organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-[(E)-Quinoxalin-2-ylmethyl­­idene]-1H-indazol-5-amine

aDepartment of Applied Chemistry, Cochin University of Science and Technology, Cochin 682 022, Kerala, India
*Correspondence e-mail: yusuff@cusat.ac.in.

(Received 18 June 2009; accepted 15 July 2009; online 25 July 2009)

In the title mol­ecule, C16H11N5, the mean planes of the quinoxaline and indazole fragments form a dihedral angle of 10.62 (5)°. In the crystal, weak inter­molecular N—H⋯N hydrogen bonds link the mol­ecules into zigzag chains extending in the [001] direction. The crystal packing also exhibits ππ inter­actions [centroid–centroid distances of 3.7080 (2) and 3.8220 (5) Å], which form stacks of the mol­ecules parallel to the a axis.

Related literature

For related structures, see: Varghese et al. (2009[Varghese, D., Arun, V., Sebastian, M., Leeju, P., Varsha, G. & Yusuff, K. K. M. (2009). Acta Cryst. E65, o435.]); Varsha et al. (2009[Varsha, G., Arun, V., Sebastian, M., Leeju, P., Varghese, D. & Yusuff, K. K. M. (2009). Acta Cryst. E65, o919.]).

[Scheme 1]

Experimental

Crystal data
  • C16H11N5

  • Mr = 273.30

  • Monoclinic, P 21 /c

  • a = 7.7015 (6) Å

  • b = 8.0330 (6) Å

  • c = 20.6034 (16) Å

  • β = 96.882 (2)°

  • V = 1265.47 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.45 × 0.27 × 0.08 mm

Data collection
  • Bruker Kappa APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001[Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.]) Tmin = 0.960, Tmax = 0.993

  • 16012 measured reflections

  • 3597 independent reflections

  • 2502 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.143

  • S = 1.03

  • 3597 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4⋯N1iii 0.86 2.31 3.1050 (15) 153
Symmetry code: (iii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Comment top

In view of synthesizing new quinoxaline based Schiff bases, we have undertaken the synthesis of the title compound, (1), and report here its crystal structure. In (1), the quinoxaline ring and indazole ring are each approximately planar, with the maximum deviations of 0.0254 (4) and 0.0213 (4) Å from the least square planes, respectively. A perspective drawing is depicted in figure 1 with the atomic numbering scheme. The compound is non-planar due to the twisting of rings with respect to azomethine group. Bond lengths and angles are in normal ranges and comparable to those in related structures (Varghese et al., 2009; Varsha et al., 2009). In the crystal structure, molecules are held together by ππ stacking interactions and N—H···N intermolecular hydrogen bonding.

Related literature top

For related structures, see: Varghese et al. (2009); Varsha et al. (2009). Cg1, Cg2 and Cg3 are centroids of the N1/N2/C1/C6–C8, C1–C6 and C10–C16 rings, respectively.

Experimental top

A hot solution of 5-aminoindazole (1 mmol) in ethanol (20 ml) was added slowly to a hot solution of quinoxaline-2-carboxaldehyde (1 mmol) in the same solvent (40 ml).The resulting mixture on cooling yielded the crude product of (1). Pale green crystals suitable for single-crystal XRD are obtained by slow evaporation of ethanolic solution of (1).

Refinement top

H atoms were positioned geometrically (N—H = 0.86 Å, C—H = 0.93 Å) and refined in riding mode, with Uiso (H) = 1.2Ueq(C, N).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
N-[(E)-Quinoxalin-2-ylmethylidene]-1H-indazol-5-amine top
Crystal data top
C16H11N5F(000) = 568
Mr = 273.30Dx = 1.434 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2502 reflections
a = 7.7015 (6) Åθ = 2.6–29.8°
b = 8.0330 (6) ŵ = 0.09 mm1
c = 20.6034 (16) ÅT = 298 K
β = 96.882 (2)°Plate, green
V = 1265.47 (17) Å30.45 × 0.27 × 0.08 mm
Z = 4
Data collection top
Bruker Kappa APEX CCD
diffractometer
3597 independent reflections
Radiation source: fine-focus sealed tube2502 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ω and ϕ scansθmax = 29.8°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 1010
Tmin = 0.960, Tmax = 0.993k = 1110
16012 measured reflectionsl = 2826
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0715P)2 + 0.2171P]
where P = (Fo2 + 2Fc2)/3
3597 reflections(Δ/σ)max = 0.003
190 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C16H11N5V = 1265.47 (17) Å3
Mr = 273.30Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.7015 (6) ŵ = 0.09 mm1
b = 8.0330 (6) ÅT = 298 K
c = 20.6034 (16) Å0.45 × 0.27 × 0.08 mm
β = 96.882 (2)°
Data collection top
Bruker Kappa APEX CCD
diffractometer
3597 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
2502 reflections with I > 2σ(I)
Tmin = 0.960, Tmax = 0.993Rint = 0.024
16012 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.143H-atom parameters constrained
S = 1.03Δρmax = 0.23 e Å3
3597 reflectionsΔρmin = 0.26 e Å3
190 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.25032 (15)0.66502 (15)0.33833 (5)0.0436 (3)
N20.14194 (13)0.77204 (14)0.45776 (5)0.0392 (3)
N30.30313 (15)0.37642 (14)0.50779 (5)0.0413 (3)
N40.38605 (15)0.08636 (16)0.70573 (5)0.0454 (3)
H40.37740.08510.74700.054*
N50.42455 (17)0.22452 (16)0.67229 (6)0.0515 (3)
C10.18211 (15)0.82051 (17)0.34459 (6)0.0368 (3)
C20.16182 (18)0.9289 (2)0.29041 (6)0.0469 (3)
H20.19800.89600.25090.056*
C30.08916 (19)1.0817 (2)0.29612 (7)0.0507 (4)
H30.07241.15110.25980.061*
C40.03910 (19)1.1364 (2)0.35576 (7)0.0490 (4)
H4A0.00731.24260.35890.059*
C50.05790 (18)1.03530 (18)0.40912 (7)0.0440 (3)
H50.02471.07240.44860.053*
C60.12780 (16)0.87452 (17)0.40443 (6)0.0361 (3)
C70.26273 (18)0.57069 (18)0.39027 (6)0.0436 (3)
H70.30880.46420.38770.052*
C80.20879 (16)0.62367 (16)0.45062 (6)0.0374 (3)
C90.22517 (17)0.51440 (18)0.50816 (6)0.0411 (3)
H90.17730.54750.54550.049*
C100.32246 (16)0.27137 (17)0.56339 (6)0.0369 (3)
C110.36804 (16)0.10932 (16)0.55175 (6)0.0375 (3)
H110.38480.07560.50980.045*
C120.38887 (16)0.00418 (17)0.60359 (6)0.0360 (3)
C130.36273 (15)0.04951 (17)0.66654 (6)0.0365 (3)
C140.42856 (19)0.17552 (18)0.61149 (6)0.0460 (3)
H140.45430.24510.57780.055*
C150.32249 (17)0.21454 (18)0.67939 (6)0.0421 (3)
H150.30960.24960.72160.051*
C160.30258 (18)0.32333 (18)0.62789 (6)0.0427 (3)
H160.27540.43390.63540.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0514 (6)0.0477 (7)0.0324 (5)0.0016 (5)0.0079 (4)0.0037 (5)
N20.0438 (6)0.0433 (6)0.0313 (5)0.0018 (5)0.0081 (4)0.0014 (4)
N30.0508 (6)0.0404 (6)0.0333 (5)0.0004 (5)0.0073 (4)0.0023 (4)
N40.0577 (7)0.0510 (7)0.0279 (5)0.0001 (5)0.0070 (5)0.0050 (5)
N50.0698 (8)0.0469 (7)0.0377 (6)0.0017 (6)0.0070 (5)0.0050 (5)
C10.0357 (6)0.0445 (7)0.0304 (6)0.0040 (5)0.0046 (4)0.0005 (5)
C20.0492 (7)0.0593 (9)0.0333 (6)0.0023 (7)0.0096 (5)0.0060 (6)
C30.0494 (8)0.0581 (9)0.0453 (8)0.0007 (7)0.0087 (6)0.0184 (7)
C40.0473 (7)0.0466 (8)0.0536 (8)0.0046 (6)0.0085 (6)0.0093 (7)
C50.0465 (7)0.0465 (8)0.0398 (7)0.0042 (6)0.0087 (5)0.0011 (6)
C60.0355 (6)0.0423 (7)0.0307 (6)0.0030 (5)0.0046 (4)0.0000 (5)
C70.0530 (8)0.0435 (8)0.0347 (6)0.0041 (6)0.0065 (5)0.0026 (5)
C80.0401 (6)0.0402 (7)0.0322 (6)0.0015 (5)0.0061 (5)0.0006 (5)
C90.0452 (7)0.0452 (8)0.0338 (6)0.0000 (6)0.0087 (5)0.0022 (5)
C100.0417 (6)0.0405 (7)0.0291 (6)0.0015 (5)0.0071 (5)0.0001 (5)
C110.0440 (6)0.0435 (7)0.0264 (5)0.0002 (5)0.0098 (5)0.0015 (5)
C120.0395 (6)0.0406 (7)0.0286 (6)0.0015 (5)0.0067 (4)0.0007 (5)
C130.0367 (6)0.0468 (8)0.0264 (5)0.0026 (5)0.0054 (4)0.0012 (5)
C140.0604 (8)0.0425 (8)0.0356 (7)0.0029 (6)0.0075 (6)0.0008 (6)
C150.0489 (7)0.0516 (8)0.0265 (6)0.0014 (6)0.0074 (5)0.0063 (5)
C160.0531 (7)0.0420 (7)0.0334 (6)0.0038 (6)0.0062 (5)0.0063 (5)
Geometric parameters (Å, º) top
N1—C71.3053 (17)C5—C61.4070 (19)
N1—C11.3670 (17)C5—H50.9300
N2—C81.3136 (17)C7—C81.4225 (17)
N2—C61.3668 (16)C7—H70.9300
N3—C91.2610 (18)C8—C91.4684 (17)
N3—C101.4162 (16)C9—H90.9300
N4—C131.3568 (17)C10—C111.3768 (18)
N4—N51.3576 (17)C10—C161.4185 (17)
N4—H40.8600C11—C121.3989 (17)
N5—C141.3169 (17)C11—H110.9300
C1—C21.4094 (18)C12—C131.4039 (16)
C1—C61.4167 (17)C12—C141.4150 (19)
C2—C31.360 (2)C13—C151.3941 (19)
C2—H20.9300C14—H140.9300
C3—C41.402 (2)C15—C161.3691 (18)
C3—H30.9300C15—H150.9300
C4—C51.3605 (19)C16—H160.9300
C4—H4A0.9300
Cg1···Cg3i3.7080 (2)Cg2···Cg3ii3.8220 (5)
C7—N1—C1116.38 (11)N2—C8—C7121.92 (12)
C8—N2—C6116.81 (10)N2—C8—C9116.67 (11)
C9—N3—C10121.52 (11)C7—C8—C9121.40 (12)
C13—N4—N5112.15 (10)N3—C9—C8121.03 (12)
C13—N4—H4123.9N3—C9—H9119.5
N5—N4—H4123.9C8—C9—H9119.5
C14—N5—N4105.65 (12)C11—C10—N3115.26 (11)
N1—C1—C2119.81 (11)C11—C10—C16119.99 (12)
N1—C1—C6121.24 (11)N3—C10—C16124.73 (12)
C2—C1—C6118.94 (12)C10—C11—C12119.44 (11)
C3—C2—C1119.78 (13)C10—C11—H11120.3
C3—C2—H2120.1C12—C11—H11120.3
C1—C2—H2120.1C11—C12—C13119.28 (12)
C2—C3—C4121.20 (13)C11—C12—C14136.49 (12)
C2—C3—H3119.4C13—C12—C14104.21 (11)
C4—C3—H3119.4N4—C13—C15131.95 (11)
C5—C4—C3120.49 (14)N4—C13—C12106.21 (12)
C5—C4—H4A119.8C15—C13—C12121.83 (12)
C3—C4—H4A119.8N5—C14—C12111.77 (12)
C4—C5—C6119.80 (13)N5—C14—H14124.1
C4—C5—H5120.1C12—C14—H14124.1
C6—C5—H5120.1C16—C15—C13117.81 (11)
N2—C6—C5119.47 (11)C16—C15—H15121.1
N2—C6—C1120.78 (12)C13—C15—H15121.1
C5—C6—C1119.75 (12)C15—C16—C10121.58 (13)
N1—C7—C8122.85 (13)C15—C16—H16119.2
N1—C7—H7118.6C10—C16—H16119.2
C8—C7—H7118.6
Symmetry codes: (i) x, y+2, z; (ii) x+2, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···N1iii0.862.313.1050 (15)153
Symmetry code: (iii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC16H11N5
Mr273.30
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)7.7015 (6), 8.0330 (6), 20.6034 (16)
β (°) 96.882 (2)
V3)1265.47 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.45 × 0.27 × 0.08
Data collection
DiffractometerBruker Kappa APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.960, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
16012, 3597, 2502
Rint0.024
(sin θ/λ)max1)0.698
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.143, 1.03
No. of reflections3597
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.26

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), publCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···N1i0.862.313.1050 (15)152.9
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

The X-ray data were collected on the diffractometer facilities at the Indian Institute of Technology, Madras, provided by the Department of Science and Technology. MS thanks the Kerala State Council for Science, Technology and the Environment, Trivandrum, Kerala, for support. DV acknowledges the Council of Scientific and Industrial Research (CSIR), India, for financial assistance.

References

First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVarghese, D., Arun, V., Sebastian, M., Leeju, P., Varsha, G. & Yusuff, K. K. M. (2009). Acta Cryst. E65, o435.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationVarsha, G., Arun, V., Sebastian, M., Leeju, P., Varghese, D. & Yusuff, K. K. M. (2009). Acta Cryst. E65, o919.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds