organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-(3,4-Di­meth­oxy­benzyl­­idene)aceto­hydrazide

aDepartment of Applied Chemistry, Zhejiang Sci-tech University, Hangzhou 310018, People's Republic of China, bKey Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China, cDepartment of Chemical Engineering, Hangzhou Vocational and Technical College, Hangzhou 310018, People's Republic of China, and dResearch Center of Analysis and Measurement, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
*Correspondence e-mail: zjlgzbc@126.com

(Received 7 July 2009; accepted 20 July 2009; online 25 July 2009)

The asymmetric unit of the title compound, C11H14N2O3, contains two independent mol­ecules with close conformations; the C=N—N—C torsion angle is 176.4 (1)° in both mol­ecules. In the crystal, inter­molecular N—H⋯O and C—H⋯O hydrogen bonds link the mol­ecules into chains running along the [01[\overline{1}]] direction.

Related literature

For general background to the applications of Schiff bases, see: Cimerman et al. (1997[Cimerman, Z., Galic, N. & Bosner, B. (1997). Anal Chim. Acta, 343, 145-153.]); Offe et al. (1952[Offe, H. A., Siefen, W. & Domagk, G. (1952). Z. Naturforsch. Teil B, 7, 446-447.]); Richardson et al. (1988[Richardson, D., Baker, E., Ponka, P., Wilairat, P., Vitolo, M. L. & Webb, J. (1988). Thalassemia: Pathophysiology and Management, Part B, p. 81. New York: Alan R. Liss.]). For related structures, see: Li & Jian (2008[Li, Y.-F. & Jian, F.-F. (2008). Acta Cryst. E64, o2409.]); Tamboura et al. (2009[Tamboura, F. B., Gaye, M., Sall, A. S., Barry, A. H. & Bah, Y. (2009). Acta Cryst. E65, m160-m161.]).

[Scheme 1]

Experimental

Crystal data
  • C11H14N2O3

  • Mr = 222.24

  • Triclinic, P 1

  • a = 8.339 (3) Å

  • b = 8.349 (3) Å

  • c = 8.663 (3) Å

  • α = 94.717 (12)°

  • β = 95.210 (8)°

  • γ = 94.298 (12)°

  • V = 596.6 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 223 K

  • 0.24 × 0.21 × 0.19 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.987, Tmax = 0.990

  • 3236 measured reflections

  • 2054 independent reflections

  • 1890 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.110

  • S = 1.12

  • 2054 reflections

  • 290 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O4i 0.86 2.11 2.950 (3) 165
N2—H2⋯O5i 0.86 2.54 3.154 (3) 129
C7—H7⋯O6 0.93 2.52 3.372 (3) 152
C12—H12B⋯O3ii 0.96 2.51 3.434 (4) 162
C12—H12C⋯O6iii 0.96 2.45 3.367 (4) 159
C16—H18⋯O2iv 0.93 2.45 3.244 (3) 144
N4—H4⋯O3v 0.86 2.08 2.907 (3) 161
Symmetry codes: (i) x, y+1, z; (ii) x, y-1, z-1; (iii) x-1, y-1, z; (iv) x-1, y, z-1; (v) x, y, z-1.

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff bases have attracted much attention due to their possible analytical applications (Cimerman et al., 1997). They are also important ligands, which have been reported to have mild bacteriostatic activity and potential oral iron-chelating drugs for genetic disorders such as thalassemia (Offe et al., 1952; Richardson et al., 1988). Metal complexes based on Schiff bases have received considerable attention because they can be utilized as model compounds of active centres in various complexes (Tamboura et al., 2009). We report here the crystal structure of the title compound.

The title compound (Fig. 1) crystallizes with two independent molecules in the asymmetric unit. The side chains in the two independent molecules have the same orientations, with the CN—N—C torsion angle being 176.4 (1)° in both molecules. The N1/N2//O3/C9/C10/C11 and N3/N4/O6/C20/C21/C22 planes form dihedral angles of 6.00 (5)° and 4.38 (9)°, respectively, with the C2—C7 and C13—C18 planes. The dihedral angle between the two independent benzene rings is 79.39 (7)°. The bond lengths and angles are comparable to those observed for N'-[1-(4-methoxyphenyl)ethylidene]acetohydrazide (Li et al., 2008).

In the crystal structure, the molecules are linked into chains running along the [01-1] by N—H···O and C—H···O hydrogen bonds(Table 1).

Related literature top

For general background to the applications of Schiff bases, see: Cimerman et al. (1997); Offe et al. (1952); Richardson et al. (1988). For related structures, see: Li et al. (2008); Tamboura et al. (2009).

Experimental top

3,4-Methoxybenzaldehyde (1.66 g, 0.01 mol) and acetohydrazide (0.74 g, 0.01 mol) were dissolved in stirred methanol (25 ml) and left for 2.5 h at room temperature. The resulting solid was filtered off and recrystallized from ethanol to give the title compound in 85% yield. Single crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution at room temperature (m.p. 468–470 K).

Refinement top

H atoms were positioned geometrically (N-H = 0.86 Å and C-H = 0.93 or 0.96 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C,N) and 1.5Ueq(Cmethyl). In the absence of significant anomalous scatterers, 1140 Friedel pairs were averaged.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The content of asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 30% probability level.
N'-(3,4-Dimethoxybenzylidene)acetohydrazide top
Crystal data top
C11H14N2O3Z = 2
Mr = 222.24F(000) = 236
Triclinic, P1Dx = 1.237 Mg m3
Hall symbol: P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.339 (3) ÅCell parameters from 2054 reflections
b = 8.349 (3) Åθ = 2.4–25.0°
c = 8.663 (3) ŵ = 0.09 mm1
α = 94.717 (12)°T = 223 K
β = 95.210 (8)°Block, colourless
γ = 94.298 (12)°0.24 × 0.21 × 0.19 mm
V = 596.6 (3) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
2054 independent reflections
Radiation source: fine-focus sealed tube1890 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ϕ and ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 99
Tmin = 0.987, Tmax = 0.990k = 99
3236 measured reflectionsl = 109
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.110 w = 1/[σ2(Fo2) + (0.0737P)2 + 0.0315P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max < 0.001
2054 reflectionsΔρmax = 0.18 e Å3
290 parametersΔρmin = 0.15 e Å3
3 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.101 (14)
Crystal data top
C11H14N2O3γ = 94.298 (12)°
Mr = 222.24V = 596.6 (3) Å3
Triclinic, P1Z = 2
a = 8.339 (3) ÅMo Kα radiation
b = 8.349 (3) ŵ = 0.09 mm1
c = 8.663 (3) ÅT = 223 K
α = 94.717 (12)°0.24 × 0.21 × 0.19 mm
β = 95.210 (8)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2054 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
1890 reflections with I > 2σ(I)
Tmin = 0.987, Tmax = 0.990Rint = 0.017
3236 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0363 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 1.12Δρmax = 0.18 e Å3
2054 reflectionsΔρmin = 0.15 e Å3
290 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O40.0007 (2)0.4436 (3)0.6700 (2)0.0538 (6)
O50.2416 (3)0.2594 (3)0.8028 (3)0.0604 (6)
O20.6714 (3)0.0884 (3)1.2796 (3)0.0691 (7)
O30.0291 (3)0.4482 (3)1.2193 (3)0.0668 (7)
N20.0775 (3)0.4780 (3)0.9931 (3)0.0520 (6)
H20.06860.51560.90360.062*
O10.8549 (3)0.0361 (3)1.0637 (3)0.0659 (7)
N30.2418 (3)0.2632 (3)0.5009 (3)0.0473 (6)
N10.2086 (3)0.3943 (3)1.0364 (3)0.0476 (6)
C150.1580 (3)0.1968 (3)0.6814 (3)0.0428 (6)
O60.4783 (3)0.5122 (3)0.5771 (3)0.0796 (8)
C180.1933 (3)0.0476 (4)0.6295 (3)0.0449 (6)
H170.28160.01890.67670.054*
C60.4492 (3)0.2834 (3)0.9661 (3)0.0460 (7)
N40.2566 (3)0.4016 (3)0.4235 (3)0.0508 (6)
H40.18720.41360.34650.061*
C170.0956 (3)0.0041 (4)0.5047 (3)0.0456 (7)
C20.7255 (3)0.1177 (4)1.0226 (3)0.0479 (7)
C90.3061 (4)0.3708 (4)0.9334 (3)0.0474 (7)
H90.28610.40970.83650.057*
C50.4882 (3)0.2291 (4)1.1140 (3)0.0476 (7)
H60.42210.24881.19320.057*
C200.1279 (4)0.1605 (4)0.4428 (3)0.0497 (7)
H200.06190.18540.35710.060*
C100.0362 (4)0.5003 (3)1.0920 (3)0.0484 (7)
C140.0720 (4)0.2478 (4)0.4888 (4)0.0535 (7)
H140.16120.31370.44250.064*
C130.0239 (3)0.2980 (3)0.6102 (3)0.0446 (7)
C70.5492 (4)0.2542 (4)0.8501 (3)0.0508 (7)
H70.52520.29030.75260.061*
C160.0345 (4)0.0966 (4)0.4350 (4)0.0556 (8)
H180.09800.06380.35150.067*
C110.1735 (4)0.5935 (5)1.0337 (4)0.0623 (8)
H11A0.15850.62120.93030.093*
H11B0.17580.69031.10120.093*
H11C0.27370.52861.03240.093*
C40.6230 (4)0.1474 (4)1.1414 (3)0.0495 (7)
C30.6859 (4)0.1710 (4)0.8788 (4)0.0548 (8)
H30.75170.15100.79940.066*
C210.3770 (4)0.5174 (4)0.4662 (3)0.0524 (7)
C120.1272 (4)0.5549 (5)0.5953 (4)0.0641 (9)
H12A0.13100.65170.64780.096*
H12B0.10820.58030.48870.096*
H12C0.22820.50720.59920.096*
C220.3783 (5)0.6553 (4)0.3640 (5)0.0694 (9)
H22A0.28820.63780.28560.104*
H22B0.47710.66150.31510.104*
H22C0.37040.75450.42630.104*
C80.5745 (5)0.1116 (5)1.4029 (4)0.0672 (9)
H5A0.62250.06731.49320.101*
H5B0.46870.05841.37340.101*
H5C0.56600.22481.42630.101*
C10.9669 (5)0.0112 (5)0.9511 (5)0.0775 (11)
H1A1.05250.04780.99340.116*
H1B1.01120.11360.92440.116*
H1C0.91250.04890.85960.116*
C190.3937 (5)0.1813 (5)0.8631 (5)0.0800 (12)
H16A0.43810.23710.94750.120*
H16B0.38050.07200.90010.120*
H16C0.46560.18200.78260.120*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O40.0553 (11)0.0539 (13)0.0528 (12)0.0019 (9)0.0015 (9)0.0211 (10)
O50.0625 (12)0.0572 (13)0.0598 (12)0.0038 (10)0.0176 (10)0.0294 (10)
O20.0710 (15)0.1024 (19)0.0436 (11)0.0453 (14)0.0073 (10)0.0281 (12)
O30.0708 (15)0.0814 (16)0.0526 (13)0.0172 (12)0.0043 (11)0.0239 (12)
N20.0547 (13)0.0591 (15)0.0458 (14)0.0141 (11)0.0031 (12)0.0261 (12)
O10.0580 (13)0.0810 (16)0.0649 (15)0.0280 (12)0.0127 (11)0.0158 (12)
N30.0566 (14)0.0477 (14)0.0414 (13)0.0132 (11)0.0059 (11)0.0173 (11)
N10.0507 (13)0.0483 (14)0.0447 (13)0.0096 (10)0.0062 (11)0.0161 (10)
C150.0420 (14)0.0495 (16)0.0393 (14)0.0100 (12)0.0007 (11)0.0161 (12)
O60.0796 (17)0.0751 (17)0.0801 (18)0.0006 (13)0.0203 (14)0.0187 (14)
C180.0451 (14)0.0492 (16)0.0418 (14)0.0081 (12)0.0012 (11)0.0125 (12)
C60.0512 (15)0.0472 (16)0.0384 (14)0.0000 (12)0.0047 (12)0.0102 (12)
N40.0613 (14)0.0500 (14)0.0431 (13)0.0082 (11)0.0015 (11)0.0199 (11)
C170.0505 (16)0.0472 (16)0.0422 (15)0.0143 (12)0.0045 (12)0.0128 (12)
C20.0483 (16)0.0502 (17)0.0464 (16)0.0092 (13)0.0046 (13)0.0073 (13)
C90.0559 (16)0.0490 (16)0.0377 (14)0.0054 (12)0.0041 (12)0.0151 (12)
C50.0508 (16)0.0535 (17)0.0398 (14)0.0120 (13)0.0009 (12)0.0089 (12)
C200.0583 (17)0.0485 (17)0.0444 (15)0.0142 (13)0.0010 (13)0.0150 (13)
C100.0560 (17)0.0440 (16)0.0443 (16)0.0034 (12)0.0055 (14)0.0100 (12)
C140.0471 (15)0.0567 (18)0.0551 (18)0.0026 (13)0.0091 (13)0.0126 (14)
C130.0463 (15)0.0473 (16)0.0425 (15)0.0068 (12)0.0039 (12)0.0154 (12)
C70.0595 (18)0.0554 (17)0.0379 (14)0.0002 (14)0.0021 (13)0.0138 (13)
C160.0579 (17)0.0571 (19)0.0532 (18)0.0137 (14)0.0092 (14)0.0207 (15)
C110.063 (2)0.063 (2)0.0614 (19)0.0159 (16)0.0004 (16)0.0106 (16)
C40.0532 (16)0.0593 (18)0.0381 (15)0.0133 (14)0.0005 (12)0.0137 (13)
C30.0588 (17)0.0587 (18)0.0487 (17)0.0019 (14)0.0106 (14)0.0117 (14)
C210.0583 (18)0.0516 (18)0.0488 (17)0.0116 (14)0.0021 (14)0.0097 (13)
C120.066 (2)0.065 (2)0.060 (2)0.0107 (16)0.0014 (16)0.0203 (16)
C220.085 (2)0.0533 (19)0.071 (2)0.0030 (17)0.0061 (19)0.0154 (17)
C80.081 (2)0.087 (2)0.0413 (17)0.0353 (19)0.0107 (16)0.0201 (16)
C10.063 (2)0.078 (3)0.099 (3)0.0206 (18)0.031 (2)0.010 (2)
C190.073 (2)0.073 (2)0.088 (3)0.0081 (18)0.037 (2)0.033 (2)
Geometric parameters (Å, º) top
O4—C131.367 (3)C5—H60.9300
O4—C121.431 (4)C20—H200.9300
O5—C151.370 (3)C10—C111.505 (4)
O5—C191.417 (4)C14—C131.376 (4)
O2—C41.370 (3)C14—C161.405 (4)
O2—C81.407 (4)C14—H140.9300
O3—C101.216 (4)C7—C31.393 (5)
N2—C101.348 (4)C7—H70.9300
N2—N11.380 (3)C16—H180.9300
N2—H20.8600C11—H11A0.9600
O1—C21.355 (4)C11—H11B0.9600
O1—C11.424 (5)C11—H11C0.9600
N3—C201.270 (4)C3—H30.9300
N3—N41.385 (3)C21—O61.225 (4)
N1—C91.274 (4)C21—C221.510 (5)
C15—C181.379 (4)C12—H12A0.9600
C15—C131.412 (4)C12—H12B0.9600
O6—C211.225 (4)C12—H12C0.9600
C18—C171.410 (4)C22—H22A0.9600
C18—H170.9300C22—H22B0.9600
C6—C71.381 (4)C22—H22C0.9600
C6—C51.413 (4)C8—H5A0.9600
C6—C91.463 (4)C8—H5B0.9600
N4—C211.345 (4)C8—H5C0.9600
N4—H40.8600C1—H1A0.9600
C17—C161.381 (4)C1—H1B0.9600
C17—C201.468 (4)C1—H1C0.9600
C2—C31.377 (4)C19—H16A0.9600
C2—C41.415 (4)C19—H16B0.9600
C9—H90.9300C19—H16C0.9600
C5—C41.370 (4)
C13—O4—C12117.5 (2)C17—C16—H18119.6
C15—O5—C19118.3 (2)C14—C16—H18119.6
C4—O2—C8117.6 (2)C10—C11—H11A109.5
C10—N2—N1119.6 (2)C10—C11—H11B109.5
C10—N2—H2120.2H11A—C11—H11B109.5
N1—N2—H2120.2C10—C11—H11C109.5
C2—O1—C1117.2 (3)H11A—C11—H11C109.5
C20—N3—N4114.6 (2)H11B—C11—H11C109.5
C9—N1—N2115.8 (2)C5—C4—O2125.2 (3)
O5—C15—C18125.6 (3)C5—C4—C2120.5 (2)
O5—C15—C13114.2 (2)O2—C4—C2114.3 (2)
C18—C15—C13120.2 (2)C2—C3—C7121.2 (3)
C15—C18—C17120.0 (3)C2—C3—H3119.4
C15—C18—H17120.0C7—C3—H3119.4
C17—C18—H17120.0O6—C21—N4123.7 (3)
C7—C6—C5119.2 (3)O6—C21—N4123.7 (3)
C7—C6—C9119.3 (2)O6—C21—C22122.4 (3)
C5—C6—C9121.5 (3)O6—C21—C22122.4 (3)
C21—N4—N3121.4 (2)N4—C21—C22114.0 (3)
C21—N4—H4119.3O4—C12—H12A109.5
N3—N4—H4119.3O4—C12—H12B109.5
C16—C17—C18119.3 (2)H12A—C12—H12B109.5
C16—C17—C20118.0 (2)O4—C12—H12C109.5
C18—C17—C20122.7 (3)H12A—C12—H12C109.5
O1—C2—C3126.3 (3)H12B—C12—H12C109.5
O1—C2—C4115.0 (2)C21—C22—H22A109.5
C3—C2—C4118.6 (3)C21—C22—H22B109.5
N1—C9—C6120.6 (2)H22A—C22—H22B109.5
N1—C9—H9119.7C21—C22—H22C109.5
C6—C9—H9119.7H22A—C22—H22C109.5
C4—C5—C6120.3 (3)H22B—C22—H22C109.5
C4—C5—H6119.8O2—C8—H5A109.5
C6—C5—H6119.8O2—C8—H5B109.5
N3—C20—C17122.9 (3)H5A—C8—H5B109.5
N3—C20—H20118.5O2—C8—H5C109.5
C17—C20—H20118.5H5A—C8—H5C109.5
O3—C10—N2122.5 (3)H5B—C8—H5C109.5
O3—C10—C11122.2 (3)O1—C1—H1A109.5
N2—C10—C11115.3 (3)O1—C1—H1B109.5
C13—C14—C16119.6 (3)H1A—C1—H1B109.5
C13—C14—H14120.2O1—C1—H1C109.5
C16—C14—H14120.2H1A—C1—H1C109.5
O4—C13—C14124.7 (2)H1B—C1—H1C109.5
O4—C13—C15115.3 (2)O5—C19—H16A109.5
C14—C13—C15120.0 (2)O5—C19—H16B109.5
C6—C7—C3120.2 (3)H16A—C19—H16B109.5
C6—C7—H7119.9O5—C19—H16C109.5
C3—C7—H7119.9H16A—C19—H16C109.5
C17—C16—C14120.9 (2)H16B—C19—H16C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O4i0.862.112.950 (3)165
N2—H2···O5i0.862.543.154 (3)129
C7—H7···O60.932.523.372 (3)152
C12—H12B···O3ii0.962.513.434 (4)162
C12—H12C···O6iii0.962.453.367 (4)159
C16—H18···O2iv0.932.453.244 (3)144
N4—H4···O3v0.862.082.907 (3)161
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z1; (iii) x1, y1, z; (iv) x1, y, z1; (v) x, y, z1.

Experimental details

Crystal data
Chemical formulaC11H14N2O3
Mr222.24
Crystal system, space groupTriclinic, P1
Temperature (K)223
a, b, c (Å)8.339 (3), 8.349 (3), 8.663 (3)
α, β, γ (°)94.717 (12), 95.210 (8), 94.298 (12)
V3)596.6 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.24 × 0.21 × 0.19
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.987, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
3236, 2054, 1890
Rint0.017
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.110, 1.12
No. of reflections2054
No. of parameters290
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.15

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O4i0.862.112.950 (3)164.9
N2—H2···O5i0.862.543.154 (3)129.0
C7—H7···O60.932.523.372 (3)151.8
C12—H12B···O3ii0.962.513.434 (4)161.5
C12—H12C···O6iii0.962.453.367 (4)158.8
C16—H18···O2iv0.932.453.244 (3)143.8
N4—H4···O3v0.862.082.907 (3)161.3
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z1; (iii) x1, y1, z; (iv) x1, y, z1; (v) x, y, z1.
 

Acknowledgements

The authors thank Zhejiang Sci-tech University and the Science and Technology Project of Zhejiang Province for financial support (grant No. 2007 F70077) .

References

First citationBruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCimerman, Z., Galic, N. & Bosner, B. (1997). Anal Chim. Acta, 343, 145–153.  CrossRef CAS Web of Science Google Scholar
First citationLi, Y.-F. & Jian, F.-F. (2008). Acta Cryst. E64, o2409.  Web of Science CrossRef IUCr Journals Google Scholar
First citationOffe, H. A., Siefen, W. & Domagk, G. (1952). Z. Naturforsch. Teil B, 7, 446–447.  Google Scholar
First citationRichardson, D., Baker, E., Ponka, P., Wilairat, P., Vitolo, M. L. & Webb, J. (1988). Thalassemia: Pathophysiology and Management, Part B, p. 81. New York: Alan R. Liss.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTamboura, F. B., Gaye, M., Sall, A. S., Barry, A. H. & Bah, Y. (2009). Acta Cryst. E65, m160–m161.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds