14)0.0442 (17)0.0008 (16)
C60.0732 (17)0.0527 (14)0.0730 (19)0.0058 (13)0.0375 (15)0.0042 (14)
C70.0723 (17)0.0512 (14)0.0642 (18)0.0018 (13)0.0367 (14)0.0041 (13)
C80.0630 (15)0.0535 (14)0.0608 (17)0.0019 (12)0.0335 (13)0.0001 (13)
C90.0702 (17)0.0635 (16)0.097 (2)0.0085 (14)0.0454 (17)0.0242 (17)
C100.0731 (17)0.0723 (18)0.096 (2)0.0003 (15)0.0476 (17)0.0199 (17)
C110.0681 (17)0.0650 (17)0.081 (2)0.0001 (14)0.0426 (16)0.0011 (16)
C120.0754 (19)0.0657 (17)0.103 (2)0.0118 (15)0.0521 (19)0.0094 (17)
C130.0798 (18)0.0568 (15)0.091 (2)0.0072 (14)0.0504 (17)0.0138 (16)
C140.087 (2)0.084 (2)0.129 (3)0.0094 (18)0.069 (2)0.016 (2)
C150.0775 (19)0.091 (2)0.117 (3)0.0056 (18)0.059 (2)0.007 (2)
C160.084 (2)0.107 (3)0.121 (3)0.0090 (19)0.066 (2)0.008 (2)
C170.106 (3)0.095 (3)0.161 (4)0.010 (2)0.085 (3)0.002 (3)
N10.0647 (12)0.0532 (12)0.0649 (15)0.0010 (11)0.0361 (11)0.0026 (11)
O10.0737 (12)0.0515 (10)0.0877 (14)0.0050 (9)0.0512 (11)0.0095 (10)
O20.0887 (14)0.0557 (11)0.1117 (17)0.0022 (10)0.0704 (14)0.0086 (11)
Geometric parameters (Å, º) top
C1—C61.406 (3)C10—H100.93
C1—C21.406 (3)C11—C121.367 (4)
C1—C71.433 (3)C11—C141.520 (4)
C2—O11.333 (3)C12—C131.389 (4)
C2—C31.409 (3)C12—H120.93
C3—O21.365 (3)C13—H130.93
C3—C41.371 (4)C14—C151.483 (4)
C4—C51.389 (4)C14—H14A0.97
C4—H40.93C14—H14B0.97
C5—C61.370 (4)C15—C161.519 (4)
C5—H50.93C15—H15A0.97
C6—H60.93C15—H15B0.97
C7—N11.297 (3)C16—C171.493 (5)
C7—H70.93C16—H16A0.97
C8—C131.375 (3)C16—H16B0.97
C8—C91.384 (3)C17—H17A0.96
C8—N11.424 (3)C17—H17B0.96
C9—C101.375 (4)C17—H17C0.96
C9—H90.93O1—H10.88 (2)
C10—C111.379 (4)O2—H20.86 (2)
C6—C1—C2119.6 (2)C11—C12—C13121.7 (3)
C6—C1—C7120.4 (2)C11—C12—H12119.1
C2—C1—C7120.0 (2)C13—C12—H12119.1
O1—C2—C1122.8 (2)C8—C13—C12120.2 (3)
O1—C2—C3118.3 (2)C8—C13—H13119.9
C1—C2—C3118.9 (2)C12—C13—H13119.9
O2—C3—C4119.8 (2)C15—C14—C11115.4 (3)
O2—C3—C2120.2 (2)C15—C14—H14A108.4
C4—C3—C2120.0 (2)C11—C14—H14A108.4
C3—C4—C5121.1 (2)C15—C14—H14B108.4
C3—C4—H4119.5C11—C14—H14B108.4
C5—C4—H4119.5H14A—C14—H14B107.5
C6—C5—C4120.0 (3)C14—C15—C16114.7 (3)
C6—C5—H5120.0C14—C15—H15A108.6
C4—C5—H5120.0C16—C15—H15A108.6
C5—C6—C1120.4 (3)C14—C15—H15B108.6
C5—C6—H6119.8C16—C15—H15B108.6
C1—C6—H6119.8H15A—C15—H15B107.6
N1—C7—C1121.3 (2)C17—C16—C15113.8 (3)
N1—C7—H7119.3C17—C16—H16A108.8
C1—C7—H7119.3C15—C16—H16A108.8
C13—C8—C9118.5 (2)C17—C16—H16B108.8
C13—C8—N1116.7 (2)C15—C16—H16B108.8
C9—C8—N1124.8 (2)H16A—C16—H16B107.7
C10—C9—C8120.2 (3)C16—C17—H17A109.5
C10—C9—H9119.9C16—C17—H17B109.5
C8—C9—H9119.9H17A—C17—H17B109.5
C9—C10—C11121.9 (3)C16—C17—H17C109.5
C9—C10—H10119.0H17A—C17—H17C109.5
C11—C10—H10119.0H17B—C17—H17C109.5
C12—C11—C10117.4 (2)C7—N1—C8124.0 (2)
C12—C11—C14121.7 (3)C2—O1—H1104 (2)
C10—C11—C14120.8 (3)C3—O2—H2105 (2)
C6—C1—C2—O1178.6 (2)N1—C8—C9—C10178.8 (3)
C7—C1—C2—O12.6 (4)C8—C9—C10—C110.8 (5)
C6—C1—C2—C33.5 (4)C9—C10—C11—C120.5 (5)
C7—C1—C2—C3175.4 (2)C9—C10—C11—C14177.4 (3)
O1—C2—C3—O22.0 (4)C10—C11—C12—C130.1 (5)
C1—C2—C3—O2176.0 (2)C14—C11—C12—C13177.0 (3)
O1—C2—C3—C4177.9 (2)C9—C8—C13—C120.3 (4)
C1—C2—C3—C44.1 (4)N1—C8—C13—C12179.2 (2)
O2—C3—C4—C5177.8 (3)C11—C12—C13—C80.0 (5)
C2—C3—C4—C52.4 (4)C12—C11—C14—C15128.0 (4)
C3—C4—C5—C60.0 (4)C10—C11—C14—C1555.2 (4)
C4—C5—C6—C10.6 (4)C11—C14—C15—C16177.2 (3)
C2—C1—C6—C51.2 (4)C14—C15—C16—C17179.6 (3)
C7—C1—C6—C5177.6 (3)C1—C7—N1—C8176.5 (2)
C6—C1—C7—N1178.9 (3)C13—C8—N1—C7176.0 (3)
C2—C1—C7—N12.2 (4)C9—C8—N1—C74.6 (4)
C13—C8—C9—C100.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O10.86 (2)2.21 (3)2.728 (2)118 (3)
O2—H2···O1i0.86 (2)2.08 (3)2.802 (3)141 (3)
O1—H1···N10.88 (2)1.74 (2)2.555 (2)155 (3)
C6—H6···Cg2ii0.932.853.645 (3)144
C10—H10···Cg1ii0.932.803.491 (3)132
Symmetry codes: (i) x+1, y+3, z; (ii) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC17H19NO2
Mr269.33
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)16.2774 (13), 6.0148 (6), 17.6166 (14)
β (°) 121.476 (5)
V3)1471.0 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.50 × 0.45 × 0.03
Data collection
DiffractometerStoe IPDSII
diffractometer
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.954, 0.998
No. of measured, independent and
observed [I > 2σ(I)] reflections
8711, 3061, 1643
Rint0.062
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.163, 1.07
No. of reflections3061
No. of parameters189
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.15, 0.15

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O10.86 (2)2.21 (3)2.728 (2)118 (3)
O2—H2···O1i0.86 (2)2.08 (3)2.802 (3)141 (3)
O1—H1···N10.88 (2)1.74 (2)2.555 (2)155 (3)
C6—H6···Cg2ii0.932.853.645 (3)144
C10—H10···Cg1ii0.932.803.491 (3)132
Symmetry codes: (i) x+1, y+3, z; (ii) x+1, y1/2, z+1/2.
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDSII diffractometer (purchased under grant F.279 of the University Research Fund).

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationCalligaris, M., Nardin, G. & Randaccio, L. (1972). Coord. Chem. Rev. 7, 385–403.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHadjoudis, E., Vitterakis, M. & Mavridis, I. M. (1987). Tetrahedron, 43, 1345–1360.  CrossRef CAS Web of Science Google Scholar
First citationKoşar, B., Albayrak, C., Odabaşoğlu, M. & Büyükgüngör, O. (2005). Acta Cryst. E61, o2109–o2111.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLozier, R., Bogomolni, R. A. & Stoekenius, W. (1975). Biophys. J. 15, 955–962.  CrossRef PubMed CAS Web of Science Google Scholar
First citationMaslen, H. S. & Waters, T. N. (1975). Coord. Chem. Rev. 17, 137–176.  CrossRef CAS Web of Science Google Scholar
First citationMoustakali-Mavridis, I., Hadjoudis, B. & Mavridis, A. (1980). Acta Cryst. B36, 1126–1130.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStewart, J. M. & Lingafelter, E. C. (1959). Acta Cryst. 12, 842–845.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTemel, E., Albayrak, Ç., Odabaşoğlu, M. & Büyükgüngör, O. (2007). Acta Cryst. E63, o2642.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds