metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{Bis[2-(di­phenyl­phosphino)phen­yl] ether-κ2P:P′}(di­methyl 2,2′-bi­phenyl-4,4′-di­carboxyl­ate-κ2N:N′)copper(I) hexa­fluorido­phosphate aceto­nitrile solvate

aState Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
*Correspondence e-mail: ygma@jlu.edu.cn

(Received 13 May 2009; accepted 29 June 2009; online 4 July 2009)

In the title compound, [Cu(C14H12N2O4)(C36H28OP2)]PF6·CH3CN, the Cu(I) ion is coordinated by two N atoms from the dimethyl 2,2′-biphenyl-4,4′-dicarboxyl­ate ligand and two P atoms from the bis­[2-(diphenyl­phosphino)phen­yl] ether ligand in a distorted tetra­hedral environment. In the cation, the short distance of 3.870 (4) Å between the centroids of the benzene and phenyl rings suggests the existence of intra­molecular ππ inter­actions.

Related literature

For background literature concerning Cu(I) complexes, see: Scaltrito et al. (2000[Scaltrito, D. V., Thompson, D. W., O'Callaghan, J. A. & Meyer, G. J. (2000). Coord. Chem. Rev. 208, 243-266.]). For related Cu(I) complexes, see: Ma et al. (1999[Ma, Y. G., Chan, W. H., Zhou, X. M. & Che, C. M. (1999). New J. Chem. pp. 263-265.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C14H12N2O4)(C36H28OP2)]PF6·C2H3N

  • Mr = 1060.34

  • Triclinic, [P \overline 1]

  • a = 10.7163 (16) Å

  • b = 11.9178 (12) Å

  • c = 19.879 (4) Å

  • α = 73.288 (5)°

  • β = 88.410 (5)°

  • γ = 79.863 (4)°

  • V = 2393.0 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.63 mm−1

  • T = 291 K

  • 0.18 × 0.10 × 0.07 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.895, Tmax = 0.957

  • 20165 measured reflections

  • 10580 independent reflections

  • 5125 reflections with I > 2σ(I)

  • Rint = 0.069

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.141

  • S = 0.99

  • 10580 reflections

  • 632 parameters

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.59 e Å−3

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC & Rigaku, 2002[Rigaku/MSC & Rigaku (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Recently, Ma et al. (1999) reported the first Cu(I) complex-based organic light-emitting diodes (OLEDs). Since that, Cu(I)complexes have received more attentions due to their available metal-to-ligand charge-transfer (MLCT) excited state and possible utilization in the OLEDs (Scaltrito et al., 2000). Herein, we report the crystal structure of the title Cu(I) complex Dmfbpy-Cu-POP].PF6.CH3CN [Dmfbpy=4,7-dimethyl formate-2,2'-bipyridine, POP= bis[(2-diphenylphosphino)phenyl]ether], which have been proved to be a better material in the OLEDs applications.

In the title compound (Fig. 1), Cu1 is coordinated by two N atoms from one Dmfbpy ligand and two P atoms from one POP ligand, in a distorted tetrahedral configuration.

Related literature top

For background literature concerning Cu(I) complexes, see: Scaltrito et al. (2000). For related Cu(I) complexes, see: Ma et al. (1999).

Experimental top

A mixture of [Cu(NCCH3)4].PF6.CH3CN (31 mg, 0.10 mmol) and bis- [2-(diphenylphosphino)phenyl]ether14 (54 mg, 0.10 mmol) in CH2Cl2 (20 ml) was stirred at room temperature for 2 h and then treated with a solution of 4, 7-dimethyl formate-2, 2'-bipyridine (27 mg, 0.10 mmol) in CH2Cl2 (5 ml). The reaction mixture was stirred for an additional 1 h and filtered, and the clear yellow filtrate was concentrated to ca 5 ml. Acetonitrile (about 5 ml) was added and the vapor diffusion of diethyl ether into the resulting solution. Orange crystals were obtained after about one week.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93 to 0.96) and were included in the refinement in the riding model with Uiso(H) = 1.2 or 1.5 Ueq(C).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC & Rigaku, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The content of asymmetric unit of the title compound, with the atom numbering. Displacement ellipsoids are drawn at the 30% probalility level. H atoms omitted for clarity.
{Bis[2-(diphenylphosphino)phenyl] ether-κ2P:P'}(dimethyl 2,2'-biphenyl-4,4'-dicarboxylate-κ2N:N')copper(I) hexafluoridophosphate acetonitrile solvate top
Crystal data top
[Cu(C14H12N2O4)(C36H28OP2)]PF6·C2H3NZ = 2
Mr = 1060.34F(000) = 1088
Triclinic, P1Dx = 1.472 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 10.7163 (16) ÅCell parameters from 9613 reflections
b = 11.9178 (12) Åθ = 1.1–27.5°
c = 19.879 (4) ŵ = 0.63 mm1
α = 73.288 (5)°T = 291 K
β = 88.410 (5)°Block, red
γ = 79.863 (4)°0.18 × 0.10 × 0.07 mm
V = 2393.0 (6) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
10580 independent reflections
Radiation source: fine-focus sealed tube5125 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.069
ω scansθmax = 27.5°, θmin = 1.1°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 013
Tmin = 0.895, Tmax = 0.957k = 1415
20165 measured reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0437P)2]
where P = (Fo2 + 2Fc2)/3
10580 reflections(Δ/σ)max < 0.001
632 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.59 e Å3
Crystal data top
[Cu(C14H12N2O4)(C36H28OP2)]PF6·C2H3Nγ = 79.863 (4)°
Mr = 1060.34V = 2393.0 (6) Å3
Triclinic, P1Z = 2
a = 10.7163 (16) ÅMo Kα radiation
b = 11.9178 (12) ŵ = 0.63 mm1
c = 19.879 (4) ÅT = 291 K
α = 73.288 (5)°0.18 × 0.10 × 0.07 mm
β = 88.410 (5)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
10580 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
5125 reflections with I > 2σ(I)
Tmin = 0.895, Tmax = 0.957Rint = 0.069
20165 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.141H-atom parameters constrained
S = 0.99Δρmax = 0.51 e Å3
10580 reflectionsΔρmin = 0.59 e Å3
632 parameters
Special details top

Experimental. (See detailed section in the paper)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C510.6814 (7)0.7193 (6)0.3887 (3)0.0479 (17)
Cu10.06564 (6)0.10575 (5)0.25353 (3)0.02056 (16)
F10.5125 (3)0.6034 (3)0.22930 (18)0.0521 (9)
F20.6796 (3)0.6833 (2)0.17910 (15)0.0407 (8)
F30.7751 (3)0.5018 (3)0.17083 (18)0.0566 (10)
F40.5795 (4)0.5795 (3)0.12452 (16)0.0574 (10)
F50.7092 (3)0.5259 (3)0.27506 (15)0.0486 (9)
F60.6081 (3)0.4229 (2)0.22121 (16)0.0462 (9)
P10.00627 (12)0.06619 (10)0.15539 (6)0.0197 (3)
P20.22917 (12)0.20575 (11)0.23499 (6)0.0197 (3)
P30.64319 (14)0.55331 (12)0.19925 (7)0.0295 (3)
N10.1019 (4)0.0566 (3)0.33146 (19)0.0212 (9)
N20.0701 (4)0.1398 (3)0.32392 (18)0.0210 (9)
N30.7574 (6)0.7774 (5)0.3895 (3)0.0604 (16)
O10.2117 (4)0.4602 (3)0.5059 (2)0.0562 (13)
O20.0392 (4)0.3704 (3)0.54642 (18)0.0407 (10)
O30.3613 (4)0.0578 (3)0.52117 (18)0.0419 (10)
O40.4075 (4)0.2579 (3)0.48518 (19)0.0407 (10)
O50.2759 (3)0.0032 (3)0.16853 (15)0.0213 (7)
C10.1549 (5)0.2395 (4)0.3183 (2)0.0255 (12)
H1A0.15160.30440.27920.031*
C20.2474 (5)0.2518 (4)0.3673 (2)0.0273 (12)
H2A0.30410.32280.36140.033*
C30.2522 (5)0.1548 (4)0.4253 (3)0.0272 (12)
C40.1664 (5)0.0515 (4)0.4317 (2)0.0265 (12)
H4A0.16940.01440.47020.032*
C50.0747 (4)0.0450 (4)0.3809 (2)0.0213 (11)
C60.0201 (4)0.0628 (4)0.3854 (2)0.0217 (11)
C70.0276 (5)0.1665 (4)0.4413 (2)0.0264 (12)
H7A0.02760.16950.47850.032*
C80.1182 (5)0.2651 (4)0.4408 (3)0.0270 (12)
C90.1982 (5)0.2586 (4)0.3845 (3)0.0294 (12)
H9A0.25910.32370.38280.035*
C100.1858 (5)0.1539 (4)0.3314 (3)0.0263 (12)
H10A0.23870.15040.29320.032*
C110.3490 (5)0.1656 (5)0.4802 (3)0.0305 (13)
C120.4542 (5)0.0575 (5)0.5763 (3)0.0490 (17)
H12A0.45670.02310.60320.073*
H12B0.53630.09470.55530.073*
H12C0.43060.10060.60650.073*
C130.1292 (5)0.3773 (4)0.5004 (3)0.0314 (13)
C140.0418 (6)0.4757 (5)0.6060 (3)0.0492 (17)
H14A0.02680.46190.63630.074*
H14B0.12090.49260.63140.074*
H14C0.03290.54220.58940.074*
C150.1493 (4)0.1290 (4)0.1134 (2)0.0203 (10)
C160.2012 (5)0.0822 (4)0.0659 (3)0.0271 (12)
H16A0.15840.01290.05750.032*
C170.3145 (5)0.1373 (4)0.0318 (3)0.0302 (12)
H17A0.34790.10570.00010.036*
C180.3800 (5)0.2417 (4)0.0447 (3)0.0261 (12)
H18A0.45620.27980.02080.031*
C190.3319 (5)0.2883 (4)0.0927 (3)0.0247 (11)
H19A0.37590.35660.10190.030*
C200.2162 (4)0.2311 (4)0.1269 (2)0.0206 (11)
H20A0.18330.26170.15930.025*
C210.0181 (4)0.0960 (4)0.1721 (2)0.0212 (11)
C220.0564 (5)0.1527 (4)0.2250 (3)0.0274 (12)
H22A0.11180.10810.24830.033*
C230.0490 (5)0.2751 (4)0.2433 (3)0.0305 (13)
H23A0.10090.31200.27780.037*
C240.0349 (5)0.3415 (4)0.2104 (3)0.0351 (14)
H24A0.03980.42360.22300.042*
C250.1122 (5)0.2881 (4)0.1590 (3)0.0338 (13)
H25A0.17040.33390.13770.041*
C260.1023 (5)0.1651 (4)0.1394 (3)0.0264 (12)
H26A0.15260.12860.10390.032*
C270.1159 (5)0.1071 (4)0.0842 (2)0.0198 (11)
C280.0783 (5)0.1778 (4)0.0161 (2)0.0210 (11)
H28A0.00720.20150.00340.025*
C290.1711 (5)0.2126 (4)0.0326 (2)0.0256 (12)
H29A0.14640.25990.07790.031*
C300.2969 (5)0.1785 (4)0.0150 (3)0.0294 (12)
H30A0.35690.20260.04830.035*
C310.3356 (5)0.1087 (4)0.0516 (2)0.0224 (11)
H31A0.42140.08480.06370.027*
C320.2443 (4)0.0747 (4)0.1003 (2)0.0187 (10)
C330.3828 (4)0.1127 (4)0.2280 (2)0.0203 (11)
C340.3867 (4)0.0176 (4)0.1984 (2)0.0212 (11)
C350.4954 (5)0.0657 (4)0.2003 (3)0.0290 (12)
H35A0.49480.12950.18230.035*
C360.6040 (5)0.0515 (5)0.2294 (3)0.0333 (13)
H36A0.67760.10690.23110.040*
C370.6069 (5)0.0432 (4)0.2564 (3)0.0302 (12)
H37A0.68240.05240.27430.036*
C380.4964 (5)0.1241 (4)0.2564 (2)0.0250 (11)
H38A0.49800.18650.27560.030*
C390.2108 (5)0.3287 (4)0.1550 (2)0.0213 (11)
C400.3114 (5)0.3613 (4)0.1123 (3)0.0315 (13)
H40A0.39300.31850.12380.038*
C410.2893 (5)0.4575 (4)0.0528 (3)0.0365 (14)
H41A0.35620.47880.02400.044*
C420.1698 (5)0.5215 (4)0.0363 (3)0.0351 (14)
H42A0.15610.58630.00380.042*
C430.0689 (5)0.4908 (4)0.0784 (3)0.0288 (12)
H43A0.01210.53500.06690.035*
C440.0894 (5)0.3943 (4)0.1376 (2)0.0228 (11)
H44A0.02190.37310.16600.027*
C450.2621 (4)0.2768 (4)0.3017 (2)0.0213 (11)
C460.3170 (5)0.3784 (4)0.2882 (3)0.0322 (13)
H46A0.33420.41740.24210.039*
C470.3466 (5)0.4232 (5)0.3421 (3)0.0371 (14)
H47A0.38320.49120.33170.044*
C480.3217 (5)0.3667 (5)0.4107 (3)0.0353 (13)
H48A0.34160.39580.44700.042*
C490.2667 (5)0.2661 (5)0.4247 (3)0.0356 (13)
H49A0.24870.22810.47080.043*
C500.2382 (5)0.2212 (4)0.3718 (3)0.0292 (12)
H50A0.20240.15270.38280.035*
C520.5815 (6)0.6510 (6)0.3872 (3)0.0615 (19)
H52A0.51950.66270.42150.092*
H52B0.61760.56800.39790.092*
H52C0.54170.67730.34140.092*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C510.045 (4)0.065 (5)0.028 (3)0.016 (4)0.001 (3)0.020 (3)
Cu10.0201 (3)0.0210 (3)0.0187 (3)0.0018 (3)0.0035 (3)0.0041 (3)
F10.039 (2)0.050 (2)0.064 (2)0.0011 (17)0.0155 (18)0.0172 (18)
F20.051 (2)0.0241 (15)0.0433 (19)0.0080 (15)0.0036 (16)0.0033 (14)
F30.050 (2)0.049 (2)0.073 (3)0.0006 (17)0.026 (2)0.0271 (19)
F40.085 (3)0.050 (2)0.0334 (19)0.011 (2)0.0143 (19)0.0051 (16)
F50.068 (3)0.0371 (17)0.0332 (18)0.0031 (17)0.0140 (17)0.0039 (15)
F60.058 (2)0.0294 (16)0.051 (2)0.0155 (16)0.0066 (18)0.0073 (15)
P10.0176 (7)0.0206 (6)0.0192 (6)0.0010 (5)0.0022 (5)0.0050 (5)
P20.0185 (7)0.0219 (6)0.0180 (6)0.0022 (5)0.0019 (5)0.0057 (5)
P30.0339 (9)0.0251 (7)0.0272 (7)0.0016 (6)0.0035 (7)0.0061 (6)
N10.019 (2)0.023 (2)0.017 (2)0.0035 (18)0.0004 (17)0.0040 (17)
N20.022 (2)0.020 (2)0.017 (2)0.0009 (18)0.0035 (18)0.0023 (17)
N30.056 (4)0.068 (4)0.042 (3)0.013 (3)0.001 (3)0.006 (3)
O10.079 (4)0.028 (2)0.042 (2)0.025 (2)0.007 (2)0.0002 (19)
O20.038 (2)0.032 (2)0.033 (2)0.0030 (18)0.0040 (19)0.0133 (18)
O30.045 (3)0.037 (2)0.031 (2)0.0039 (19)0.0225 (19)0.0013 (18)
O40.043 (3)0.036 (2)0.035 (2)0.0113 (19)0.0118 (19)0.0103 (18)
O50.0191 (19)0.0252 (17)0.0189 (17)0.0047 (15)0.0013 (15)0.0048 (15)
C10.028 (3)0.022 (3)0.021 (3)0.001 (2)0.001 (2)0.001 (2)
C20.026 (3)0.023 (3)0.026 (3)0.008 (2)0.000 (2)0.004 (2)
C30.030 (3)0.028 (3)0.025 (3)0.004 (2)0.009 (2)0.012 (2)
C40.026 (3)0.028 (3)0.020 (3)0.000 (2)0.002 (2)0.001 (2)
C50.020 (3)0.023 (2)0.019 (2)0.001 (2)0.000 (2)0.005 (2)
C60.022 (3)0.021 (2)0.022 (3)0.004 (2)0.001 (2)0.005 (2)
C70.033 (3)0.027 (3)0.015 (2)0.003 (2)0.003 (2)0.001 (2)
C80.029 (3)0.023 (3)0.024 (3)0.005 (2)0.008 (2)0.003 (2)
C90.031 (3)0.018 (2)0.031 (3)0.008 (2)0.001 (3)0.002 (2)
C100.023 (3)0.028 (3)0.026 (3)0.002 (2)0.004 (2)0.009 (2)
C110.025 (3)0.039 (3)0.025 (3)0.002 (3)0.004 (2)0.008 (3)
C120.040 (4)0.058 (4)0.036 (3)0.003 (3)0.023 (3)0.002 (3)
C130.041 (4)0.028 (3)0.026 (3)0.007 (3)0.003 (3)0.008 (2)
C140.054 (4)0.042 (3)0.034 (3)0.004 (3)0.002 (3)0.015 (3)
C150.020 (3)0.019 (2)0.018 (2)0.003 (2)0.004 (2)0.001 (2)
C160.021 (3)0.030 (3)0.034 (3)0.001 (2)0.003 (2)0.018 (2)
C170.023 (3)0.040 (3)0.034 (3)0.008 (3)0.003 (2)0.019 (3)
C180.012 (3)0.034 (3)0.033 (3)0.003 (2)0.000 (2)0.010 (2)
C190.019 (3)0.018 (2)0.033 (3)0.000 (2)0.003 (2)0.003 (2)
C200.021 (3)0.020 (2)0.021 (2)0.005 (2)0.001 (2)0.006 (2)
C210.021 (3)0.019 (2)0.023 (3)0.002 (2)0.003 (2)0.005 (2)
C220.024 (3)0.027 (3)0.032 (3)0.004 (2)0.006 (2)0.009 (2)
C230.038 (3)0.022 (3)0.028 (3)0.011 (2)0.001 (3)0.000 (2)
C240.048 (4)0.020 (3)0.036 (3)0.009 (3)0.002 (3)0.004 (2)
C250.041 (4)0.025 (3)0.037 (3)0.001 (3)0.003 (3)0.016 (3)
C260.028 (3)0.028 (3)0.027 (3)0.007 (2)0.007 (2)0.012 (2)
C270.027 (3)0.012 (2)0.020 (2)0.001 (2)0.003 (2)0.007 (2)
C280.019 (3)0.023 (2)0.022 (3)0.003 (2)0.000 (2)0.008 (2)
C290.033 (3)0.023 (3)0.018 (2)0.003 (2)0.002 (2)0.004 (2)
C300.031 (3)0.031 (3)0.027 (3)0.011 (2)0.013 (3)0.008 (2)
C310.017 (3)0.027 (3)0.023 (3)0.004 (2)0.001 (2)0.008 (2)
C320.020 (3)0.018 (2)0.017 (2)0.003 (2)0.000 (2)0.003 (2)
C330.017 (3)0.021 (2)0.019 (2)0.001 (2)0.001 (2)0.002 (2)
C340.020 (3)0.022 (2)0.018 (2)0.004 (2)0.002 (2)0.000 (2)
C350.024 (3)0.029 (3)0.034 (3)0.002 (2)0.002 (2)0.013 (2)
C360.021 (3)0.035 (3)0.039 (3)0.004 (2)0.001 (3)0.008 (3)
C370.015 (3)0.042 (3)0.030 (3)0.001 (2)0.006 (2)0.006 (3)
C380.028 (3)0.025 (3)0.021 (3)0.008 (2)0.004 (2)0.004 (2)
C390.025 (3)0.020 (2)0.021 (2)0.004 (2)0.002 (2)0.008 (2)
C400.026 (3)0.028 (3)0.030 (3)0.005 (2)0.006 (2)0.003 (2)
C410.035 (4)0.027 (3)0.039 (3)0.001 (3)0.010 (3)0.001 (3)
C420.050 (4)0.023 (3)0.028 (3)0.005 (3)0.001 (3)0.002 (2)
C430.025 (3)0.021 (3)0.036 (3)0.004 (2)0.010 (3)0.005 (2)
C440.020 (3)0.023 (2)0.026 (3)0.004 (2)0.000 (2)0.007 (2)
C450.016 (3)0.025 (3)0.023 (3)0.001 (2)0.000 (2)0.009 (2)
C460.034 (3)0.033 (3)0.032 (3)0.008 (3)0.006 (3)0.011 (3)
C470.043 (4)0.033 (3)0.039 (3)0.009 (3)0.003 (3)0.013 (3)
C480.036 (3)0.042 (3)0.034 (3)0.000 (3)0.006 (3)0.022 (3)
C490.035 (3)0.045 (3)0.028 (3)0.001 (3)0.001 (3)0.016 (3)
C500.030 (3)0.029 (3)0.029 (3)0.006 (2)0.002 (2)0.009 (2)
C520.044 (4)0.085 (5)0.057 (4)0.011 (4)0.006 (4)0.034 (4)
Geometric parameters (Å, º) top
C51—N31.162 (8)C18—H18A0.9300
C51—C521.460 (9)C19—C201.395 (6)
Cu1—N22.060 (4)C19—H19A0.9300
Cu1—N12.083 (4)C20—H20A0.9300
Cu1—P22.2526 (14)C21—C261.389 (6)
Cu1—P12.2665 (14)C21—C221.390 (6)
F1—P31.593 (3)C22—C231.386 (6)
F2—P31.600 (3)C22—H22A0.9300
F3—P31.595 (3)C23—C241.369 (7)
F4—P31.576 (3)C23—H23A0.9300
F5—P31.604 (3)C24—C251.378 (7)
F6—P31.599 (3)C24—H24A0.9300
P1—C151.820 (5)C25—C261.389 (6)
P1—C271.825 (4)C25—H25A0.9300
P1—C211.846 (4)C26—H26A0.9300
P2—C391.814 (5)C27—C321.383 (6)
P2—C451.837 (5)C27—C281.400 (6)
P2—C331.842 (5)C28—C291.400 (6)
N1—C101.337 (6)C28—H28A0.9300
N1—C61.359 (5)C29—C301.362 (7)
N2—C11.341 (6)C29—H29A0.9300
N2—C51.358 (5)C30—C311.377 (6)
O1—C131.186 (6)C30—H30A0.9300
O2—C131.319 (6)C31—C321.385 (6)
O2—C141.453 (5)C31—H31A0.9300
O3—C111.335 (6)C33—C381.401 (7)
O3—C121.459 (6)C33—C341.413 (6)
O4—C111.195 (6)C34—C351.385 (6)
O5—C321.393 (5)C35—C361.370 (7)
O5—C341.401 (5)C35—H35A0.9300
C1—C21.390 (6)C36—C371.387 (7)
C1—H1A0.9300C36—H36A0.9300
C2—C31.386 (6)C37—C381.390 (7)
C2—H2A0.9300C37—H37A0.9300
C3—C41.376 (6)C38—H38A0.9300
C3—C111.501 (6)C39—C441.391 (6)
C4—C51.399 (6)C39—C401.392 (6)
C4—H4A0.9300C40—C411.381 (7)
C5—C61.473 (6)C40—H40A0.9300
C6—C71.396 (6)C41—C421.366 (7)
C7—C81.389 (6)C41—H41A0.9300
C7—H7A0.9300C42—C431.385 (7)
C8—C91.383 (7)C42—H42A0.9300
C8—C131.500 (7)C43—C441.380 (6)
C9—C101.372 (6)C43—H43A0.9300
C9—H9A0.9300C44—H44A0.9300
C10—H10A0.9300C45—C461.393 (6)
C12—H12A0.9600C45—C501.399 (6)
C12—H12B0.9600C46—C471.393 (7)
C12—H12C0.9600C46—H46A0.9300
C14—H14A0.9600C47—C481.379 (7)
C14—H14B0.9600C47—H47A0.9300
C14—H14C0.9600C48—C491.382 (7)
C15—C201.393 (6)C48—H48A0.9300
C15—C161.397 (7)C49—C501.372 (7)
C16—C171.369 (7)C49—H49A0.9300
C16—H16A0.9300C50—H50A0.9300
C17—C181.404 (7)C52—H52A0.9600
C17—H17A0.9300C52—H52B0.9600
C18—C191.385 (7)C52—H52C0.9600
N3—C51—C52177.5 (7)C18—C19—C20118.9 (4)
N2—Cu1—N180.69 (14)C18—C19—H19A120.5
N2—Cu1—P2118.87 (11)C20—C19—H19A120.5
N1—Cu1—P2113.94 (11)C15—C20—C19121.0 (4)
N2—Cu1—P1119.29 (12)C15—C20—H20A119.5
N1—Cu1—P1106.56 (11)C19—C20—H20A119.5
P2—Cu1—P1112.38 (5)C26—C21—C22118.4 (4)
C15—P1—C27103.6 (2)C26—C21—P1124.5 (4)
C15—P1—C21104.4 (2)C22—C21—P1116.8 (3)
C27—P1—C21104.0 (2)C23—C22—C21120.7 (5)
C15—P1—Cu1122.05 (16)C23—C22—H22A119.7
C27—P1—Cu1111.41 (16)C21—C22—H22A119.7
C21—P1—Cu1109.74 (16)C24—C23—C22119.8 (5)
C39—P2—C45102.6 (2)C24—C23—H23A120.1
C39—P2—C33105.4 (2)C22—C23—H23A120.1
C45—P2—C33103.0 (2)C23—C24—C25120.8 (4)
C39—P2—Cu1113.39 (16)C23—C24—H24A119.6
C45—P2—Cu1117.33 (15)C25—C24—H24A119.6
C33—P2—Cu1113.64 (15)C24—C25—C26119.3 (5)
F4—P3—F191.1 (2)C24—C25—H25A120.4
F4—P3—F390.0 (2)C26—C25—H25A120.4
F1—P3—F3178.8 (2)C21—C26—C25120.9 (4)
F4—P3—F690.00 (18)C21—C26—H26A119.5
F1—P3—F690.30 (18)C25—C26—H26A119.5
F3—P3—F689.34 (17)C32—C27—C28117.9 (4)
F4—P3—F291.34 (18)C32—C27—P1117.7 (3)
F1—P3—F289.61 (17)C28—C27—P1124.1 (4)
F3—P3—F290.72 (17)C27—C28—C29119.2 (5)
F6—P3—F2178.66 (19)C27—C28—H28A120.4
F4—P3—F5179.4 (2)C29—C28—H28A120.4
F1—P3—F589.45 (19)C30—C29—C28121.2 (4)
F3—P3—F589.4 (2)C30—C29—H29A119.4
F6—P3—F589.90 (17)C28—C29—H29A119.4
F2—P3—F588.76 (17)C29—C30—C31120.4 (4)
C10—N1—C6118.5 (4)C29—C30—H30A119.8
C10—N1—Cu1128.4 (3)C31—C30—H30A119.8
C6—N1—Cu1112.9 (3)C30—C31—C32118.8 (5)
C1—N2—C5118.2 (4)C30—C31—H31A120.6
C1—N2—Cu1128.3 (3)C32—C31—H31A120.6
C5—N2—Cu1113.4 (3)C27—C32—C31122.5 (4)
C13—O2—C14115.8 (4)C27—C32—O5115.3 (4)
C11—O3—C12115.0 (4)C31—C32—O5122.2 (4)
C32—O5—C34116.3 (3)C38—C33—C34117.2 (4)
N2—C1—C2123.9 (4)C38—C33—P2123.2 (4)
N2—C1—H1A118.0C34—C33—P2119.4 (4)
C2—C1—H1A118.0C35—C34—O5118.2 (4)
C3—C2—C1117.8 (4)C35—C34—C33122.4 (5)
C3—C2—H2A121.1O5—C34—C33119.4 (4)
C1—C2—H2A121.1C36—C35—C34118.2 (5)
C4—C3—C2119.0 (4)C36—C35—H35A120.9
C4—C3—C11121.7 (4)C34—C35—H35A120.9
C2—C3—C11119.3 (5)C35—C36—C37121.7 (5)
C3—C4—C5120.5 (4)C35—C36—H36A119.1
C3—C4—H4A119.7C37—C36—H36A119.1
C5—C4—H4A119.7C36—C37—C38119.7 (5)
N2—C5—C4120.5 (4)C36—C37—H37A120.2
N2—C5—C6116.6 (4)C38—C37—H37A120.2
C4—C5—C6122.9 (4)C37—C38—C33120.7 (5)
N1—C6—C7120.8 (4)C37—C38—H38A119.7
N1—C6—C5116.2 (4)C33—C38—H38A119.7
C7—C6—C5122.9 (4)C44—C39—C40119.6 (4)
C8—C7—C6119.3 (4)C44—C39—P2116.9 (3)
C8—C7—H7A120.3C40—C39—P2123.5 (4)
C6—C7—H7A120.3C41—C40—C39119.7 (5)
C9—C8—C7119.2 (4)C41—C40—H40A120.2
C9—C8—C13120.3 (4)C39—C40—H40A120.2
C7—C8—C13120.5 (5)C42—C41—C40120.3 (5)
C10—C9—C8118.5 (4)C42—C41—H41A119.8
C10—C9—H9A120.8C40—C41—H41A119.8
C8—C9—H9A120.8C41—C42—C43120.7 (5)
N1—C10—C9123.6 (4)C41—C42—H42A119.6
N1—C10—H10A118.2C43—C42—H42A119.6
C9—C10—H10A118.2C44—C43—C42119.6 (5)
O4—C11—O3125.5 (4)C44—C43—H43A120.2
O4—C11—C3124.4 (5)C42—C43—H43A120.2
O3—C11—C3110.2 (4)C43—C44—C39120.1 (4)
O3—C12—H12A109.5C43—C44—H44A120.0
O3—C12—H12B109.5C39—C44—H44A120.0
H12A—C12—H12B109.5C46—C45—C50117.1 (4)
O3—C12—H12C109.5C46—C45—P2124.7 (4)
H12A—C12—H12C109.5C50—C45—P2118.0 (3)
H12B—C12—H12C109.5C47—C46—C45121.6 (5)
O1—C13—O2124.7 (5)C47—C46—H46A119.2
O1—C13—C8123.3 (5)C45—C46—H46A119.2
O2—C13—C8111.9 (5)C48—C47—C46120.1 (5)
O2—C14—H14A109.5C48—C47—H47A120.0
O2—C14—H14B109.5C46—C47—H47A120.0
H14A—C14—H14B109.5C47—C48—C49118.8 (5)
O2—C14—H14C109.5C47—C48—H48A120.6
H14A—C14—H14C109.5C49—C48—H48A120.6
H14B—C14—H14C109.5C50—C49—C48121.3 (5)
C20—C15—C16118.9 (4)C50—C49—H49A119.3
C20—C15—P1118.2 (4)C48—C49—H49A119.3
C16—C15—P1122.8 (4)C49—C50—C45121.1 (5)
C17—C16—C15120.8 (5)C49—C50—H50A119.5
C17—C16—H16A119.6C45—C50—H50A119.5
C15—C16—H16A119.6C51—C52—H52A109.5
C16—C17—C18119.9 (5)C51—C52—H52B109.5
C16—C17—H17A120.1H52A—C52—H52B109.5
C18—C17—H17A120.1C51—C52—H52C109.5
C19—C18—C17120.4 (5)H52A—C52—H52C109.5
C19—C18—H18A119.8H52B—C52—H52C109.5
C17—C18—H18A119.8

Experimental details

Crystal data
Chemical formula[Cu(C14H12N2O4)(C36H28OP2)]PF6·C2H3N
Mr1060.34
Crystal system, space groupTriclinic, P1
Temperature (K)291
a, b, c (Å)10.7163 (16), 11.9178 (12), 19.879 (4)
α, β, γ (°)73.288 (5), 88.410 (5), 79.863 (4)
V3)2393.0 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.63
Crystal size (mm)0.18 × 0.10 × 0.07
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.895, 0.957
No. of measured, independent and
observed [I > 2σ(I)] reflections
20165, 10580, 5125
Rint0.069
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.141, 0.99
No. of reflections10580
No. of parameters632
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.51, 0.59

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC & Rigaku, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

 

Acknowledgements

We are grateful for financial support from the National Science Foundation of China (grant Nos. 20573040, 20834006, 20704015, 20474024, 90501001 and 50303007), the Ministry of Science and Technology of China (grant Nos. 2009CB623605), the 111 project (B06009) and PCSIRT.

References

First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMa, Y. G., Chan, W. H., Zhou, X. M. & Che, C. M. (1999). New J. Chem. pp. 263–265.  Web of Science CrossRef Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC & Rigaku (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationScaltrito, D. V., Thompson, D. W., O'Callaghan, J. A. & Meyer, G. J. (2000). Coord. Chem. Rev. 208, 243–266.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds