organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-N′-(3,4-Di­hydroxy­benzyl­­idene)-4-nitro­benzohydrazide

aShengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
*Correspondence e-mail: ydqiufeng@126.com

(Received 22 July 2009; accepted 26 July 2009; online 31 July 2009)

In the title Schiff base compound, C14H11N3O5, the dihedral angle between the two benzene rings is 1.6 (1)°. The mol­ecule displays an E configuration about the C=N bond. An intra­molecular O—H⋯O hydrogen bond is observed. In the crystal, mol­ecules are linked into layers parallel to (101) by O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds. One of the hydroxyl groups is disordered over two positions, with occupancies of 0.643 (5) and 0.357 (5).

Related literature

For the biological properties of Schiff base compounds, see: Kucukguzel et al. (2006[Kucukguzel, G., Kocatepe, A., De Clercq, E., Sahi, F. & Gulluce, M. (2006). Eur. J. Med. Chem. 41, 353-359.]); Khattab (2005[Khattab, S. N. (2005). Molecules, 10, 1218-1228.]); Karthikeyan et al. (2006[Karthikeyan, M. S., Prasad, D. J., Poojary, B., Bhat, K. S., Holla, B. S. & Kumari, N. S. (2006). Bioorg. Med. Chem. 14, 7482-7489.]); Okabe et al. (1993[Okabe, N., Nakamura, T. & Fukuda, H. (1993). Acta Cryst. C49, 1678-1680.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For related structures, see: Shan et al. (2008[Shan, S., Tian, Y.-L., Wang, S.-H., Wang, W.-L. & Xu, Y.-L. (2008). Acta Cryst. E64, o1363.]); Fun et al. (2008[Fun, H.-K., Sujith, K. V., Patil, P. S., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1961-o1962.]); Yang (2008[Yang, D.-S. (2008). Acta Cryst. E64, o1759.]); Ma et al. (2008[Ma, H.-B., Huang, S.-S. & Diao, Y.-P. (2008). Acta Cryst. E64, o210.]); Diao et al. (2008a[Diao, Y.-P., Huang, S.-S., Zhang, J.-K. & Kang, T.-G. (2008a). Acta Cryst. E64, o470.],b[Diao, Y.-P., Zhen, Y.-H., Han, X. & Deng, S. (2008b). Acta Cryst. E64, o101.]); Ejsmont et al. (2008[Ejsmont, K., Zareef, M., Arfan, M., Bashir, S. A. & Zaleski, J. (2008). Acta Cryst. E64, o1128.]); Qiu & Zhao (2008[Qiu, F. & Zhao, L.-M. (2008). Acta Cryst. E64, o2067.]).

[Scheme 1]

Experimental

Crystal data
  • C14H11N3O5

  • Mr = 301.26

  • Monoclinic, P 21 /c

  • a = 7.666 (1) Å

  • b = 13.196 (2) Å

  • c = 13.176 (2) Å

  • β = 95.361 (3)°

  • V = 1327.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 298 K

  • 0.20 × 0.20 × 0.18 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.977, Tmax = 0.979

  • 8322 measured reflections

  • 3204 independent reflections

  • 1364 reflections with I > 2σ(I)

  • Rint = 0.056

Refinement
  • R[F2 > 2σ(F2)] = 0.069

  • wR(F2) = 0.161

  • S = 1.02

  • 3204 reflections

  • 210 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O2 0.82 2.17 2.636 (4) 116
O2—H2A⋯O1i 0.82 1.91 2.722 (3) 171
O3′—H3′⋯O1i 0.82 1.84 2.548 (7) 144
N2—H2B⋯O4ii 0.90 2.26 3.121 (3) 158
C5—H5⋯O5ii 0.93 2.48 3.210 (4) 135
C10—H10⋯O2iii 0.93 2.58 3.467 (3) 159
C11—H11⋯O1i 0.93 2.56 3.192 (4) 126
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+2, y-{\script{1\over 2}}, -z-{\script{1\over 2}}]; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Hydrazones and Schiff bases have been attracted much attention for their excellent biological properties, especially for their potential pharmacological and antitumor properties (Kucukguzel et al., 2006; Khattab et al., 2005; Karthikeyan et al., 2006; Okabe et al., 1993). Recently, a large number of hydrazone derivatives have been prepared and structurally characterized (Shan et al., 2008; Fun et al., 2008; Yang, 2008; Ma et al., 2008; Diao et al., 2008a,b; Ejsmont et al., 2008). As part of the ongoing study (Qiu & Zhao, 2008), we report herein the crystal structure of the title compound.

The molecular structure of the title compound is shown in Fig. 1. The bond distances (Allen et al., 1987) and angles are normal. The dihedral angle between the two benzene rings is 1.6 (1)°. The displays an E configuration about the CN bond. The nitro group is almost coplanar with the attached benzene ring [O4—N1—C1—C6 = -3.5 (5)° and O5—N1—C1—C2 = -3.1 (5)°].

The molecules are linked into layers parallel to the (101) by O—H···O, N—H···O and C—H···O hydrogen bonds (Fig. 2 and Table 1).

Related literature top

For the biological properties of Schiff base compounds, see: Kucukguzel et al. (2006); Khattab et al. (2005); Karthikeyan et al. (2006); Okabe et al. (1993). For bond-length data, see: Allen et al. (1987). For related structures, see: Shan et al. (2008); Fun et al. (2008); Yang (2008); Ma et al. (2008); Diao et al. (2008a,b); Ejsmont et al. (2008); Qiu & Zhao (2008).

Experimental top

3,4-Dihydroxybenzaldehyde (1.0 mmol, 138.1 mg) was dissolved in methanol (50 ml), then 4-nitrobenzohydrazide (1.0 mmol, 181.2 mg) was added slowly into the solution, and the mixture was kept at reflux with continuous stirring for 3 h. After the solution had cooled to room temperature colourless tiny crystals appeared. The tiny crystals were filtered and washed with methanol for three times. Recrystallization from an absolute methanol yielded block-shaped single crystals of the title compound.

Refinement top

One of the hydroxyl groups (O3) is disordered over two distinct sites, with occupancies of 0.643 (5) and 0.357 (5). The C—O distances of the two disorder components were restrained to 1.36 (1) Å. H atoms were placed in calculated positions [O-H = 0.82 Å, N-H = 0.90 Å and C-H = 0.93 Å] and refined using a riding model, with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 30% probability displacement ellipsoids for non-H atoms. Only the major disorder component of a hydroxyl group is shown.
[Figure 2] Fig. 2. Molecular packing as viewed along the a axis. O—H···O and N—H···O hydrogen bonds are shown as dashed lines.
(E)-N'-(3,4-Dihydroxybenzylidene)-4-nitrobenzohydrazide top
Crystal data top
C14H11N3O5F(000) = 624
Mr = 301.26Dx = 1.508 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1038 reflections
a = 7.666 (1) Åθ = 2.5–24.5°
b = 13.196 (2) ŵ = 0.12 mm1
c = 13.176 (2) ÅT = 298 K
β = 95.361 (3)°Block, colourless
V = 1327.1 (3) Å30.20 × 0.20 × 0.18 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3204 independent reflections
Radiation source: fine-focus sealed tube1364 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
ω scansθmax = 28.3°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1010
Tmin = 0.977, Tmax = 0.979k = 1617
8322 measured reflectionsl = 1710
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.161H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0491P)2 + 0.4176P]
where P = (Fo2 + 2Fc2)/3
3204 reflections(Δ/σ)max = 0.001
210 parametersΔρmax = 0.17 e Å3
2 restraintsΔρmin = 0.23 e Å3
Crystal data top
C14H11N3O5V = 1327.1 (3) Å3
Mr = 301.26Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.666 (1) ŵ = 0.12 mm1
b = 13.196 (2) ÅT = 298 K
c = 13.176 (2) Å0.20 × 0.20 × 0.18 mm
β = 95.361 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3204 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1364 reflections with I > 2σ(I)
Tmin = 0.977, Tmax = 0.979Rint = 0.056
8322 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0692 restraints
wR(F2) = 0.161H-atom parameters constrained
S = 1.02Δρmax = 0.17 e Å3
3204 reflectionsΔρmin = 0.23 e Å3
210 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.6818 (3)1.15446 (15)0.09056 (17)0.0606 (6)
O20.5123 (3)0.56081 (15)0.27427 (16)0.0661 (7)
H2A0.45200.58250.31770.099*
O30.6235 (5)0.5128 (2)0.0971 (3)0.0814 (15)0.643 (5)
H3A0.60130.47820.14600.122*0.643 (5)
O41.0449 (3)1.43595 (18)0.3087 (2)0.0749 (7)
O50.9668 (4)1.5401 (2)0.1968 (2)0.1037 (10)
N10.9797 (4)1.4543 (2)0.2301 (2)0.0648 (8)
N20.7625 (3)1.03529 (18)0.01803 (18)0.0508 (7)
H2B0.78951.00900.07780.061*
N30.7082 (3)0.9614 (2)0.04686 (19)0.0524 (7)
C10.9174 (4)1.3697 (2)0.1705 (2)0.0513 (8)
C20.8561 (4)1.3914 (2)0.0783 (3)0.0601 (9)
H20.85171.45790.05520.072*
C30.8013 (4)1.3123 (2)0.0209 (2)0.0572 (9)
H30.75991.32550.04190.069*
C40.8072 (4)1.2134 (2)0.0558 (2)0.0438 (7)
C50.8690 (4)1.1948 (2)0.1500 (2)0.0521 (8)
H50.87231.12880.17450.063*
C60.9252 (4)1.2736 (2)0.2070 (2)0.0558 (9)
H60.96791.26130.26960.067*
C70.7446 (4)1.1325 (2)0.0104 (2)0.0475 (8)
C80.7224 (4)0.8695 (2)0.0199 (2)0.0501 (8)
H80.76550.85360.04180.060*
C90.6702 (4)0.7893 (2)0.0869 (2)0.0468 (8)
C100.6126 (4)0.8135 (2)0.1810 (2)0.0522 (9)
H100.60940.88110.20080.063*
C110.5601 (4)0.7403 (2)0.2447 (2)0.0544 (9)
H110.52320.75820.30760.065*0.643 (5)
C120.5617 (4)0.6395 (2)0.2157 (2)0.0480 (8)
C130.6193 (4)0.6140 (2)0.1230 (2)0.0532 (8)
H130.62240.54640.10340.064*0.357 (5)
C140.6724 (4)0.6884 (2)0.0591 (2)0.0522 (9)
H140.71030.67050.00340.063*
O3'0.5167 (10)0.7811 (5)0.3302 (5)0.076 (3)0.357 (5)
H3'0.42250.75790.34390.115*0.357 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0805 (16)0.0506 (14)0.0549 (14)0.0031 (12)0.0283 (12)0.0007 (11)
O20.0902 (17)0.0484 (14)0.0645 (15)0.0031 (12)0.0320 (13)0.0033 (11)
O30.140 (4)0.037 (2)0.073 (3)0.005 (2)0.046 (2)0.0088 (18)
O40.0773 (17)0.0780 (18)0.0740 (18)0.0035 (14)0.0315 (14)0.0168 (14)
O50.155 (3)0.0525 (17)0.111 (2)0.0188 (18)0.056 (2)0.0086 (16)
N10.072 (2)0.052 (2)0.072 (2)0.0078 (16)0.0208 (17)0.0113 (17)
N20.0662 (18)0.0403 (16)0.0484 (16)0.0003 (13)0.0187 (14)0.0016 (13)
N30.0616 (17)0.0433 (16)0.0541 (16)0.0017 (13)0.0149 (14)0.0068 (13)
C10.052 (2)0.051 (2)0.053 (2)0.0002 (16)0.0145 (17)0.0112 (16)
C20.072 (2)0.043 (2)0.068 (2)0.0001 (17)0.022 (2)0.0005 (18)
C30.067 (2)0.051 (2)0.056 (2)0.0041 (18)0.0228 (18)0.0038 (17)
C40.0455 (18)0.0404 (19)0.0466 (19)0.0010 (14)0.0104 (15)0.0028 (15)
C50.066 (2)0.0407 (19)0.053 (2)0.0041 (16)0.0205 (17)0.0017 (15)
C60.062 (2)0.056 (2)0.052 (2)0.0038 (17)0.0179 (17)0.0021 (17)
C70.0461 (19)0.049 (2)0.048 (2)0.0023 (15)0.0087 (16)0.0006 (16)
C80.054 (2)0.047 (2)0.051 (2)0.0012 (16)0.0123 (16)0.0010 (16)
C90.0479 (19)0.0414 (19)0.052 (2)0.0001 (15)0.0093 (16)0.0005 (16)
C100.064 (2)0.0330 (18)0.062 (2)0.0018 (15)0.0148 (18)0.0035 (15)
C110.066 (2)0.047 (2)0.052 (2)0.0009 (17)0.0120 (18)0.0043 (17)
C120.056 (2)0.0382 (19)0.052 (2)0.0007 (15)0.0152 (17)0.0068 (15)
C130.062 (2)0.0387 (19)0.060 (2)0.0011 (16)0.0156 (18)0.0049 (17)
C140.057 (2)0.050 (2)0.052 (2)0.0006 (16)0.0160 (17)0.0035 (16)
O3'0.116 (7)0.066 (5)0.053 (4)0.018 (4)0.040 (4)0.011 (3)
Geometric parameters (Å, º) top
O1—C71.236 (3)C4—C71.487 (4)
O2—C121.367 (3)C5—C61.375 (4)
O2—H2A0.82C5—H50.93
O3—C131.379 (4)C6—H60.93
O3—H3A0.82C8—C91.458 (4)
O4—N11.216 (3)C8—H80.93
O5—N11.221 (3)C9—C141.382 (4)
N1—C11.469 (4)C9—C101.390 (4)
N2—C71.346 (4)C10—C111.365 (4)
N2—N31.386 (3)C10—H100.93
N2—H2B0.90C11—O3'1.319 (5)
N3—C81.271 (3)C11—C121.385 (4)
C1—C61.360 (4)C11—H110.93
C1—C21.373 (4)C12—C131.380 (4)
C2—C31.377 (4)C13—C141.379 (4)
C2—H20.93C13—H130.93
C3—C41.387 (4)C14—H140.93
C3—H30.93O3'—H3'0.82
C4—C51.390 (4)
C12—O2—H2A109.5O1—C7—C4120.4 (3)
C13—O3—H3A109.5N2—C7—C4118.3 (3)
O4—N1—O5123.0 (3)N3—C8—C9119.2 (3)
O4—N1—C1118.9 (3)N3—C8—H8120.4
O5—N1—C1118.1 (3)C9—C8—H8120.4
C7—N2—N3117.0 (2)C14—C9—C10118.1 (3)
C7—N2—H2B130.3C14—C9—C8121.8 (3)
N3—N2—H2B112.0C10—C9—C8120.1 (3)
C8—N3—N2117.4 (3)C11—C10—C9121.5 (3)
C6—C1—C2122.4 (3)C11—C10—H10119.2
C6—C1—N1119.5 (3)C9—C10—H10119.2
C2—C1—N1118.0 (3)O3'—C11—C10110.5 (4)
C1—C2—C3118.4 (3)O3'—C11—C12129.6 (4)
C1—C2—H2120.8C10—C11—C12119.9 (3)
C3—C2—H2120.8C10—C11—H11120.0
C2—C3—C4120.7 (3)C12—C11—H11120.0
C2—C3—H3119.7O2—C12—C13116.3 (3)
C4—C3—H3119.7O2—C12—C11124.3 (3)
C3—C4—C5119.1 (3)C13—C12—C11119.4 (3)
C3—C4—C7117.4 (3)C14—C13—O3121.6 (3)
C5—C4—C7123.5 (3)C14—C13—C12120.3 (3)
C6—C5—C4120.3 (3)O3—C13—C12118.1 (3)
C6—C5—H5119.9C14—C13—H13119.8
C4—C5—H5119.9C12—C13—H13119.8
C1—C6—C5119.1 (3)C13—C14—C9120.8 (3)
C1—C6—H6120.4C13—C14—H14119.6
C5—C6—H6120.4C9—C14—H14119.5
O1—C7—N2121.3 (3)C11—O3'—H3'109.5
C7—N2—N3—C8179.0 (3)C5—C4—C7—N25.9 (4)
O4—N1—C1—C63.5 (5)N2—N3—C8—C9178.7 (3)
O5—N1—C1—C6178.1 (3)N3—C8—C9—C14176.0 (3)
O4—N1—C1—C2175.3 (3)N3—C8—C9—C102.7 (5)
O5—N1—C1—C23.1 (5)C14—C9—C10—C110.2 (5)
C6—C1—C2—C30.2 (5)C8—C9—C10—C11178.9 (3)
N1—C1—C2—C3178.5 (3)C9—C10—C11—O3'178.0 (4)
C1—C2—C3—C40.3 (5)C9—C10—C11—C120.7 (5)
C2—C3—C4—C50.2 (5)O3'—C11—C12—O21.3 (7)
C2—C3—C4—C7179.6 (3)C10—C11—C12—O2179.7 (3)
C3—C4—C5—C60.7 (5)O3'—C11—C12—C13177.4 (5)
C7—C4—C5—C6179.8 (3)C10—C11—C12—C131.1 (5)
C2—C1—C6—C50.3 (5)O2—C12—C13—C14179.8 (3)
N1—C1—C6—C5179.1 (3)C11—C12—C13—C141.0 (5)
C4—C5—C6—C10.8 (5)O2—C12—C13—O30.3 (5)
N3—N2—C7—O10.3 (4)C11—C12—C13—O3178.5 (3)
N3—N2—C7—C4178.0 (2)O3—C13—C14—C9178.9 (3)
C3—C4—C7—O13.6 (4)C12—C13—C14—C90.5 (5)
C5—C4—C7—O1175.8 (3)C10—C9—C14—C130.1 (5)
C3—C4—C7—N2174.6 (3)C8—C9—C14—C13178.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O20.822.172.636 (4)116
O2—H2A···O1i0.821.912.722 (3)171
O3—H3···O1i0.821.842.548 (7)144
N2—H2B···O4ii0.902.263.121 (3)158
C5—H5···O5ii0.932.483.210 (4)135
C10—H10···O2iii0.932.583.467 (3)159
C11—H11···O1i0.932.563.192 (4)126
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+2, y1/2, z1/2; (iii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H11N3O5
Mr301.26
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)7.666 (1), 13.196 (2), 13.176 (2)
β (°) 95.361 (3)
V3)1327.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.20 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.977, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
8322, 3204, 1364
Rint0.056
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.161, 1.02
No. of reflections3204
No. of parameters210
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.23

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O20.822.172.636 (4)116
O2—H2A···O1i0.821.912.722 (3)171
O3'—H3'···O1i0.821.842.548 (7)144
N2—H2B···O4ii0.902.263.121 (3)158
C5—H5···O5ii0.932.483.210 (4)135
C10—H10···O2iii0.932.583.467 (3)159
C11—H11···O1i0.932.563.192 (4)126
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+2, y1/2, z1/2; (iii) x+1, y+1/2, z+1/2.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDiao, Y.-P., Huang, S.-S., Zhang, J.-K. & Kang, T.-G. (2008a). Acta Cryst. E64, o470.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDiao, Y.-P., Zhen, Y.-H., Han, X. & Deng, S. (2008b). Acta Cryst. E64, o101.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEjsmont, K., Zareef, M., Arfan, M., Bashir, S. A. & Zaleski, J. (2008). Acta Cryst. E64, o1128.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Sujith, K. V., Patil, P. S., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1961–o1962.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKarthikeyan, M. S., Prasad, D. J., Poojary, B., Bhat, K. S., Holla, B. S. & Kumari, N. S. (2006). Bioorg. Med. Chem. 14, 7482–7489.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhattab, S. N. (2005). Molecules, 10, 1218–1228.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKucukguzel, G., Kocatepe, A., De Clercq, E., Sahi, F. & Gulluce, M. (2006). Eur. J. Med. Chem. 41, 353–359.  Web of Science CrossRef PubMed Google Scholar
First citationMa, H.-B., Huang, S.-S. & Diao, Y.-P. (2008). Acta Cryst. E64, o210.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOkabe, N., Nakamura, T. & Fukuda, H. (1993). Acta Cryst. C49, 1678–1680.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationQiu, F. & Zhao, L.-M. (2008). Acta Cryst. E64, o2067.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShan, S., Tian, Y.-L., Wang, S.-H., Wang, W.-L. & Xu, Y.-L. (2008). Acta Cryst. E64, o1363.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, D.-S. (2008). Acta Cryst. E64, o1759.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds