metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­aqua­(1,10-phenanthroline)nickel(II) 3,6-di­carb­oxy­bi­cyclo­[2.2.2]oct-7-ene-2,5-di­carboxyl­ate

aDepartment of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China, bGroup of Chemistry, High School Attached to Northeast Normal University, Changchun 130024, People's Republic of China, and cEmergency Department, the First Clinical Hospital Affiliated to Jilin University, Changchun 130021, People's Republic of China
*Correspondence e-mail: yunyuliu888@yahoo.com.cn

(Received 2 July 2009; accepted 17 July 2009; online 22 July 2009)

In the title compound, [Ni(C12H8N2)(H2O)4](C12H10O8), the NiII ion is six-coordinated by two N atoms from one phenanthroline ligand and by the O atoms of four water mol­ecules in a distorted octa­hedral geometry. In the crystal, inter­molecular O—H⋯O hydrogen bonds form an extensive three-dimensional network, which consolidates the crystal packing.

Related literature

For a related structure, see Liu et al. (2008[Liu, Y.-Y., Zhuo, Y.-J., Li, X.-Q. & Ma, J.-C. (2008). Acta Cryst. E64, m1590.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C12H8N2)(H2O)4](C12H10O8)

  • Mr = 593.18

  • Monoclinic, P 21 /c

  • a = 7.446 (5) Å

  • b = 13.583 (6) Å

  • c = 22.982 (9) Å

  • β = 91.549 (7)°

  • V = 2323.5 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.91 mm−1

  • T = 293 K

  • 0.30 × 0.28 × 0.17 mm

Data collection
  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.756, Tmax = 0.855

  • 14211 measured reflections

  • 5636 independent reflections

  • 4321 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.133

  • S = 1.10

  • 5636 reflections

  • 382 parameters

  • 12 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H7⋯O3i 0.82 1.83 2.576 (3) 151
O1—H1⋯O6ii 0.82 1.88 2.670 (3) 163
O1W—HW11⋯O4 0.828 (16) 1.897 (18) 2.716 (3) 170 (3)
O1W—HW12⋯O5iii 0.859 (17) 1.828 (18) 2.682 (3) 173 (3)
O4W—HW41⋯O5iv 0.845 (18) 2.07 (3) 2.879 (3) 161 (4)
O4W—HW42⋯O3v 0.849 (18) 2.16 (2) 2.926 (3) 150 (4)
O3W—HW31⋯O3vi 0.863 (17) 1.958 (17) 2.814 (3) 171 (3)
O3W—HW32⋯O6iii 0.850 (17) 2.060 (19) 2.893 (3) 166 (4)
O2W—HW21⋯O3v 0.844 (18) 2.47 (2) 3.244 (4) 153 (4)
O2W—HW22⋯O2 0.853 (18) 2.01 (2) 2.806 (3) 154 (4)
Symmetry codes: (i) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (v) x-1, y, z; (vi) -x+1, -y, -z.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL-Plus.

Supporting information


Comment top

Coordination polymers based on poly(carboxylic acids) have been investigated in the area of solid state and material science (Liu et al., 2008). We selected bicyclo[2.2.2]oct-7-ene-2,3,5,6-tetracarboxylic acid (H4L) as a poly(carboxylic acid) ligand and phenanthroline (phen) as a secondary ligand, generating a complex, [Ni(phen)(H2O)4][(H2L)], which is reported here.

In the title compound (I) (Fig. 1), each NiII ion is six-coordinated by two N atoms from one phenanthroline molecule and by four O atoms from four water molecules in a distorted octahedral environment. In the crystal structure, ions are linked by O—H···O hydrogen bonds (Table 1).

Related literature top

For a related structure, see Liu et al. (2008).

Experimental top

A mixture of H4L (0.5 mmol), phen (0.5 mmol), NaOH (1 mmol) and NiCl2.2H2O (0.5 mmol) was suspended in 12 ml of deionized water and sealed in a 20-ml Teflon-lined autoclave. Upon heating at 100°C for one week, the autoclave was slowly cooled to room temperature. The crystals were collected, washed with deionized water and dried.

Refinement top

C-bound and hydroxy H atoms were geometrically positioned (C–H 0.93 Å, O–H 0.82 Å) and refined as riding, with Uiso(H)= 1.2-1.5 Ueq of the parent atom. The H atoms of the water molecules were located in a difference Fourier map and refined with an O—H distance restraint of 0.85±0.02 Å, and some of them were isotropically refined, while the rest of water' H-atoms were refined as riding with Uiso(H)=1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXTL-Plus (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I), showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
Tetraaqua(1,10-phenanthroline)nickel(II) 3,6-dicarboxybicyclo[2.2.2]oct-7-ene-2,5-dicarboxylate top
Crystal data top
[Ni(C12H8N2)(H2O)4](C12H10O8)F(000) = 1232
Mr = 593.18Dx = 1.696 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybcCell parameters from 5636 reflections
a = 7.446 (5) Åθ = 3.0–28.3°
b = 13.583 (6) ŵ = 0.91 mm1
c = 22.982 (9) ÅT = 293 K
β = 91.549 (7)°Block, green
V = 2323.5 (18) Å30.30 × 0.28 × 0.17 mm
Z = 4
Data collection top
Bruker APEX CCD area-detector
diffractometer
5636 independent reflections
Radiation source: fine-focus sealed tube4321 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ϕ and ω scansθmax = 28.3°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick 1996)
h = 98
Tmin = 0.756, Tmax = 0.855k = 1418
14211 measured reflectionsl = 2930
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0737P)2 + 0.0226P]
where P = (Fo2 + 2Fc2)/3
5636 reflections(Δ/σ)max = 0.001
382 parametersΔρmax = 0.46 e Å3
12 restraintsΔρmin = 0.47 e Å3
Crystal data top
[Ni(C12H8N2)(H2O)4](C12H10O8)V = 2323.5 (18) Å3
Mr = 593.18Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.446 (5) ŵ = 0.91 mm1
b = 13.583 (6) ÅT = 293 K
c = 22.982 (9) Å0.30 × 0.28 × 0.17 mm
β = 91.549 (7)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
5636 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick 1996)
4321 reflections with I > 2σ(I)
Tmin = 0.756, Tmax = 0.855Rint = 0.032
14211 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04112 restraints
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.46 e Å3
5636 reflectionsΔρmin = 0.47 e Å3
382 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.27952 (4)0.16490 (2)0.000262 (12)0.02453 (12)
O30.8856 (3)0.08862 (13)0.10988 (7)0.0376 (5)
O80.8695 (3)0.49129 (14)0.26041 (8)0.0426 (5)
O50.7531 (3)0.27133 (14)0.41536 (7)0.0373 (5)
O60.5963 (3)0.36870 (14)0.35586 (8)0.0399 (5)
O70.9935 (3)0.42968 (14)0.34205 (8)0.0401 (5)
H71.00050.48780.35140.060*
O40.7696 (3)0.23715 (14)0.09583 (8)0.0441 (5)
O10.6022 (3)0.02746 (14)0.22071 (9)0.0508 (6)
H10.52560.05890.20240.076*
C140.6501 (3)0.19162 (17)0.27782 (10)0.0236 (5)
H140.57490.15180.30310.028*
O4W0.0076 (3)0.13193 (18)0.00734 (9)0.0413 (5)
C180.8609 (3)0.19220 (16)0.19325 (9)0.0232 (5)
H180.98760.17830.20260.028*
C230.7086 (3)0.30189 (18)0.36551 (10)0.0261 (5)
O20.5126 (3)0.09191 (15)0.16145 (9)0.0502 (6)
C50.2366 (5)0.5506 (2)0.02235 (17)0.0571 (9)
H50.23480.61110.04130.069*
O3W0.3341 (3)0.06193 (16)0.06306 (9)0.0455 (5)
C170.8282 (3)0.30067 (16)0.20957 (9)0.0215 (5)
H170.89020.34470.18290.026*
N20.2543 (3)0.27843 (15)0.06039 (8)0.0270 (4)
C130.7483 (3)0.12471 (17)0.23318 (10)0.0243 (5)
H130.83030.08070.25470.029*
C190.5369 (3)0.26471 (17)0.24367 (10)0.0268 (5)
H190.41320.26990.24720.032*
N10.2510 (3)0.28369 (16)0.05628 (8)0.0284 (5)
O1W0.5511 (3)0.17925 (18)0.00568 (9)0.0436 (5)
C160.9011 (3)0.31475 (16)0.27256 (10)0.0232 (5)
H161.02430.28930.27330.028*
C120.2464 (3)0.37093 (19)0.02772 (11)0.0292 (5)
C200.6303 (3)0.32107 (17)0.20793 (10)0.0268 (5)
H200.57740.36880.18410.032*
C220.8323 (4)0.17204 (18)0.12814 (10)0.0270 (5)
C150.7941 (3)0.24788 (16)0.31430 (9)0.0236 (5)
H150.87810.19910.33070.028*
C40.2392 (4)0.4628 (2)0.05558 (13)0.0421 (7)
C240.9147 (4)0.42251 (18)0.29031 (10)0.0286 (5)
C210.6078 (4)0.06232 (17)0.20067 (11)0.0291 (5)
O2W0.2891 (4)0.05750 (18)0.06329 (10)0.0535 (6)
C110.2481 (4)0.36777 (18)0.03492 (11)0.0295 (5)
C90.2349 (4)0.3574 (2)0.15295 (12)0.0400 (7)
H90.22910.35140.19330.048*
C20.2350 (4)0.3740 (3)0.14546 (12)0.0435 (7)
H20.23170.37260.18590.052*
C10.2445 (4)0.2857 (2)0.11400 (11)0.0377 (6)
H1A0.24640.22640.13430.045*
C80.2324 (4)0.4475 (2)0.12781 (13)0.0440 (7)
H80.22490.50370.15090.053*
C70.2409 (4)0.4560 (2)0.06704 (13)0.0410 (7)
C30.2306 (4)0.4607 (2)0.11710 (14)0.0491 (8)
H30.22190.51920.13790.059*
C100.2463 (4)0.2735 (2)0.11797 (11)0.0330 (6)
H100.24840.21200.13570.040*
C60.2366 (5)0.5477 (2)0.03657 (17)0.0603 (10)
H60.23380.60630.05750.072*
HW110.608 (4)0.203 (2)0.0338 (8)0.035 (8)*
HW120.618 (4)0.190 (2)0.0236 (9)0.063 (11)*
HW410.045 (6)0.163 (3)0.0348 (13)0.12 (2)*
HW420.063 (5)0.128 (3)0.0208 (12)0.086 (14)*
HW310.273 (4)0.017 (2)0.0808 (14)0.068 (12)*
HW320.418 (4)0.072 (3)0.0868 (14)0.081*
HW210.191 (3)0.045 (3)0.0794 (16)0.081*
HW220.370 (4)0.051 (3)0.0900 (14)0.096 (16)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.02791 (19)0.02203 (18)0.02354 (18)0.00082 (12)0.00149 (13)0.00083 (12)
O30.0548 (13)0.0316 (10)0.0263 (9)0.0051 (9)0.0030 (9)0.0066 (8)
O80.0632 (14)0.0291 (10)0.0349 (10)0.0053 (9)0.0107 (9)0.0035 (8)
O50.0533 (13)0.0376 (11)0.0210 (8)0.0078 (9)0.0010 (8)0.0027 (8)
O60.0540 (13)0.0357 (11)0.0300 (10)0.0183 (9)0.0041 (9)0.0010 (8)
O70.0578 (13)0.0266 (9)0.0351 (10)0.0064 (9)0.0133 (9)0.0012 (8)
O40.0745 (16)0.0287 (10)0.0282 (9)0.0031 (9)0.0150 (9)0.0067 (8)
O10.0688 (16)0.0326 (11)0.0503 (12)0.0225 (10)0.0133 (11)0.0088 (9)
C140.0260 (12)0.0218 (11)0.0231 (11)0.0028 (9)0.0042 (9)0.0010 (9)
O4W0.0308 (11)0.0613 (14)0.0319 (11)0.0050 (10)0.0007 (9)0.0032 (10)
C180.0272 (12)0.0215 (11)0.0210 (11)0.0011 (9)0.0003 (9)0.0019 (9)
C230.0334 (14)0.0245 (12)0.0206 (11)0.0027 (10)0.0019 (10)0.0002 (9)
O20.0563 (14)0.0408 (12)0.0521 (13)0.0081 (10)0.0261 (11)0.0006 (10)
C50.072 (2)0.0250 (16)0.074 (2)0.0029 (14)0.0051 (19)0.0120 (16)
O3W0.0501 (14)0.0389 (12)0.0476 (12)0.0010 (10)0.0042 (10)0.0199 (10)
C170.0268 (12)0.0186 (11)0.0192 (10)0.0039 (9)0.0000 (9)0.0021 (9)
N20.0311 (11)0.0262 (11)0.0236 (10)0.0009 (8)0.0011 (8)0.0011 (8)
C130.0299 (13)0.0205 (11)0.0226 (11)0.0002 (9)0.0005 (10)0.0006 (9)
C190.0237 (12)0.0268 (12)0.0297 (12)0.0013 (9)0.0028 (10)0.0004 (10)
N10.0308 (12)0.0314 (12)0.0229 (10)0.0003 (9)0.0014 (8)0.0016 (9)
O1W0.0281 (11)0.0796 (17)0.0229 (10)0.0082 (10)0.0016 (8)0.0010 (10)
C160.0246 (12)0.0229 (12)0.0219 (11)0.0008 (9)0.0010 (9)0.0004 (9)
C120.0309 (14)0.0259 (12)0.0307 (13)0.0002 (10)0.0022 (10)0.0028 (11)
C200.0303 (13)0.0246 (12)0.0252 (12)0.0038 (10)0.0053 (10)0.0012 (9)
C220.0356 (14)0.0270 (13)0.0182 (11)0.0044 (10)0.0003 (10)0.0001 (9)
C150.0276 (12)0.0202 (11)0.0228 (11)0.0023 (9)0.0018 (9)0.0005 (9)
C40.0464 (18)0.0324 (15)0.0469 (17)0.0038 (12)0.0076 (13)0.0126 (13)
C240.0358 (14)0.0268 (13)0.0231 (12)0.0106 (10)0.0023 (10)0.0009 (10)
C210.0374 (15)0.0211 (12)0.0289 (13)0.0029 (10)0.0038 (11)0.0007 (10)
O2W0.0576 (15)0.0490 (13)0.0531 (14)0.0126 (12)0.0113 (12)0.0219 (11)
C110.0322 (14)0.0238 (12)0.0322 (13)0.0004 (10)0.0035 (11)0.0015 (10)
C90.0369 (16)0.0559 (19)0.0270 (13)0.0007 (13)0.0006 (12)0.0105 (13)
C20.0333 (16)0.069 (2)0.0281 (14)0.0083 (14)0.0010 (11)0.0159 (14)
C10.0351 (15)0.0514 (18)0.0266 (13)0.0016 (13)0.0000 (11)0.0016 (12)
C80.0439 (17)0.0444 (18)0.0434 (16)0.0051 (13)0.0035 (13)0.0230 (14)
C70.0465 (18)0.0266 (14)0.0497 (17)0.0016 (12)0.0031 (14)0.0085 (12)
C30.0481 (19)0.052 (2)0.0463 (17)0.0107 (14)0.0071 (14)0.0260 (16)
C100.0334 (14)0.0390 (15)0.0264 (12)0.0019 (11)0.0015 (11)0.0001 (11)
C60.082 (3)0.0236 (15)0.075 (2)0.0015 (15)0.007 (2)0.0080 (16)
Geometric parameters (Å, º) top
Ni1—O1W2.033 (2)N2—C101.325 (3)
Ni1—O3W2.058 (2)N2—C111.349 (3)
Ni1—O2W2.064 (2)C13—C211.526 (3)
Ni1—N22.076 (2)C13—H130.9800
Ni1—O4W2.076 (2)C19—C201.332 (3)
Ni1—N12.086 (2)C19—H190.9300
O3—C221.275 (3)N1—C11.329 (3)
O8—C241.203 (3)N1—C121.355 (3)
O5—C231.255 (3)O1W—HW110.828 (16)
O6—C231.250 (3)O1W—HW120.859 (17)
O7—C241.315 (3)C16—C241.522 (3)
O7—H70.8200C16—C151.556 (3)
O4—C221.238 (3)C16—H160.9800
O1—C211.305 (3)C12—C41.404 (4)
O1—H10.8200C12—C111.441 (4)
C14—C191.509 (3)C20—H200.9300
C14—C151.545 (3)C15—H150.9800
C14—C131.566 (3)C4—C31.417 (4)
C14—H140.9800O2W—HW210.844 (18)
O4W—HW410.845 (18)O2W—HW220.853 (18)
O4W—HW420.849 (18)C11—C71.408 (4)
C18—C221.530 (3)C9—C81.353 (4)
C18—C171.541 (3)C9—C101.396 (4)
C18—C131.558 (3)C9—H90.9300
C18—H180.9800C2—C31.346 (5)
C23—C151.539 (3)C2—C11.403 (4)
O2—C211.201 (3)C2—H20.9300
C5—C61.355 (6)C1—H1A0.9300
C5—C41.416 (4)C8—C71.401 (4)
C5—H50.9300C8—H80.9300
O3W—HW310.863 (17)C7—C61.430 (4)
O3W—HW320.850 (17)C3—H30.9300
C17—C201.499 (3)C10—H100.9300
C17—C161.544 (3)C6—H60.9300
C17—H170.9800
O1W—Ni1—O3W84.11 (9)Ni1—O1W—HW12124 (2)
O1W—Ni1—O2W90.27 (10)HW11—O1W—HW12105 (2)
O3W—Ni1—O2W90.69 (11)C24—C16—C17112.92 (19)
O1W—Ni1—N292.61 (9)C24—C16—C15115.33 (19)
O3W—Ni1—N293.10 (9)C17—C16—C15109.46 (19)
O2W—Ni1—N2175.45 (10)C24—C16—H16106.1
O1W—Ni1—O4W173.00 (9)C17—C16—H16106.1
O3W—Ni1—O4W90.51 (9)C15—C16—H16106.1
O2W—Ni1—O4W85.31 (10)N1—C12—C4123.9 (2)
N2—Ni1—O4W92.15 (9)N1—C12—C11117.2 (2)
O1W—Ni1—N190.11 (9)C4—C12—C11118.9 (2)
O3W—Ni1—N1171.03 (9)C19—C20—C17114.0 (2)
O2W—Ni1—N196.20 (10)C19—C20—H20123.0
N2—Ni1—N180.28 (9)C17—C20—H20123.0
O4W—Ni1—N195.75 (9)O4—C22—O3123.6 (2)
C24—O7—H7109.5O4—C22—C18119.9 (2)
C21—O1—H1109.5O3—C22—C18116.4 (2)
C19—C14—C15109.06 (19)C23—C15—C14110.8 (2)
C19—C14—C13107.77 (18)C23—C15—C16114.98 (19)
C15—C14—C13108.25 (19)C14—C15—C16108.26 (18)
C19—C14—H14110.6C23—C15—H15107.5
C15—C14—H14110.6C14—C15—H15107.5
C13—C14—H14110.6C16—C15—H15107.5
Ni1—O4W—HW41112 (3)C12—C4—C5120.2 (3)
Ni1—O4W—HW42125 (3)C12—C4—C3116.1 (3)
HW41—O4W—HW42108 (3)C5—C4—C3123.7 (3)
C22—C18—C17112.97 (19)O8—C24—O7124.8 (2)
C22—C18—C13114.05 (19)O8—C24—C16125.3 (2)
C17—C18—C13109.14 (18)O7—C24—C16109.8 (2)
C22—C18—H18106.7O2—C21—O1123.7 (2)
C17—C18—H18106.7O2—C21—C13124.4 (2)
C13—C18—H18106.7O1—C21—C13112.0 (2)
O6—C23—O5124.1 (2)Ni1—O2W—HW21116 (3)
O6—C23—C15119.9 (2)Ni1—O2W—HW22127 (3)
O5—C23—C15115.8 (2)HW21—O2W—HW22105 (2)
C6—C5—C4121.0 (3)N2—C11—C7122.7 (2)
C6—C5—H5119.5N2—C11—C12117.5 (2)
C4—C5—H5119.5C7—C11—C12119.8 (2)
Ni1—O3W—HW31135 (2)C8—C9—C10119.6 (3)
Ni1—O3W—HW32120 (2)C8—C9—H9120.2
HW31—O3W—HW32102 (2)C10—C9—H9120.2
C20—C17—C18109.41 (19)C3—C2—C1120.0 (3)
C20—C17—C16108.71 (18)C3—C2—H2120.0
C18—C17—C16107.02 (18)C1—C2—H2120.0
C20—C17—H17110.5N1—C1—C2122.4 (3)
C18—C17—H17110.5N1—C1—H1A118.8
C16—C17—H17110.5C2—C1—H1A118.8
C10—N2—C11118.6 (2)C9—C8—C7120.0 (3)
C10—N2—Ni1128.91 (18)C9—C8—H8120.0
C11—N2—Ni1112.52 (16)C7—C8—H8120.0
C21—C13—C18114.28 (19)C8—C7—C11116.9 (3)
C21—C13—C14108.5 (2)C8—C7—C6124.0 (3)
C18—C13—C14108.22 (18)C11—C7—C6119.1 (3)
C21—C13—H13108.6C2—C3—C4119.9 (3)
C18—C13—H13108.6C2—C3—H3120.0
C14—C13—H13108.6C4—C3—H3120.0
C20—C19—C14113.9 (2)N2—C10—C9122.3 (3)
C20—C19—H19123.0N2—C10—H10118.9
C14—C19—H19123.0C9—C10—H10118.9
C1—N1—C12117.7 (2)C5—C6—C7121.0 (3)
C1—N1—Ni1130.1 (2)C5—C6—H6119.5
C12—N1—Ni1112.11 (16)C7—C6—H6119.5
Ni1—O1W—HW11125.5 (19)
C22—C18—C17—C2074.5 (2)O6—C23—C15—C1660.0 (3)
C13—C18—C17—C2053.5 (2)O5—C23—C15—C16123.0 (2)
C22—C18—C17—C16167.88 (19)C19—C14—C15—C2372.3 (2)
C13—C18—C17—C1664.1 (2)C13—C14—C15—C23170.72 (18)
O1W—Ni1—N2—C1094.5 (2)C19—C14—C15—C1654.7 (2)
O3W—Ni1—N2—C1010.3 (2)C13—C14—C15—C1662.3 (2)
O2W—Ni1—N2—C10136.3 (11)C24—C16—C15—C233.4 (3)
O4W—Ni1—N2—C1080.4 (2)C17—C16—C15—C23125.2 (2)
N1—Ni1—N2—C10175.8 (2)C24—C16—C15—C14127.9 (2)
O1W—Ni1—N2—C1184.57 (18)C17—C16—C15—C140.7 (3)
O3W—Ni1—N2—C11168.81 (18)N1—C12—C4—C5179.4 (3)
O2W—Ni1—N2—C1144.7 (12)C11—C12—C4—C51.0 (4)
O4W—Ni1—N2—C11100.56 (18)N1—C12—C4—C32.1 (4)
N1—Ni1—N2—C115.09 (17)C11—C12—C4—C3177.5 (3)
C22—C18—C13—C219.4 (3)C6—C5—C4—C121.6 (6)
C17—C18—C13—C21118.0 (2)C6—C5—C4—C3176.8 (4)
C22—C18—C13—C14130.4 (2)C17—C16—C24—O82.3 (4)
C17—C18—C13—C143.0 (3)C15—C16—C24—O8124.5 (3)
C19—C14—C13—C2167.1 (2)C17—C16—C24—O7173.9 (2)
C15—C14—C13—C21175.12 (19)C15—C16—C24—O759.2 (3)
C19—C14—C13—C1857.4 (2)C18—C13—C21—O242.5 (4)
C15—C14—C13—C1860.4 (2)C14—C13—C21—O278.3 (3)
C15—C14—C19—C2058.8 (3)C18—C13—C21—O1137.8 (2)
C13—C14—C19—C2058.5 (3)C14—C13—C21—O1101.3 (2)
O1W—Ni1—N1—C189.4 (2)C10—N2—C11—C72.6 (4)
O3W—Ni1—N1—C1139.2 (5)Ni1—N2—C11—C7176.5 (2)
O2W—Ni1—N1—C10.8 (3)C10—N2—C11—C12176.5 (2)
N2—Ni1—N1—C1177.9 (3)Ni1—N2—C11—C124.4 (3)
O4W—Ni1—N1—C186.7 (2)N1—C12—C11—N20.1 (4)
O1W—Ni1—N1—C1287.52 (18)C4—C12—C11—N2179.7 (2)
O3W—Ni1—N1—C1237.8 (6)N1—C12—C11—C7179.1 (2)
O2W—Ni1—N1—C12177.81 (18)C4—C12—C11—C70.6 (4)
N2—Ni1—N1—C125.11 (16)C12—N1—C1—C20.6 (4)
O4W—Ni1—N1—C1296.31 (18)Ni1—N1—C1—C2176.2 (2)
C20—C17—C16—C2474.2 (2)C3—C2—C1—N10.6 (4)
C18—C17—C16—C24167.72 (19)C10—C9—C8—C70.1 (5)
C20—C17—C16—C1555.7 (2)C9—C8—C7—C111.3 (5)
C18—C17—C16—C1562.3 (2)C9—C8—C7—C6179.1 (3)
C1—N1—C12—C41.4 (4)N2—C11—C7—C82.7 (4)
Ni1—N1—C12—C4175.9 (2)C12—C11—C7—C8176.4 (3)
C1—N1—C12—C11178.2 (2)N2—C11—C7—C6179.3 (3)
Ni1—N1—C12—C114.4 (3)C12—C11—C7—C61.6 (4)
C14—C19—C20—C170.5 (3)C1—C2—C3—C41.3 (5)
C18—C17—C20—C1958.8 (3)C12—C4—C3—C22.0 (5)
C16—C17—C20—C1957.7 (3)C5—C4—C3—C2179.6 (3)
C17—C18—C22—O47.5 (3)C11—N2—C10—C91.1 (4)
C13—C18—C22—O4117.9 (3)Ni1—N2—C10—C9177.9 (2)
C17—C18—C22—O3168.6 (2)C8—C9—C10—N20.2 (4)
C13—C18—C22—O366.0 (3)C4—C5—C6—C70.6 (6)
O6—C23—C15—C1463.2 (3)C8—C7—C6—C5176.8 (4)
O5—C23—C15—C14113.8 (2)C11—C7—C6—C51.0 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7···O3i0.821.832.576 (3)151
O1—H1···O6ii0.821.882.670 (3)163
O1W—HW11···O40.83 (2)1.90 (2)2.716 (3)170 (3)
O1W—HW12···O5iii0.86 (2)1.83 (2)2.682 (3)173 (3)
O4W—HW41···O5iv0.85 (2)2.07 (3)2.879 (3)161 (4)
O4W—HW42···O3v0.85 (2)2.16 (2)2.926 (3)150 (4)
O3W—HW31···O3vi0.86 (2)1.96 (2)2.814 (3)171 (3)
O3W—HW32···O6iii0.85 (2)2.06 (2)2.893 (3)166 (4)
O2W—HW21···O3v0.84 (2)2.47 (2)3.244 (4)153 (4)
O2W—HW22···O20.85 (2)2.01 (2)2.806 (3)154 (4)
Symmetry codes: (i) x+2, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2; (iii) x, y+1/2, z1/2; (iv) x1, y+1/2, z1/2; (v) x1, y, z; (vi) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Ni(C12H8N2)(H2O)4](C12H10O8)
Mr593.18
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.446 (5), 13.583 (6), 22.982 (9)
β (°) 91.549 (7)
V3)2323.5 (18)
Z4
Radiation typeMo Kα
µ (mm1)0.91
Crystal size (mm)0.30 × 0.28 × 0.17
Data collection
DiffractometerBruker APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick 1996)
Tmin, Tmax0.756, 0.855
No. of measured, independent and
observed [I > 2σ(I)] reflections
14211, 5636, 4321
Rint0.032
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.133, 1.10
No. of reflections5636
No. of parameters382
No. of restraints12
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.46, 0.47

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL-Plus (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7···O3i0.821.832.576 (3)151.0
O1—H1···O6ii0.821.882.670 (3)163.1
O1W—HW11···O40.828 (16)1.897 (18)2.716 (3)170 (3)
O1W—HW12···O5iii0.859 (17)1.828 (18)2.682 (3)173 (3)
O4W—HW41···O5iv0.845 (18)2.07 (3)2.879 (3)161 (4)
O4W—HW42···O3v0.849 (18)2.16 (2)2.926 (3)150 (4)
O3W—HW31···O3vi0.863 (17)1.958 (17)2.814 (3)171 (3)
O3W—HW32···O6iii0.850 (17)2.060 (19)2.893 (3)166 (4)
O2W—HW21···O3v0.844 (18)2.47 (2)3.244 (4)153 (4)
O2W—HW22···O20.853 (18)2.01 (2)2.806 (3)154 (4)
Symmetry codes: (i) x+2, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2; (iii) x, y+1/2, z1/2; (iv) x1, y+1/2, z1/2; (v) x1, y, z; (vi) x+1, y, z.
 

Acknowledgements

The authors thank the Science Foundation for Young Teachers of Northeast Normal University for support (grant No. 20080305).

References

First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLiu, Y.-Y., Zhuo, Y.-J., Li, X.-Q. & Ma, J.-C. (2008). Acta Cryst. E64, m1590.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds