organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,3,4,5-Tetra­fluoro­benzoic acid–4,4′-bi­pyridine (2/1)

aSchool of Chemistry and Chemical Engineering, Taishan Medical University, 271016 Taian, Shandong, People's Republic of China
*Correspondence e-mail: zhuxh007@163.com

(Received 25 June 2009; accepted 13 July 2009; online 18 July 2009)

The asymmetric unit of the title compound, 2C7H2F4O2·C10H8N2, contains one mol­ecule of 2,3,4,5-tetra­fluoro­benzoic acid (tfb) and half of a centrosymmetric 4,4′-bipyridine mol­ecule. Inter­molecular O—H⋯N hydrogen bonds link two tfb mol­ecules and one 4,4′-bipyridine mol­ecule into a trimer. Weak inter­molecular C—H⋯F inter­actions assemble these trimers into a three-dimensional network structure.

Related literature

For complexes with fluorated carboxyl­ates, see: Ma et al. (2006[Ma, C. L., Sun, J. S. & Zhang, R. F. (2006). J. Organomet. Chem. 691, 5885—5898.]); Gielen et al. (1992[Gielen, M., Boualam, M., Meriem, A., Mahieu, B., Biesemans, M. & Willem, R. (1992). Heteroat. Chem. 3, 449-452.]).

[Scheme 1]

Experimental

Crystal data
  • 2C7H2F4O2·C10H8N2

  • Mr = 544.36

  • Monoclinic, P 21 /c

  • a = 6.6517 (7) Å

  • b = 8.3419 (14) Å

  • c = 19.5310 (11) Å

  • β = 93.181 (2)°

  • V = 1082.1 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.16 mm−1

  • T = 298 K

  • 0.45 × 0.43 × 0.24 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: none

  • 5243 measured reflections

  • 1888 independent reflections

  • 1107 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.123

  • S = 1.00

  • 1888 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯F4i 0.93 2.39 3.105 (3) 134
C8—H8⋯F3ii 0.93 2.56 3.308 (3) 138
O1—H1⋯N1iii 0.82 1.80 2.620 (2) 174
Symmetry codes: (i) -x+2, -y, -z+1; (ii) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x-1, y, z.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The 2,3,4,5-tetrafluorobenzoic acid has been intensively studied in biological systems and metal complexes which can considerably increase their biological activities because of the presence of fluorine atom (Ma et al., 2006; Gielen et al., 1992). In view of this, we have selected this ligand and acetate cube in the presence of 4,4'-bipyrimidine as co-ligand to continue the study of fluorated metal compounds. The title compound (Fig. 1) has been obtained as by-side product.

In the crystal, intermolecular O—H···N hydrogen bonds (Table 1) link two molecules of 2,3,4,5-tetrafluorobenzoic acid and one 4,4'-bipyridine molecule into trimer. Weak intermolecular C—H···F interactions (Table 1) assemble further these trimers into three-dimensional network structure.

Related literature top

For complexes with fluorated carboxylates, see: Ma et al. (2006); Gielen et al. (1992).

Experimental top

All reagents and solvents were used without further purification. This complex was synthesized by the hydrothermal method from a mixture of an methanol solution of 2,3,4,5-tetrafluorobenzoic acid that had been neutralized with sodium hydroxide, 4,4'-bipyrimidine,acetate cube and water in a airtight vessel. The solution was heated at 313 K for 3 d. After reaction, the vessel was cooled slowly down to room temperature to give transparent brown crystals. The block-like crystals were collected and washed with distilled methanol and dried in air (78% yield). Elemental analysis-found:C,52.88%,2.27%,5.36%; calc.for C12H6F4NO2: C,52.95%,H,2.22%,N,5.15%. The elemental analyses were performed with PERKIN ELMER MODEL 2400 SERIES II.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The content of asymmetric unit of the title compound, with atomic numbering and 50% probability displacement ellipsoids [symmetry code: (A) 1-x, 1-y, 1-z].
2,3,4,5-Tetrafluorobenzoic acid–4,4'-bipyridine (2/1) top
Crystal data top
2C7H2F4O2·C10H8N2F(000) = 548
Mr = 544.36Dx = 1.671 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 6.6517 (7) ÅCell parameters from 1438 reflections
b = 8.3419 (14) Åθ = 3.2–23.9°
c = 19.5310 (11) ŵ = 0.16 mm1
β = 93.181 (2)°T = 298 K
V = 1082.1 (2) Å3Block, colourless
Z = 20.45 × 0.43 × 0.24 mm
Data collection top
Bruker SMART APEX
diffractometer
1107 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.031
Graphite monochromatorθmax = 25.0°, θmin = 2.1°
ϕ and ω scansh = 67
5243 measured reflectionsk = 79
1888 independent reflectionsl = 2223
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.062P)2 + 0.1216P]
where P = (Fo2 + 2Fc2)/3
1888 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
2C7H2F4O2·C10H8N2V = 1082.1 (2) Å3
Mr = 544.36Z = 2
Monoclinic, P21/cMo Kα radiation
a = 6.6517 (7) ŵ = 0.16 mm1
b = 8.3419 (14) ÅT = 298 K
c = 19.5310 (11) Å0.45 × 0.43 × 0.24 mm
β = 93.181 (2)°
Data collection top
Bruker SMART APEX
diffractometer
1107 reflections with I > 2σ(I)
5243 measured reflectionsRint = 0.031
1888 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.123H-atom parameters constrained
S = 1.00Δρmax = 0.22 e Å3
1888 reflectionsΔρmin = 0.15 e Å3
172 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F20.7895 (2)0.12908 (19)0.19446 (8)0.0718 (5)
C20.5194 (3)0.1029 (3)0.34972 (12)0.0468 (6)
C30.5693 (3)0.1433 (3)0.28441 (12)0.0489 (6)
O10.2294 (3)0.2650 (2)0.34704 (9)0.0694 (6)
H10.13220.29330.36810.104*
C100.5879 (3)0.4735 (3)0.48110 (12)0.0470 (6)
F31.0440 (2)0.05674 (19)0.27137 (8)0.0749 (5)
C70.6499 (4)0.0052 (3)0.38789 (13)0.0534 (7)
H70.61910.02500.43190.064*
F10.4516 (2)0.2331 (2)0.24231 (8)0.0806 (5)
C50.8729 (3)0.0054 (3)0.29677 (13)0.0508 (6)
N10.9175 (3)0.3732 (3)0.40908 (11)0.0588 (6)
C40.7454 (4)0.0890 (3)0.25813 (13)0.0517 (7)
C60.8238 (4)0.0474 (3)0.36163 (13)0.0553 (7)
C10.3355 (4)0.1634 (3)0.38353 (15)0.0559 (7)
O20.2975 (3)0.1188 (3)0.43978 (11)0.0916 (7)
F40.9521 (2)0.1423 (2)0.39827 (9)0.0884 (6)
C90.6276 (4)0.5363 (3)0.41783 (14)0.0641 (8)
H90.54310.61400.39780.077*
C80.7922 (4)0.4839 (4)0.38453 (15)0.0683 (8)
H80.81630.52930.34230.082*
C110.7186 (4)0.3584 (4)0.50629 (14)0.0705 (8)
H110.69880.31100.54850.085*
C120.8799 (4)0.3124 (4)0.46918 (15)0.0723 (8)
H120.96650.23430.48770.087*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F20.0840 (11)0.0793 (10)0.0551 (9)0.0070 (8)0.0311 (8)0.0059 (8)
C20.0446 (13)0.0492 (14)0.0477 (14)0.0005 (11)0.0116 (11)0.0041 (11)
C30.0489 (14)0.0480 (14)0.0505 (15)0.0057 (11)0.0087 (12)0.0008 (12)
O10.0577 (11)0.0810 (13)0.0721 (13)0.0203 (10)0.0250 (9)0.0034 (11)
C100.0375 (12)0.0598 (15)0.0440 (13)0.0011 (11)0.0045 (10)0.0094 (12)
F30.0574 (9)0.0898 (12)0.0803 (11)0.0176 (8)0.0280 (8)0.0038 (9)
C70.0533 (15)0.0590 (16)0.0492 (15)0.0012 (13)0.0143 (12)0.0037 (12)
F10.0824 (11)0.0976 (13)0.0633 (11)0.0354 (10)0.0166 (8)0.0160 (9)
C50.0439 (14)0.0535 (16)0.0564 (15)0.0039 (12)0.0158 (12)0.0068 (12)
N10.0457 (12)0.0711 (15)0.0604 (15)0.0057 (11)0.0119 (10)0.0101 (12)
C40.0582 (15)0.0520 (15)0.0467 (15)0.0042 (12)0.0208 (13)0.0020 (12)
C60.0542 (15)0.0574 (16)0.0546 (16)0.0096 (13)0.0045 (13)0.0031 (13)
C10.0462 (14)0.0623 (17)0.0605 (18)0.0011 (13)0.0154 (13)0.0058 (14)
O20.0743 (13)0.1325 (18)0.0718 (14)0.0290 (13)0.0381 (11)0.0212 (13)
F40.0800 (11)0.1119 (14)0.0742 (12)0.0383 (10)0.0110 (9)0.0204 (10)
C90.0581 (16)0.0693 (18)0.0671 (18)0.0151 (14)0.0220 (14)0.0075 (15)
C80.0649 (18)0.0769 (19)0.0662 (18)0.0088 (16)0.0311 (15)0.0075 (16)
C110.0585 (16)0.107 (2)0.0469 (16)0.0271 (17)0.0120 (12)0.0057 (15)
C120.0583 (17)0.103 (2)0.0563 (18)0.0269 (16)0.0065 (14)0.0013 (17)
Geometric parameters (Å, º) top
F2—C41.336 (3)C7—H70.9300
C2—C31.378 (3)C5—C41.356 (3)
C2—C71.379 (3)C5—C61.371 (3)
C2—C11.509 (3)N1—C121.315 (3)
C3—F11.334 (3)N1—C81.317 (3)
C3—C41.381 (3)C6—F41.341 (3)
O1—C11.292 (3)C1—O21.200 (3)
O1—H10.8200C9—C81.375 (3)
C10—C111.368 (3)C9—H90.9300
C10—C91.381 (4)C8—H80.9300
C10—C10i1.484 (4)C11—C121.382 (3)
F3—C51.337 (2)C11—H110.9300
C7—C61.364 (3)C12—H120.9300
C3—C2—C7117.9 (2)C5—C4—C3120.1 (2)
C3—C2—C1124.5 (2)F4—C6—C7121.1 (2)
C7—C2—C1117.5 (2)F4—C6—C5117.8 (2)
F1—C3—C2123.0 (2)C7—C6—C5121.0 (2)
F1—C3—C4115.9 (2)O2—C1—O1124.9 (2)
C2—C3—C4121.1 (2)O2—C1—C2121.0 (3)
C1—O1—H1109.5O1—C1—C2114.2 (2)
C11—C10—C9116.0 (2)C8—C9—C10119.9 (3)
C11—C10—C10i122.2 (3)C8—C9—H9120.0
C9—C10—C10i121.8 (3)C10—C9—H9120.0
C6—C7—C2120.6 (2)N1—C8—C9123.7 (3)
C6—C7—H7119.7N1—C8—H8118.1
C2—C7—H7119.7C9—C8—H8118.1
F3—C5—C4119.9 (2)C10—C11—C12120.2 (3)
F3—C5—C6120.8 (2)C10—C11—H11119.9
C4—C5—C6119.3 (2)C12—C11—H11119.9
C12—N1—C8116.6 (2)N1—C12—C11123.6 (3)
F2—C4—C5120.0 (2)N1—C12—H12118.2
F2—C4—C3119.9 (2)C11—C12—H12118.2
C7—C2—C3—F1178.0 (2)F3—C5—C6—F40.5 (4)
C1—C2—C3—F14.4 (4)C4—C5—C6—F4179.3 (2)
C7—C2—C3—C40.6 (4)F3—C5—C6—C7179.7 (2)
C1—C2—C3—C4176.9 (2)C4—C5—C6—C70.5 (4)
C3—C2—C7—C60.8 (4)C3—C2—C1—O2177.4 (3)
C1—C2—C7—C6176.9 (2)C7—C2—C1—O25.1 (4)
F3—C5—C4—F20.8 (4)C3—C2—C1—O13.2 (4)
C6—C5—C4—F2179.0 (2)C7—C2—C1—O1174.3 (2)
F3—C5—C4—C3179.5 (2)C11—C10—C9—C80.8 (4)
C6—C5—C4—C30.7 (4)C10i—C10—C9—C8179.9 (3)
F1—C3—C4—F20.8 (3)C12—N1—C8—C90.5 (4)
C2—C3—C4—F2179.6 (2)C10—C9—C8—N10.8 (5)
F1—C3—C4—C5178.9 (2)C9—C10—C11—C120.6 (4)
C2—C3—C4—C50.1 (4)C10i—C10—C11—C12179.8 (3)
C2—C7—C6—F4179.9 (2)C8—N1—C12—C110.2 (4)
C2—C7—C6—C50.3 (4)C10—C11—C12—N10.3 (5)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···F4ii0.932.393.105 (3)134
C8—H8···F3iii0.932.563.308 (3)138
O1—H1···N1iv0.821.802.620 (2)174
Symmetry codes: (ii) x+2, y, z+1; (iii) x+2, y+1/2, z+1/2; (iv) x1, y, z.

Experimental details

Crystal data
Chemical formula2C7H2F4O2·C10H8N2
Mr544.36
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)6.6517 (7), 8.3419 (14), 19.5310 (11)
β (°) 93.181 (2)
V3)1082.1 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.16
Crystal size (mm)0.45 × 0.43 × 0.24
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5243, 1888, 1107
Rint0.031
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.123, 1.00
No. of reflections1888
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.15

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···F4i0.932.393.105 (3)133.7
C8—H8···F3ii0.932.563.308 (3)138.2
O1—H1···N1iii0.821.802.620 (2)174.2
Symmetry codes: (i) x+2, y, z+1; (ii) x+2, y+1/2, z+1/2; (iii) x1, y, z.
 

References

First citationGielen, M., Boualam, M., Meriem, A., Mahieu, B., Biesemans, M. & Willem, R. (1992). Heteroat. Chem. 3, 449–452.  CrossRef CAS Web of Science Google Scholar
First citationMa, C. L., Sun, J. S. & Zhang, R. F. (2006). J. Organomet. Chem. 691, 5885—5898.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds