organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-3-Di­methyl­amino-1-(2-thien­yl)prop-2-en-1-one

aDeparment of Chemistry and Chemical Engineering, Hefei Teachers College, Hefei 230061, People's Republic of China
*Correspondence e-mail: bi010101@126.com

(Received 24 June 2009; accepted 30 June 2009; online 11 July 2009)

The mol­ecular skeleton of the title mol­ecule, C9H11NOS, is essentially planar: the thio­phene ring is inclined to the mean plane of the rest non-H atoms by 2.92 (3)°. The crystal packing exhibits no significantly short inter­molecular contacts.

Related literature

For general backgroud, see Amari et al. (1993[Amari, C., Ianelli, S., Pelizzi, C., Pelizzi, G. & Predieri, G. (1993). Inorg. Chim. Acta, 211, 89-94.]). For the crystal structures of related compounds, see: Li et al. (2005[Li, G.-X., Li, J.-Q. & Kang, X.-Z. (2005). Acta Cryst. E61, m410-m411.]); Hu et al. (2007[Hu, T.-L. & Tian, J.-L. (2007). Acta Cryst. E63, m1092-m1093.]); Bi (2009[Bi, J.-H. (2009). Acta Cryst. E65, m633.]).

[Scheme 1]

Experimental

Crystal data
  • C9H11NOS

  • Mr = 181.26

  • Monoclinic, P 21 /n

  • a = 5.9618 (12) Å

  • b = 8.1241 (16) Å

  • c = 19.449 (4) Å

  • β = 92.910 (3)°

  • V = 940.8 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 291 K

  • 0.45 × 0.30 × 0.15 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.867, Tmax = 0.964

  • 4740 measured reflections

  • 1636 independent reflections

  • 1137 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.124

  • S = 1.05

  • 1636 reflections

  • 111 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Many coordinated complexes derived from 2-[3-(dimethylamino)prop-2-enoyl] pyridine or thiophene have been reported recently in chemical research (Amari et al., 1993; Bi, 2009; Hu & Tian, 2007; Li et al., 2005). In continuation of our ongoing program directed to the development of similar compounds (Bi, 2009), herein we report the molecular structure of the title compound (I) - the newly synthesized ligand derived from 2-acetylthiophene.

In (I) (Fig. 1), the dihedral angle between the thiophene ring and the mean plane of the restnon-hydrogen atoms is 2.92 (3)°. The crystal packing exhibits no significantly short intermolecular contacts.

Related literature top

For general backgroud, see Amari et al. (1993). For the crystal structures of related compounds, see: Li et al. (2005); Hu et al. (2007); Bi (2009).

Experimental top

All solvents and chemicals were of analytical grade and were used without further purification. A solution of 2-acetylthiophene (0.2 mmol) and dimethoxy-N,N-dimethylmethanamine(0.2 mmol) in 150 ml DMF was refluxed for 8 h, and then concentrated to give the title compound. Single crystals suitable for X-ray analysis were grown from the methanol solution by slow evaporation at room temperature in air. Anal. Calcd.for C9H11NOS: C, 59.64; H, 6.12; N, 7.73. Found: C, 39.65; H,6.16; N, 7.71.

Refinement top

All hydrogen atoms were geometrically positioned (C—H 0.93–0.97 Å) and refined as riding, with Uiso(H)=1.2–1.5 Ueq of the parent atom.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing the atomic numbering and 30% probabilty displacement ellipsoids.
(E)-3-Dimethylamino-1-(2-thienyl)prop-2-en-1-one top
Crystal data top
C9H11NOSF(000) = 384
Mr = 181.26Dx = 1.280 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 955 reflections
a = 5.9618 (12) Åθ = 2.7–20.2°
b = 8.1241 (16) ŵ = 0.30 mm1
c = 19.449 (4) ÅT = 291 K
β = 92.910 (3)°Block, yellow
V = 940.8 (3) Å30.45 × 0.30 × 0.15 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
1636 independent reflections
Radiation source: fine-focus sealed tube1137 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ϕ and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 76
Tmin = 0.867, Tmax = 0.964k = 98
4740 measured reflectionsl = 2319
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0547P)2 + 0.2232P]
where P = (Fo2 + 2Fc2)/3
1636 reflections(Δ/σ)max < 0.001
111 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C9H11NOSV = 940.8 (3) Å3
Mr = 181.26Z = 4
Monoclinic, P21/nMo Kα radiation
a = 5.9618 (12) ŵ = 0.30 mm1
b = 8.1241 (16) ÅT = 291 K
c = 19.449 (4) Å0.45 × 0.30 × 0.15 mm
β = 92.910 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1636 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1137 reflections with I > 2σ(I)
Tmin = 0.867, Tmax = 0.964Rint = 0.034
4740 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.124H-atom parameters constrained
S = 1.05Δρmax = 0.20 e Å3
1636 reflectionsΔρmin = 0.29 e Å3
111 parameters
Special details top

Experimental. The structure was solved by direct methods (Bruker, 2000) and successive difference Fourier syntheses.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0234 (4)0.4667 (3)0.16370 (13)0.0425 (6)
C20.2349 (4)0.5260 (3)0.18109 (14)0.0462 (7)
H20.35860.51080.15450.055*
C30.2416 (5)0.6127 (3)0.24415 (16)0.0581 (8)
H30.37070.66200.26350.070*
C40.0404 (5)0.6165 (4)0.27337 (15)0.0594 (8)
H40.01550.66850.31490.071*
C50.0592 (4)0.3689 (3)0.10366 (14)0.0479 (7)
C60.0996 (4)0.3228 (3)0.05454 (14)0.0481 (7)
H60.25010.35100.06180.058*
C70.0307 (4)0.2381 (3)0.00247 (14)0.0499 (7)
H70.12200.21420.00660.060*
C80.3912 (5)0.2183 (5)0.05347 (19)0.0906 (12)
H8A0.41460.33500.05660.136*
H8B0.45320.16500.09220.136*
H8C0.46380.17750.01170.136*
C90.0524 (6)0.0980 (4)0.11220 (15)0.0691 (9)
H9A0.10520.08300.10640.104*
H9B0.12330.00740.11620.104*
H9C0.07320.16110.15310.104*
N10.1517 (4)0.1844 (3)0.05331 (12)0.0566 (6)
O10.2623 (3)0.3317 (3)0.09894 (10)0.0688 (6)
S10.15994 (12)0.51590 (10)0.22552 (4)0.0598 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0437 (14)0.0414 (15)0.0427 (15)0.0011 (11)0.0066 (12)0.0028 (12)
C20.0414 (14)0.0467 (16)0.0509 (17)0.0023 (11)0.0057 (12)0.0032 (13)
C30.0515 (16)0.0588 (19)0.0636 (19)0.0033 (14)0.0019 (14)0.0104 (16)
C40.0681 (19)0.0601 (19)0.0499 (18)0.0025 (15)0.0019 (15)0.0097 (15)
C50.0451 (15)0.0498 (17)0.0489 (17)0.0032 (12)0.0040 (13)0.0067 (14)
C60.0435 (14)0.0520 (17)0.0492 (17)0.0036 (12)0.0065 (13)0.0014 (14)
C70.0480 (16)0.0532 (17)0.0492 (17)0.0003 (12)0.0093 (14)0.0046 (14)
C80.062 (2)0.128 (3)0.084 (3)0.002 (2)0.0275 (19)0.016 (2)
C90.091 (2)0.064 (2)0.0531 (19)0.0050 (18)0.0129 (17)0.0053 (17)
N10.0547 (14)0.0666 (16)0.0494 (14)0.0018 (12)0.0109 (11)0.0068 (13)
O10.0444 (11)0.0969 (16)0.0658 (14)0.0154 (10)0.0100 (10)0.0200 (12)
S10.0495 (5)0.0741 (6)0.0571 (5)0.0014 (4)0.0145 (4)0.0052 (4)
Geometric parameters (Å, º) top
C1—C21.376 (3)C6—H60.9300
C1—C51.476 (4)C7—N11.327 (3)
C1—S11.713 (2)C7—H70.9300
C2—C31.413 (4)C8—N11.455 (4)
C2—H20.9300C8—H8A0.9600
C3—C41.353 (4)C8—H8B0.9600
C3—H30.9300C8—H8C0.9600
C4—S11.688 (3)C9—N11.444 (4)
C4—H40.9300C9—H9A0.9600
C5—O11.247 (3)C9—H9B0.9600
C5—C61.429 (3)C9—H9C0.9600
C6—C71.351 (4)
C2—C1—C5130.4 (2)N1—C7—H7115.7
C2—C1—S1110.8 (2)C6—C7—H7115.7
C5—C1—S1118.81 (18)N1—C8—H8A109.5
C1—C2—C3111.9 (2)N1—C8—H8B109.5
C1—C2—H2124.0H8A—C8—H8B109.5
C3—C2—H2124.0N1—C8—H8C109.5
C4—C3—C2112.9 (3)H8A—C8—H8C109.5
C4—C3—H3123.5H8B—C8—H8C109.5
C2—C3—H3123.5N1—C9—H9A109.5
C3—C4—S1112.0 (2)N1—C9—H9B109.5
C3—C4—H4124.0H9A—C9—H9B109.5
S1—C4—H4124.0N1—C9—H9C109.5
O1—C5—C6124.1 (3)H9A—C9—H9C109.5
O1—C5—C1118.2 (2)H9B—C9—H9C109.5
C6—C5—C1117.7 (2)C7—N1—C9122.3 (2)
C7—C6—C5119.9 (2)C7—N1—C8120.7 (3)
C7—C6—H6120.1C9—N1—C8116.9 (2)
C5—C6—H6120.1C4—S1—C192.36 (13)
N1—C7—C6128.7 (3)

Experimental details

Crystal data
Chemical formulaC9H11NOS
Mr181.26
Crystal system, space groupMonoclinic, P21/n
Temperature (K)291
a, b, c (Å)5.9618 (12), 8.1241 (16), 19.449 (4)
β (°) 92.910 (3)
V3)940.8 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.45 × 0.30 × 0.15
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.867, 0.964
No. of measured, independent and
observed [I > 2σ(I)] reflections
4740, 1636, 1137
Rint0.034
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.124, 1.05
No. of reflections1636
No. of parameters111
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.29

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The author is indebted to the National Natural Science Foundation of China for financial support (grant No. 20871039).

References

First citationAmari, C., Ianelli, S., Pelizzi, C., Pelizzi, G. & Predieri, G. (1993). Inorg. Chim. Acta, 211, 89–94.  CSD CrossRef CAS Web of Science Google Scholar
First citationBi, J.-H. (2009). Acta Cryst. E65, m633.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHu, T.-L. & Tian, J.-L. (2007). Acta Cryst. E63, m1092–m1093.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, G.-X., Li, J.-Q. & Kang, X.-Z. (2005). Acta Cryst. E61, m410–m411.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds