organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Z)-1-(2,4-Di­fluoro­phen­yl)-3-phenyl-2-(1H-1,2,4-triazol-1-yl)prop-2-en-1-one

aLaboratory of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, People's Republic of China
*Correspondence e-mail: zhouch@swu.edu.cn

(Received 23 July 2009; accepted 27 July 2009; online 31 July 2009)

In the title mol­ecule, C17H11F2N3O, the triazole ring makes dihedral angles of 83.00 (5) and 16.63 (5)°, respectively, with the phenyl and benzene rings. Weak inter­molecular C—H⋯F and C—H⋯N inter­actions contribute to the crystal packing.

Related literature

For details of the synthesis, see: Wang et al. (2009[Wang, G., Lu, Y., Zhou, C. & Zhang, Y. (2009). Acta Cryst. E65, o1113.]). For the pharmacological activity of chalcones, see: Reichwald et al. (2008[Reichwald, C., Shimony, O., Dunkel, U., Sacerdoti-Sierra, N., Jaffe, C. L. & Kunick, C. (2008). J. Med. Chem. 51, 659-665.]).

[Scheme 1]

Experimental

Crystal data
  • C17H11F2N3O

  • Mr = 311.29

  • Monoclinic, P 21 /n

  • a = 11.7595 (16) Å

  • b = 7.5800 (10) Å

  • c = 17.068 (2) Å

  • β = 108.067 (2)°

  • V = 1446.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 296 K

  • 0.25 × 0.21 × 0.14 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997[Sheldrick, G. M. (1997). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.973, Tmax = 0.985

  • 10616 measured reflections

  • 2681 independent reflections

  • 1940 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.101

  • S = 1.02

  • 2681 reflections

  • 208 parameters

  • H-atom parameters constrained

  • Δρmax = 0.11 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯N3i 0.93 2.68 3.540 (2) 154
C17—H17⋯F1ii 0.93 2.62 3.280 (2) 128
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 1997[Bruker (1997). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Chalcones, considered as the precursors of flavonoids and isoflavonoids, are abundant in edible plants. Chalcones exhibit a variety of beneficial pharmacological activities such as antitumor, antibacterial, antifungal, antiinflammatory, antimalarial, antivirus and so on (Reichwald et al., 2008). In view of the therapeutic potentials of chalcones, we synthesized the title compound (I). Herewith we report its crystal structure.

In (I) (Fig. 1), the triazole ring makes the dihedral angles of 83.00 (5)° and 16.63 (5)°, respectively, with the phenyl and benzene rings. Weak intermolecular C—H···F and C—H···N interactions (Table 1) contribute to the crystal packing stability.

Related literature top

For details of the synthesis, see: Wang et al. (2009). For the pharmacological activity of chalcones, see: Reichwald et al. (2008).

Experimental top

Compound (I) was synthesized according to the procedure of Wang et al. (2009). A crystal of (I) suitable for X-ray analysis was grown from a mixture solution of ethyl acetate and petroleum ether by slow evaporation at room temperature.

Refinement top

All the hydrogen atoms were placed at the geometrical positions with C—H = 0.93 Å, and refined as riding, with Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT-Plus (Bruker, 1997); data reduction: SAINT-Plus (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
(Z)-1-(2,4-Difluorophenyl)-3-phenyl-2-(1H-1,2,4-triazol- 1-yl)prop-2-en-1-one top
Crystal data top
C17H11F2N3OF(000) = 640
Mr = 311.29Dx = 1.429 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 11.7595 (16) ÅCell parameters from 2124 reflections
b = 7.580 (1) Åθ = 2.5–23.7°
c = 17.068 (2) ŵ = 0.11 mm1
β = 108.067 (2)°T = 296 K
V = 1446.4 (3) Å3Block, colourless
Z = 40.25 × 0.21 × 0.14 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2681 independent reflections
Radiation source: fine-focus sealed tube1940 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ϕ and ω scansθmax = 25.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
h = 1414
Tmin = 0.973, Tmax = 0.985k = 99
10616 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0432P)2 + 0.2887P]
where P = (Fo2 + 2Fc2)/3
2681 reflections(Δ/σ)max < 0.001
208 parametersΔρmax = 0.11 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C17H11F2N3OV = 1446.4 (3) Å3
Mr = 311.29Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.7595 (16) ŵ = 0.11 mm1
b = 7.580 (1) ÅT = 296 K
c = 17.068 (2) Å0.25 × 0.21 × 0.14 mm
β = 108.067 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2681 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
1940 reflections with I > 2σ(I)
Tmin = 0.973, Tmax = 0.985Rint = 0.029
10616 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.101H-atom parameters constrained
S = 1.02Δρmax = 0.11 e Å3
2681 reflectionsΔρmin = 0.19 e Å3
208 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.37404 (14)0.4189 (2)0.17104 (10)0.0410 (4)
C20.32338 (16)0.3486 (2)0.22725 (10)0.0485 (5)
C30.20317 (17)0.3192 (3)0.20996 (12)0.0563 (5)
H30.17180.26960.24860.068*
C40.13143 (16)0.3665 (3)0.13310 (13)0.0540 (5)
C50.17475 (16)0.4363 (3)0.07450 (12)0.0554 (5)
H50.12360.46660.02280.066*
C60.29653 (15)0.4609 (2)0.09396 (11)0.0463 (4)
H60.32750.50680.05430.056*
C70.50387 (15)0.4647 (2)0.19524 (10)0.0455 (4)
C80.57636 (13)0.4110 (2)0.14180 (9)0.0380 (4)
C90.54142 (14)0.2954 (2)0.07984 (10)0.0394 (4)
H90.46160.26130.06580.047*
C100.60984 (14)0.2144 (2)0.03078 (10)0.0371 (4)
C110.54836 (15)0.1629 (2)0.04971 (10)0.0427 (4)
H110.46640.18230.07070.051*
C120.60760 (17)0.0835 (2)0.09852 (11)0.0511 (5)
H120.56610.05340.15270.061*
C130.72778 (18)0.0488 (3)0.06717 (12)0.0574 (5)
H130.76770.00510.10000.069*
C140.78932 (17)0.0939 (3)0.01321 (13)0.0571 (5)
H140.87030.06770.03470.068*
C150.73151 (15)0.1777 (2)0.06192 (11)0.0472 (4)
H150.77400.20960.11560.057*
C160.78369 (16)0.4806 (3)0.23361 (11)0.0540 (5)
H160.78190.41820.28010.065*
C170.83462 (16)0.6374 (3)0.15148 (11)0.0531 (5)
H170.88100.71010.12970.064*
F10.39533 (10)0.30437 (19)0.30320 (7)0.0792 (4)
F20.01212 (10)0.3410 (2)0.11449 (8)0.0874 (4)
N10.69278 (12)0.48896 (18)0.16383 (8)0.0401 (3)
N20.72498 (12)0.5930 (2)0.10902 (9)0.0479 (4)
N30.87605 (13)0.5715 (2)0.22846 (10)0.0589 (4)
O10.55016 (12)0.5454 (2)0.25844 (8)0.0737 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0413 (9)0.0420 (10)0.0427 (9)0.0005 (7)0.0173 (8)0.0015 (8)
C20.0525 (11)0.0558 (11)0.0415 (10)0.0108 (9)0.0209 (9)0.0054 (9)
C30.0586 (12)0.0590 (12)0.0646 (13)0.0022 (9)0.0386 (10)0.0056 (10)
C40.0387 (10)0.0577 (12)0.0700 (13)0.0016 (9)0.0232 (9)0.0048 (10)
C50.0458 (11)0.0632 (13)0.0541 (11)0.0015 (9)0.0110 (9)0.0039 (10)
C60.0463 (10)0.0495 (11)0.0461 (10)0.0032 (8)0.0187 (8)0.0062 (8)
C70.0456 (10)0.0500 (11)0.0404 (9)0.0005 (8)0.0128 (8)0.0037 (8)
C80.0351 (9)0.0424 (9)0.0352 (9)0.0025 (7)0.0092 (7)0.0018 (8)
C90.0360 (9)0.0425 (10)0.0397 (9)0.0043 (7)0.0119 (7)0.0036 (8)
C100.0390 (9)0.0339 (9)0.0392 (9)0.0049 (7)0.0133 (7)0.0017 (7)
C110.0425 (9)0.0406 (10)0.0432 (9)0.0066 (8)0.0107 (8)0.0015 (8)
C120.0644 (12)0.0473 (11)0.0429 (10)0.0099 (9)0.0188 (9)0.0077 (8)
C130.0660 (14)0.0501 (12)0.0645 (13)0.0019 (9)0.0324 (11)0.0123 (10)
C140.0443 (10)0.0554 (12)0.0722 (13)0.0062 (9)0.0192 (10)0.0041 (11)
C150.0454 (10)0.0488 (11)0.0443 (10)0.0006 (8)0.0094 (8)0.0027 (8)
C160.0474 (11)0.0662 (13)0.0409 (10)0.0057 (9)0.0030 (8)0.0005 (9)
C170.0427 (10)0.0596 (12)0.0579 (12)0.0127 (9)0.0170 (9)0.0074 (10)
F10.0713 (8)0.1213 (11)0.0491 (7)0.0211 (7)0.0247 (6)0.0255 (7)
F20.0441 (7)0.1161 (11)0.1074 (10)0.0115 (7)0.0313 (7)0.0038 (9)
N10.0364 (8)0.0457 (8)0.0359 (7)0.0048 (6)0.0079 (6)0.0025 (6)
N20.0423 (8)0.0544 (9)0.0476 (9)0.0067 (7)0.0148 (7)0.0024 (7)
N30.0430 (9)0.0758 (12)0.0519 (10)0.0112 (8)0.0060 (7)0.0113 (9)
O10.0555 (9)0.1069 (12)0.0594 (9)0.0111 (8)0.0190 (7)0.0381 (9)
Geometric parameters (Å, º) top
C1—C21.384 (2)C10—C151.391 (2)
C1—C61.385 (2)C10—C111.395 (2)
C1—C71.494 (2)C11—C121.379 (2)
C2—F11.3521 (19)C11—H110.9300
C2—C31.370 (2)C12—C131.373 (3)
C3—C41.369 (3)C12—H120.9300
C3—H30.9300C13—C141.381 (3)
C4—F21.353 (2)C13—H130.9300
C4—C51.362 (3)C14—C151.381 (2)
C5—C61.379 (2)C14—H140.9300
C5—H50.9300C15—H150.9300
C6—H60.9300C16—N31.312 (2)
C7—O11.212 (2)C16—N11.332 (2)
C7—C81.485 (2)C16—H160.9300
C8—C91.336 (2)C17—N21.312 (2)
C8—N11.4302 (19)C17—N31.348 (2)
C9—C101.464 (2)C17—H170.9300
C9—H90.9300N1—N21.3640 (19)
C2—C1—C6116.68 (15)C15—C10—C9123.22 (15)
C2—C1—C7121.38 (15)C11—C10—C9118.14 (14)
C6—C1—C7121.63 (15)C12—C11—C10120.82 (16)
F1—C2—C3117.62 (16)C12—C11—H11119.6
F1—C2—C1118.97 (16)C10—C11—H11119.6
C3—C2—C1123.41 (17)C13—C12—C11120.02 (17)
C4—C3—C2116.88 (17)C13—C12—H12120.0
C4—C3—H3121.6C11—C12—H12120.0
C2—C3—H3121.6C12—C13—C14119.91 (17)
F2—C4—C5118.67 (18)C12—C13—H13120.0
F2—C4—C3118.26 (17)C14—C13—H13120.0
C5—C4—C3123.06 (17)C15—C14—C13120.53 (17)
C4—C5—C6118.19 (17)C15—C14—H14119.7
C4—C5—H5120.9C13—C14—H14119.7
C6—C5—H5120.9C14—C15—C10120.13 (16)
C5—C6—C1121.76 (16)C14—C15—H15119.9
C5—C6—H6119.1C10—C15—H15119.9
C1—C6—H6119.1N3—C16—N1111.51 (17)
O1—C7—C8119.98 (16)N3—C16—H16124.2
O1—C7—C1120.11 (16)N1—C16—H16124.2
C8—C7—C1119.91 (14)N2—C17—N3116.09 (17)
C9—C8—N1120.88 (14)N2—C17—H17122.0
C9—C8—C7124.84 (15)N3—C17—H17122.0
N1—C8—C7114.23 (14)C16—N1—N2108.90 (14)
C8—C9—C10129.73 (15)C16—N1—C8130.75 (15)
C8—C9—H9115.1N2—N1—C8120.34 (12)
C10—C9—H9115.1C17—N2—N1101.76 (14)
C15—C10—C11118.54 (15)C16—N3—C17101.74 (15)
C6—C1—C2—F1179.59 (16)C7—C8—C9—C10170.57 (16)
C7—C1—C2—F16.6 (3)C8—C9—C10—C1531.5 (3)
C6—C1—C2—C30.2 (3)C8—C9—C10—C11152.16 (17)
C7—C1—C2—C3173.98 (17)C15—C10—C11—C122.5 (2)
F1—C2—C3—C4179.31 (17)C9—C10—C11—C12179.05 (15)
C1—C2—C3—C41.3 (3)C10—C11—C12—C132.2 (3)
C2—C3—C4—F2179.28 (17)C11—C12—C13—C140.2 (3)
C2—C3—C4—C51.3 (3)C12—C13—C14—C151.5 (3)
F2—C4—C5—C6179.65 (17)C13—C14—C15—C101.2 (3)
C3—C4—C5—C60.3 (3)C11—C10—C15—C140.8 (2)
C4—C5—C6—C10.9 (3)C9—C10—C15—C14177.13 (16)
C2—C1—C6—C50.9 (3)N3—C16—N1—N20.9 (2)
C7—C1—C6—C5172.81 (17)N3—C16—N1—C8179.80 (16)
C2—C1—C7—O146.0 (3)C9—C8—N1—C16118.1 (2)
C6—C1—C7—O1127.4 (2)C7—C8—N1—C1659.6 (2)
C2—C1—C7—C8133.93 (18)C9—C8—N1—N262.6 (2)
C6—C1—C7—C852.6 (2)C7—C8—N1—N2119.70 (16)
O1—C7—C8—C9166.95 (18)N3—C17—N2—N10.1 (2)
C1—C7—C8—C913.0 (3)C16—N1—N2—C170.46 (18)
O1—C7—C8—N110.6 (2)C8—N1—N2—C17179.89 (15)
C1—C7—C8—N1169.46 (14)N1—C16—N3—C170.8 (2)
N1—C8—C9—C106.8 (3)N2—C17—N3—C160.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···N10.932.563.048 (2)113
C12—H12···N3i0.932.683.540 (2)154
C17—H17···F1ii0.932.623.280 (2)128
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+3/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC17H11F2N3O
Mr311.29
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)11.7595 (16), 7.580 (1), 17.068 (2)
β (°) 108.067 (2)
V3)1446.4 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.25 × 0.21 × 0.14
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1997)
Tmin, Tmax0.973, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
10616, 2681, 1940
Rint0.029
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.101, 1.02
No. of reflections2681
No. of parameters208
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.11, 0.19

Computer programs: SMART (Bruker, 1997), SAINT-Plus (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···N3i0.932.683.540 (2)153.6
C17—H17···F1ii0.932.623.280 (2)128.4
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+3/2, y+1/2, z+1/2.
 

Acknowledgements

We thank the Southwest University (grant Nos. SWUB2006018 & XSGX0602) and Natural Science Foundation of Chongqing (grant No. 2007BB5369) for financial support.

References

First citationBruker (1997). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationReichwald, C., Shimony, O., Dunkel, U., Sacerdoti-Sierra, N., Jaffe, C. L. & Kunick, C. (2008). J. Med. Chem. 51, 659–665.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1997). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, G., Lu, Y., Zhou, C. & Zhang, Y. (2009). Acta Cryst. E65, o1113.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds