metal-organic compounds
1,4-Diazoniabicyclo[2.2.2]octane diaquadichlorido(oxalato-κ2O,O′)iron(III) chloride
aOrdered Matter Science Research Center, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: cyik@163.com
In the title compound, (C6H14N2)[Fe(C2O4)Cl2(H2O)2]Cl, all ions are situated on twofold rotational axes. The FeIII ion is coordinated by two O atoms from a chelating oxalate ligand, two water molecules and two chloride anions in a distorted octahedral geometry. Intermolecular N—H⋯O, O—H⋯O and O—H⋯Cl hydrogen bonds form an extensive three-dimensional network which consolidates the crystal packing.
Related literature
For the crystal structures of related compounds, see: Fu et al. (2002); Keene et al. (2004); Sukhendu & Srinivasan (2007); Zhao & Xu (2008); Lee & Wang (1999).
Experimental
Crystal data
|
Data collection: CrystalClear (Rigaku, 2005); cell CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536809025628/cv2580sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809025628/cv2580Isup2.hkl
A mixture of oxalic acid (0.01 mol 0.9 g) and iron(III) chloride (0.01 mol 1.62 g) and the 1,4-diaza-bicyclo[2.2.2]octane (dabco) (0.01 mol 1.12 g) in H2O (20 ml) was stirred until clear. Adjust the pH value of the solution to 4 with 10% HCl solution. After slow evaporation, yellow plate crystals of the title compand suitable for X-ray analysis were obtained with about 65% yield (based on Fe).
H atoms bound to C and N atoms were positioned geometrically and refined as riding, with C—H = 0.97 and N—H = 0.91 Å, and with Uiso(H) = 1.2Ueq(parent atom). H atoms bound to O atoms were located in difference maps, but their O—H distances and H—O—H angles were restrained to the literature values.
Data collection: CrystalClear (Rigaku, 2005); cell
CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).(C6H14N2)[Fe(C2O4)Cl2(H2O)2]Cl | F(000) = 410 |
Mr = 400.44 | Dx = 1.756 Mg m−3 |
Monoclinic, C2 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: C 2y | Cell parameters from 3950 reflections |
a = 9.872 (2) Å | θ = 3.0–27.5° |
b = 9.6636 (19) Å | µ = 1.55 mm−1 |
c = 8.4268 (17) Å | T = 293 K |
β = 109.57 (3)° | Plate, yellow |
V = 757.4 (3) Å3 | 0.30 × 0.30 × 0.20 mm |
Z = 2 |
Rigaku Mercury CCD diffractometer | 1729 independent reflections |
Radiation source: fine-focus sealed tube | 1684 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.025 |
ω scans | θmax = 27.5°, θmin = 3.0° |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) | h = −12→12 |
Tmin = 0.638, Tmax = 0.734 | k = −12→12 |
3954 measured reflections | l = −10→10 |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.020 | w = 1/[σ2(Fo2) + (0.017P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.049 | (Δ/σ)max < 0.001 |
S = 1.08 | Δρmax = 0.17 e Å−3 |
1729 reflections | Δρmin = −0.15 e Å−3 |
101 parameters | Extinction correction: SHELXL97 (Sheldrick, 2008) |
1 restraint | Extinction coefficient: 0.0476 (15) |
Primary atom site location: structure-invariant direct methods | Absolute structure: Flack (1983), 802 Friedel pairs |
Secondary atom site location: difference Fourier map | Absolute structure parameter: 0.016 (13) |
(C6H14N2)[Fe(C2O4)Cl2(H2O)2]Cl | V = 757.4 (3) Å3 |
Mr = 400.44 | Z = 2 |
Monoclinic, C2 | Mo Kα radiation |
a = 9.872 (2) Å | µ = 1.55 mm−1 |
b = 9.6636 (19) Å | T = 293 K |
c = 8.4268 (17) Å | 0.30 × 0.30 × 0.20 mm |
β = 109.57 (3)° |
Rigaku Mercury CCD diffractometer | 1729 independent reflections |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) | 1684 reflections with I > 2σ(I) |
Tmin = 0.638, Tmax = 0.734 | Rint = 0.025 |
3954 measured reflections |
R[F2 > 2σ(F2)] = 0.020 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.049 | Δρmax = 0.17 e Å−3 |
S = 1.08 | Δρmin = −0.15 e Å−3 |
1729 reflections | Absolute structure: Flack (1983), 802 Friedel pairs |
101 parameters | Absolute structure parameter: 0.016 (13) |
1 restraint |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Fe1 | 0.0000 | 1.02078 (3) | 1.0000 | 0.02213 (11) | |
Cl1 | 0.16532 (6) | 1.17560 (5) | 1.16036 (7) | 0.03727 (16) | |
Cl2 | 0.0000 | 0.85379 (10) | 0.5000 | 0.0462 (2) | |
N1 | 0.37619 (17) | 0.90236 (18) | 0.3965 (2) | 0.0285 (4) | |
H1 | 0.2853 | 0.9021 | 0.3207 | 0.034* | |
C1 | 0.07314 (19) | 0.7358 (2) | 1.0751 (2) | 0.0242 (4) | |
C2 | 0.3777 (2) | 0.9825 (2) | 0.5494 (2) | 0.0377 (5) | |
H2A | 0.3047 | 0.9470 | 0.5922 | 0.045* | |
H2B | 0.3572 | 1.0792 | 0.5207 | 0.045* | |
C3 | 0.4750 (2) | 0.9679 (3) | 0.3179 (3) | 0.0393 (5) | |
H3A | 0.4386 | 1.0582 | 0.2735 | 0.047* | |
H3B | 0.4812 | 0.9111 | 0.2257 | 0.047* | |
C4 | 0.4218 (3) | 0.7572 (2) | 0.4454 (3) | 0.0464 (6) | |
H4A | 0.4088 | 0.7017 | 0.3454 | 0.056* | |
H4B | 0.3638 | 0.7176 | 0.5067 | 0.056* | |
O1 | 0.11725 (13) | 0.85657 (14) | 1.13039 (16) | 0.0273 (3) | |
O2 | 0.11176 (16) | 1.00290 (19) | 0.83598 (18) | 0.0354 (4) | |
O3 | 0.13212 (14) | 0.62670 (16) | 1.1287 (2) | 0.0375 (4) | |
H2WA | 0.199 (3) | 1.033 (3) | 0.859 (3) | 0.046 (7)* | |
H2WB | 0.075 (3) | 0.971 (4) | 0.741 (4) | 0.075 (10)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Fe1 | 0.01824 (19) | 0.0248 (2) | 0.01995 (18) | 0.000 | 0.00185 (14) | 0.000 |
Cl1 | 0.0293 (3) | 0.0348 (3) | 0.0404 (3) | −0.0041 (2) | 0.0021 (2) | −0.0136 (2) |
Cl2 | 0.0591 (5) | 0.0447 (5) | 0.0256 (4) | 0.000 | 0.0019 (3) | 0.000 |
N1 | 0.0172 (8) | 0.0399 (10) | 0.0226 (8) | −0.0024 (7) | −0.0010 (7) | 0.0007 (7) |
C1 | 0.0175 (9) | 0.0296 (10) | 0.0273 (9) | 0.0010 (7) | 0.0099 (8) | 0.0025 (7) |
C2 | 0.0249 (10) | 0.0499 (15) | 0.0397 (11) | 0.0031 (9) | 0.0125 (9) | −0.0086 (10) |
C3 | 0.0269 (10) | 0.0608 (14) | 0.0304 (10) | 0.0065 (9) | 0.0098 (9) | 0.0190 (10) |
C4 | 0.0521 (15) | 0.0290 (13) | 0.0477 (15) | −0.0115 (11) | 0.0030 (13) | −0.0061 (11) |
O1 | 0.0207 (7) | 0.0276 (7) | 0.0262 (7) | 0.0018 (6) | −0.0019 (5) | 0.0003 (6) |
O2 | 0.0291 (8) | 0.0488 (10) | 0.0300 (7) | −0.0128 (7) | 0.0122 (6) | −0.0117 (8) |
O3 | 0.0294 (7) | 0.0313 (8) | 0.0520 (10) | 0.0096 (6) | 0.0139 (7) | 0.0145 (7) |
Fe1—O2i | 2.0443 (14) | C1—C1i | 1.569 (4) |
Fe1—O2 | 2.0443 (14) | C2—C3ii | 1.515 (3) |
Fe1—O1i | 2.0526 (14) | C2—H2A | 0.9700 |
Fe1—O1 | 2.0526 (14) | C2—H2B | 0.9700 |
Fe1—Cl1 | 2.2913 (8) | C3—C2ii | 1.515 (3) |
Fe1—Cl1i | 2.2913 (8) | C3—H3A | 0.9700 |
N1—C4 | 1.489 (2) | C3—H3B | 0.9700 |
N1—C3 | 1.491 (3) | C4—C4ii | 1.509 (5) |
N1—C2 | 1.499 (2) | C4—H4A | 0.9700 |
N1—H1 | 0.9100 | C4—H4B | 0.9700 |
C1—O3 | 1.216 (2) | O2—H2WA | 0.87 (3) |
C1—O1 | 1.278 (2) | O2—H2WB | 0.82 (3) |
O2i—Fe1—O2 | 170.30 (10) | O1—C1—C1i | 113.78 (10) |
O2i—Fe1—O1i | 87.78 (6) | N1—C2—C3ii | 108.47 (16) |
O2—Fe1—O1i | 84.72 (6) | N1—C2—H2A | 110.0 |
O2i—Fe1—O1 | 84.72 (6) | C3ii—C2—H2A | 110.0 |
O2—Fe1—O1 | 87.78 (6) | N1—C2—H2B | 110.0 |
O1i—Fe1—O1 | 78.73 (8) | C3ii—C2—H2B | 110.0 |
O2i—Fe1—Cl1 | 95.48 (5) | H2A—C2—H2B | 108.4 |
O2—Fe1—Cl1 | 90.85 (5) | N1—C3—C2ii | 108.72 (15) |
O1i—Fe1—Cl1 | 169.42 (4) | N1—C3—H3A | 109.9 |
O1—Fe1—Cl1 | 91.53 (5) | C2ii—C3—H3A | 109.9 |
O2i—Fe1—Cl1i | 90.85 (5) | N1—C3—H3B | 109.9 |
O2—Fe1—Cl1i | 95.48 (5) | C2ii—C3—H3B | 109.9 |
O1i—Fe1—Cl1i | 91.53 (5) | H3A—C3—H3B | 108.3 |
O1—Fe1—Cl1i | 169.42 (4) | N1—C4—C4ii | 108.77 (11) |
Cl1—Fe1—Cl1i | 98.47 (4) | N1—C4—H4A | 109.9 |
C4—N1—C3 | 109.93 (18) | C4ii—C4—H4A | 109.9 |
C4—N1—C2 | 109.49 (17) | N1—C4—H4B | 109.9 |
C3—N1—C2 | 110.04 (18) | C4ii—C4—H4B | 109.9 |
C4—N1—H1 | 109.1 | H4A—C4—H4B | 108.3 |
C3—N1—H1 | 109.1 | C1—O1—Fe1 | 116.67 (12) |
C2—N1—H1 | 109.1 | Fe1—O2—H2WA | 122.9 (15) |
O3—C1—O1 | 126.47 (18) | Fe1—O2—H2WB | 122 (2) |
O3—C1—C1i | 119.75 (12) | H2WA—O2—H2WB | 115 (3) |
Symmetry codes: (i) −x, y, −z+2; (ii) −x+1, y, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1iii | 0.91 | 1.93 | 2.814 (2) | 162 |
O2—H2WA···O3iv | 0.87 (3) | 1.86 (3) | 2.722 (2) | 168 (2) |
O2—H2WB···Cl2 | 0.82 (3) | 2.23 (3) | 3.0359 (17) | 170 (3) |
Symmetry codes: (iii) x, y, z−1; (iv) −x+1/2, y+1/2, −z+2. |
Experimental details
Crystal data | |
Chemical formula | (C6H14N2)[Fe(C2O4)Cl2(H2O)2]Cl |
Mr | 400.44 |
Crystal system, space group | Monoclinic, C2 |
Temperature (K) | 293 |
a, b, c (Å) | 9.872 (2), 9.6636 (19), 8.4268 (17) |
β (°) | 109.57 (3) |
V (Å3) | 757.4 (3) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.55 |
Crystal size (mm) | 0.30 × 0.30 × 0.20 |
Data collection | |
Diffractometer | Rigaku Mercury CCD diffractometer |
Absorption correction | Multi-scan (CrystalClear; Rigaku, 2005) |
Tmin, Tmax | 0.638, 0.734 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3954, 1729, 1684 |
Rint | 0.025 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.020, 0.049, 1.08 |
No. of reflections | 1729 |
No. of parameters | 101 |
No. of restraints | 1 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.17, −0.15 |
Absolute structure | Flack (1983), 802 Friedel pairs |
Absolute structure parameter | 0.016 (13) |
Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL/PC (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1i | 0.91 | 1.93 | 2.814 (2) | 162.3 |
O2—H2WA···O3ii | 0.87 (3) | 1.86 (3) | 2.722 (2) | 168 (2) |
O2—H2WB···Cl2 | 0.82 (3) | 2.23 (3) | 3.0359 (17) | 170 (3) |
Symmetry codes: (i) x, y, z−1; (ii) −x+1/2, y+1/2, −z+2. |
References
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Fu, Y. L., Liu, Y. L., Shi, Z., Li, B. Z. & Pang, W. Q. (2002). J. Solid State Chem. 163, 427–435. Web of Science CSD CrossRef CAS Google Scholar
Keene, T. D., Hursthouse, M. B. & Price, D. J. (2004). Acta Cryst. E60, m378–m380. Web of Science CSD CrossRef IUCr Journals Google Scholar
Lee, M. Y. & Wang, S. L. (1999). Chem. Mater. 11, 3588–3594. Web of Science CSD CrossRef CAS Google Scholar
Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sukhendu, M. & Srinivasan, N. (2007). Chem. Eur. J. 13, 968–977. PubMed Google Scholar
Zhao, J. & Xu, L. (2008). Inorg. Chim. Acta, 361, 2385–2395. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Oxalic acid is often used as bridging ligand, which can adopt different coordination modes according to the different geometric requirements of metal centers when forming metal complexes (Sukhendu & Srinivasan, 2007; Zhao & Xu, 2008). We report here the crystal structure of the title compound, (1).
The stucture of (1) is shown in Fig. 1. This yellow ionic compound crystallizes in the monoclinic space group C2. It contains [Fe(ox)(H2O)2Cl2]- (ox is oxalate, C2O4) units, in which the FeIII ion is coordinated by two O atoms from a chelating oxalato ion, two O atoms from coordinated water molecules and two Cl anions, forming a distorted octahedron coordination geometry. The crystal packing is stabilized by N—H···O, O—H···O and O—H···Cl hydrogen bonds (Table 1, Fig. 2).