metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[bis­­(4-amino­pyridinium) [[di­aqua­manganese(II)]-di-μ-chlorido] dichloride]

aLaboratoire de Matériaux et Cristallochimie, Faculté des Sciences, El Manar, 2092 Tunis, Tunisia
*Correspondence e-mail: habib.boughzala@ipein.rnu.tn

(Received 24 May 2009; accepted 8 July 2009; online 15 July 2009)

Single crystals of the title organic–inorganic hybrid, {(C5H7N2)2[MnCl2(H2O)2]Cl2}n, were synthesized from an ethanol solution containing manganese(II) chloride tetra­hydrate and 4-amino­pyridine under acidic conditions. The asymmetric unit contains a disordered organic cation (occupancies in the ratio 0.72:0.28), a chloride anion and an MnCl(H2O) moiety with the MnII atom located on an inversion center. The structure is built up of infinite chains of edge-sharing [MnCl4(H2O)2] octa­hedra developing parallel to the a axis which are separated by the 4-amino­pyridinium ions and discrete chloride ions. The organic cations occupy the empty space around each inorganic chain. Structural cohesion is organized through N—H⋯Cl and O—H⋯Cl hydrogen bonds, which build up a three-dimensional network.

Related literature

For general background to organic–inorganic hybride materials, see: Lacroix et al. (1994[Lacroix, P. G., Clément, R., Nakatani, K., Delaire, J. A., Zyss, J. & Ledoux, I. (1994). Science, 263, 658-660.]); Mitzi (2001[Mitzi, D. B. (2001). J. Chem. Soc. Dalton Trans. pp. 1-12.]); Calabrese et al. (1991[Calabrese, J., Jones, N. L., Harlow, R. L., Herron, N., Thorn, D. L. & Wang, Y. (1991). J. Am. Chem. Soc. 113, 2328-2330.]); Hong et al. (1992[Hong, X., Ishihara, T. & Nurmikko, A. V. (1992). Solid State Commun. 84, 657-661.]). For related structures, see: Caputo et al. (1976[Caputo, R. E., Willett, R. D. & Muir, J. A. (1976). Acta Cryst. B32, 2639-2642.]); Hachuła et al. (2009[Hachuła, B., Pędras, M., Pentak, D., Nowak, M., Kusz, J. & Borek, J. (2009). Acta Cryst. C65, m215-m218.]); Zeng et al. (2008[Zeng, J.-Z., Yi, X.-G., Lin, J.-Y., Ying, S.-M. & Huang, G.-S. (2008). Acta Cryst. E64, m476.]).

[Scheme 1]

Experimental

Crystal data
  • (C5H7N2)2[MnCl2(H2O)2]Cl2

  • Mr = 421.01

  • Monoclinic, P 21 /c

  • a = 3.946 (1) Å

  • b = 17.586 (6) Å

  • c = 12.845 (4) Å

  • β = 93.48 (3)°

  • V = 889.7 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.35 mm−1

  • T = 298 K

  • 0.05 × 0.04 × 0.02 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.916, Tmax = 0.999

  • 2516 measured reflections

  • 1892 independent reflections

  • 1473 reflections with I > 2σ(I)

  • Rint = 0.017

  • 2 standard reflections frequency: 120 min intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.095

  • S = 1.04

  • 1892 reflections

  • 112 parameters

  • 43 restraints

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—HW1⋯Cl1i 0.87 2.27 3.090 (2) 158
O1—HW2⋯Cl1ii 0.73 2.39 3.082 (2) 159
N1—H1A⋯Cl1 0.86 2.41 3.264 (4) 172
N1—H1B⋯Cl2 0.86 2.57 3.415 (4) 169
N1′—H1′1⋯Cl1iii 0.86 2.47 3.299 (10) 163
N1′—H1′2⋯Cl1i 0.86 2.58 3.386 (9) 156
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x+1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CAD-4 EXPRESS (Duisenberg, 1992[Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92-96.]; Macíček & Yordanov, 1992[Macíček, J. & Yordanov, A. (1992). J. Appl. Cryst. 25, 73-80.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Studies of organic-inorganic hybrid compounds continue to be a focus area in chemistry and material science because they combine properties of organic and inorganic compounds within one single molecular scale, such as second order nonlinear optical (NLO) response, magnetism, luminescence, and even multifunctional properties (Mitzi et al. (2001); Lacroix et al. (1994)).

This kind of materials, generally expressed as (R—NH3)2-MX4 or (NH3– R—NH3) MX4 (where R: organic group, M: divalent metal and X: halogen) can be regarded as semiconductor/insulator multiple quantum well system consisting of metal halide semiconductor layers sandwiched between organic ammonium insulator layers (Calabrese et al. (1991); Hong et al. (1992). In this paper, we report the synthesis and single-crystal X-ray diffraction studies of the organic-inorganic hybrid compound: [MnCl2(H2O)2].(C5H8N2)2.Cl2.

The assymetric unit is built up from a MnCl(H2O) moiety, a fully disordered 4-ammoniumpyridine and a Cl ion. The Mn atom is located on an inversion center and each managanese atom is octahedrally coordinated to four equatorial chlorine atoms and to two oxygen atoms in axial positions (Fig. 1).

The [MnCl2(H2O)2].(C5H8N2)2.Cl2 structure is built up of infinite edges sharing octahedra MnCl4(H2O)2 chains running along the [100] direction. Similar arrangement of the inorganic part was reported for [(CH3)3NH]MnCl3. 2H2O published by Caputo et al. (1976). The organic-inorganic cohesion is ensured by hydrogen bonding that involves two kinds of interactions: N1—H1A···Cl1 and N1—H1B···Cl2 bonds between the organic cation and the chloride and O—HW1···Cl1 and O—HW2···Cl1 between the water molecule and the Cl anion (Fig. 2, Table 1). It is worthy to note that the second kind of hydrogene bonds are stronger than the first one.

The [C5H8N2]+cations is disordered over two positions which are rotated with respect to each other by about 141°. Thus, the amine group of one component lies close to the carbon atom C1 of the other component so that both components are more or less coplanar one to another (Fig. 3).

The distances and angles througout the structure are in good agreement with those encountered in several compounds of literature (Zeng et al. (2008); Hachuła et al. (2009)).

Related literature top

For general background to organic–inorganic hybride materials, see: Lacroix et al. (1994); Mitzi (2001); Calabrese et al. (1991); Hong et al. (1992). For related structures, see: Caputo et al. (1976); Hachuła et al. (2009); Zeng et al. (2008).

Experimental top

An aqueous HCl (1M) solution, 4-aminopyridine (C5H6N2) and manganese dichloride tetrahydrate (MnCl2.4H2O) in a 2:1:1 molar ratio were mixed and dissolved in sufficient ethanol. Crystal for X-Ray diffraction structural analysis were grown by slow evaporation at room temperature and then set aside for few days to obtain colourless crystals.

Refinement top

All H atoms attached to C atoms and N atom were fixed geometrically and treated as riding with C—H = 0.93 Å and N—H = 0.86 Å with Uiso(H) = 1.2Ueq(C or N). H atoms of water molecule were located in difference Fourier maps and included in the subsequent refinement using restraints (O—H= 0.82 (1)Å and H···.H= 1.39 (2) Å) with Uiso(H) = 1.5Ueq(O). In the last stage of refinement, they were treated as as riding on the O atom.

The organic cation is disordered over two positions twisted to each other by about 141° around an axis perpendicular to their mean planes. The two components were refined using the tools available in SHELXL97(Sheldrick, 2008): PART, SAME and EADP. In the first step of refinement the occupancy factor for each domain has been determined to be in the ration 0.72/0.28 by using the FREE variable option.

Computing details top

Data collection: CAD-4 EXPRESS (Duisenberg, 1992; Macíček & Yordanov, 1992); cell refinement: CAD-4 EXPRESS (Duisenberg, 1992; Macíček & Yordanov, 1992); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Representation of the assymetric unit with the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms ahve been omitted for clarity. [Symmetry codes: (i) -x + 1, -y + 1, -z + 2; (ii) -x, -y + 1, -z + 2; (iii) x + 1, y, z; (iv) x - 1, y, z]
[Figure 2] Fig. 2. Partial packing view showing the hydrogen bond interactions between the inorganic and organic molecules. Ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines.
[Figure 3] Fig. 3. Representation of the disordrered components of the organic cation
catena-poly[bis(4-aminopyridinium) [[diaquamanganese(II)]-di-µ-chlorido] dichloride] top
Crystal data top
(C5H7N2)2[MnCl2(H2O)2]Cl2F(000) = 426
Mr = 421.01Dx = 1.572 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 3.946 (1) Åθ = 10–15°
b = 17.586 (6) ŵ = 1.35 mm1
c = 12.845 (4) ÅT = 298 K
β = 93.48 (3)°Prism, colourless
V = 889.7 (5) Å30.05 × 0.04 × 0.02 mm
Z = 2
Data collection top
Enraf–Nonius CAD-4
diffractometer
1473 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.017
Graphite monochromatorθmax = 27.0°, θmin = 2.3°
non–profiled ω/2θ scansh = 51
Absorption correction: ψ scan
(North et al., 1968)
k = 022
Tmin = 0.916, Tmax = 0.999l = 1616
2516 measured reflections2 standard reflections every 120 min
1892 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0506P)2 + 0.1303P]
where P = (Fo2 + 2Fc2)/3
1892 reflections(Δ/σ)max = 0.001
112 parametersΔρmax = 0.38 e Å3
43 restraintsΔρmin = 0.45 e Å3
Crystal data top
(C5H7N2)2[MnCl2(H2O)2]Cl2V = 889.7 (5) Å3
Mr = 421.01Z = 2
Monoclinic, P21/cMo Kα radiation
a = 3.946 (1) ŵ = 1.35 mm1
b = 17.586 (6) ÅT = 298 K
c = 12.845 (4) Å0.05 × 0.04 × 0.02 mm
β = 93.48 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1473 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.017
Tmin = 0.916, Tmax = 0.9992 standard reflections every 120 min
2516 measured reflections intensity decay: 1%
1892 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03643 restraints
wR(F2) = 0.095H-atom parameters constrained
S = 1.04Δρmax = 0.38 e Å3
1892 reflectionsΔρmin = 0.45 e Å3
112 parameters
Special details top

Experimental. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mn10.50000.50001.00000.03113 (15)
Cl10.05805 (18)0.09651 (5)0.82588 (5)0.0535 (2)
Cl20.01007 (15)0.40847 (3)0.95374 (5)0.03833 (17)
O10.4739 (4)0.54280 (11)0.84390 (13)0.0451 (5)
HW10.64260.56010.81100.068*
HW20.31860.55590.81600.068*
N10.2765 (11)0.2731 (2)0.7899 (3)0.0640 (10)0.72
H1A0.24110.22530.79840.077*0.72
H1B0.22640.30500.83740.077*0.72
N20.6831 (9)0.3534 (2)0.5246 (3)0.0569 (9)0.72
C10.4091 (13)0.2978 (3)0.7031 (3)0.0501 (6)0.72
C20.4949 (15)0.2487 (3)0.6239 (4)0.0501 (6)0.72
H20.46080.19660.62980.060*0.72
C30.6292 (14)0.2782 (3)0.5378 (4)0.0501 (6)0.72
H30.68690.24510.48530.060*0.72
C40.6020 (12)0.4012 (3)0.6012 (3)0.0501 (6)0.72
H40.64530.45280.59370.060*0.72
C50.4562 (16)0.3764 (4)0.6909 (5)0.0501 (6)0.72
H50.39200.41070.74120.060*0.72
N1'0.704 (3)0.4342 (5)0.5481 (7)0.060 (3)0.28
H1'10.76950.43430.48550.072*0.28
H1'20.69620.47610.58240.072*0.28
N2'0.400 (2)0.2381 (5)0.6940 (6)0.049 (2)0.28
C1'0.614 (3)0.3697 (5)0.5917 (8)0.0483 (15)0.28
C2'0.619 (4)0.3023 (5)0.5432 (10)0.0483 (15)0.28
H2'0.68930.29850.47560.058*0.28
C3'0.517 (4)0.2379 (6)0.5971 (8)0.0483 (15)0.28
H3'0.52990.19120.56350.058*0.28
C4'0.377 (3)0.3078 (5)0.7366 (9)0.0483 (15)0.28
H4'0.26830.31220.79860.058*0.28
C5'0.507 (4)0.3743 (10)0.6929 (12)0.0483 (15)0.28
H5'0.52070.41970.73010.058*0.28
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0294 (3)0.0381 (3)0.0263 (2)0.0004 (2)0.00499 (18)0.00265 (19)
Cl10.0426 (4)0.0783 (5)0.0402 (3)0.0008 (3)0.0075 (3)0.0189 (3)
Cl20.0326 (3)0.0375 (3)0.0455 (3)0.0002 (2)0.0071 (2)0.0063 (2)
O10.0335 (9)0.0706 (13)0.0317 (9)0.0022 (9)0.0050 (7)0.0172 (8)
N10.086 (3)0.061 (2)0.0471 (19)0.003 (2)0.0207 (19)0.0011 (17)
N20.051 (2)0.078 (3)0.0413 (19)0.0024 (19)0.0022 (16)0.0057 (18)
C10.0557 (14)0.0510 (11)0.0435 (11)0.0032 (12)0.0032 (10)0.0060 (10)
C20.0557 (14)0.0510 (11)0.0435 (11)0.0032 (12)0.0032 (10)0.0060 (10)
C30.0557 (14)0.0510 (11)0.0435 (11)0.0032 (12)0.0032 (10)0.0060 (10)
C40.0557 (14)0.0510 (11)0.0435 (11)0.0032 (12)0.0032 (10)0.0060 (10)
C50.0557 (14)0.0510 (11)0.0435 (11)0.0032 (12)0.0032 (10)0.0060 (10)
N1'0.094 (8)0.049 (5)0.038 (4)0.017 (5)0.002 (5)0.003 (4)
N2'0.052 (5)0.050 (5)0.045 (5)0.000 (4)0.005 (4)0.004 (4)
C1'0.052 (3)0.040 (3)0.052 (3)0.008 (2)0.002 (3)0.018 (3)
C2'0.052 (3)0.040 (3)0.052 (3)0.008 (2)0.002 (3)0.018 (3)
C3'0.052 (3)0.040 (3)0.052 (3)0.008 (2)0.002 (3)0.018 (3)
C4'0.052 (3)0.040 (3)0.052 (3)0.008 (2)0.002 (3)0.018 (3)
C5'0.052 (3)0.040 (3)0.052 (3)0.008 (2)0.002 (3)0.018 (3)
Geometric parameters (Å, º) top
Mn1—O1i2.1383 (17)C3—H30.9300
Mn1—O12.1383 (17)C4—C51.389 (7)
Mn1—Cl2ii2.6117 (8)C4—H40.9300
Mn1—Cl2iii2.6117 (8)C5—H50.9300
Mn1—Cl22.6173 (8)N1'—C1'1.323 (11)
Mn1—Cl2i2.6173 (8)N1'—H1'10.8600
Cl2—Mn1iv2.6117 (8)N1'—H1'20.8600
O1—HW10.8654N2'—C4'1.348 (10)
O1—HW20.7285N2'—C3'1.353 (10)
N1—C11.332 (5)C1'—C2'1.339 (11)
N1—H1A0.8600C1'—C5'1.393 (13)
N1—H1B0.8600C2'—C3'1.400 (12)
N2—C41.348 (5)C2'—H2'0.9300
N2—C31.351 (6)C3'—H3'0.9300
C1—C21.392 (6)C4'—C5'1.408 (13)
C1—C51.405 (8)C4'—H4'0.9300
C2—C31.359 (6)C5'—H5'0.9300
C2—H20.9300
O1i—Mn1—O1180.000 (1)N2—C3—C2123.2 (4)
O1i—Mn1—Cl2ii90.13 (6)N2—C3—H3118.4
O1—Mn1—Cl2ii89.87 (6)C2—C3—H3118.4
O1i—Mn1—Cl2iii89.87 (6)N2—C4—C5122.6 (5)
O1—Mn1—Cl2iii90.13 (6)N2—C4—H4118.7
Cl2ii—Mn1—Cl2iii180.0C5—C4—H4118.7
O1i—Mn1—Cl289.37 (6)C4—C5—C1117.8 (6)
O1—Mn1—Cl290.63 (6)C4—C5—H5121.1
Cl2ii—Mn1—Cl297.99 (3)C1—C5—H5121.1
Cl2iii—Mn1—Cl282.01 (3)C1'—N1'—H1'1120.0
O1i—Mn1—Cl2i90.63 (6)C1'—N1'—H1'2120.0
O1—Mn1—Cl2i89.37 (6)H1'1—N1'—H1'2120.0
Cl2ii—Mn1—Cl2i82.01 (3)C4'—N2'—C3'114.4 (10)
Cl2iii—Mn1—Cl2i97.99 (3)N1'—C1'—C2'123.4 (12)
Cl2—Mn1—Cl2i180.00 (2)N1'—C1'—C5'116.6 (10)
Mn1iv—Cl2—Mn197.99 (3)C2'—C1'—C5'120.0 (13)
Mn1—O1—HW1126.0C1'—C2'—C3'118.3 (12)
Mn1—O1—HW2124.3C1'—C2'—H2'120.9
HW1—O1—HW2107.3C3'—C2'—H2'120.9
C1—N1—H1A120.0N2'—C3'—C2'125.2 (10)
C1—N1—H1B120.0N2'—C3'—H3'117.4
H1A—N1—H1B120.0C2'—C3'—H3'117.4
C4—N2—C3118.2 (4)N2'—C4'—C5'123.9 (13)
N1—C1—C2122.3 (5)N2'—C4'—H4'118.0
N1—C1—C5118.4 (5)C5'—C4'—H4'118.0
C2—C1—C5119.3 (5)C1'—C5'—C4'117.5 (14)
C3—C2—C1118.8 (5)C1'—C5'—H5'121.3
C3—C2—H2120.6C4'—C5'—H5'121.3
C1—C2—H2120.6
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y, z; (iii) x, y+1, z+2; (iv) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—HW1···Cl1v0.872.273.090 (2)158
O1—HW2···Cl1vi0.732.393.082 (2)159
N1—H1A···Cl10.862.413.264 (4)172
N1—H1B···Cl20.862.573.415 (4)169
N1—H11···Cl1vii0.862.473.299 (10)163
N1—H12···Cl1v0.862.583.386 (9)156
Symmetry codes: (v) x+1, y+1/2, z+3/2; (vi) x, y+1/2, z+3/2; (vii) x+1, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula(C5H7N2)2[MnCl2(H2O)2]Cl2
Mr421.01
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)3.946 (1), 17.586 (6), 12.845 (4)
β (°) 93.48 (3)
V3)889.7 (5)
Z2
Radiation typeMo Kα
µ (mm1)1.35
Crystal size (mm)0.05 × 0.04 × 0.02
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.916, 0.999
No. of measured, independent and
observed [I > 2σ(I)] reflections
2516, 1892, 1473
Rint0.017
(sin θ/λ)max1)0.638
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.095, 1.04
No. of reflections1892
No. of parameters112
No. of restraints43
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.45

Computer programs: CAD-4 EXPRESS (Duisenberg, 1992; Macíček & Yordanov, 1992), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and DIAMOND (Brandenburg, 2006), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—HW1···Cl1i0.872.273.090 (2)158.4
O1—HW2···Cl1ii0.732.393.082 (2)159.3
N1—H1A···Cl10.862.413.264 (4)171.7
N1—H1B···Cl20.862.573.415 (4)169.3
N1'—H1'1···Cl1iii0.862.473.299 (10)163.4
N1'—H1'2···Cl1i0.862.583.386 (9)155.8
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x, y+1/2, z+3/2; (iii) x+1, y+1/2, z1/2.
 

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCalabrese, J., Jones, N. L., Harlow, R. L., Herron, N., Thorn, D. L. & Wang, Y. (1991). J. Am. Chem. Soc. 113, 2328–2330.  CSD CrossRef CAS Web of Science Google Scholar
First citationCaputo, R. E., Willett, R. D. & Muir, J. A. (1976). Acta Cryst. B32, 2639–2642.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationDuisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92–96.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHachuła, B., Pędras, M., Pentak, D., Nowak, M., Kusz, J. & Borek, J. (2009). Acta Cryst. C65, m215–m218.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationHong, X., Ishihara, T. & Nurmikko, A. V. (1992). Solid State Commun. 84, 657–661.  CrossRef CAS Web of Science Google Scholar
First citationLacroix, P. G., Clément, R., Nakatani, K., Delaire, J. A., Zyss, J. & Ledoux, I. (1994). Science, 263, 658–660.  CrossRef PubMed CAS Web of Science Google Scholar
First citationMacíček, J. & Yordanov, A. (1992). J. Appl. Cryst. 25, 73–80.  CrossRef Web of Science IUCr Journals Google Scholar
First citationMitzi, D. B. (2001). J. Chem. Soc. Dalton Trans. pp. 1–12.  Web of Science CrossRef Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZeng, J.-Z., Yi, X.-G., Lin, J.-Y., Ying, S.-M. & Huang, G.-S. (2008). Acta Cryst. E64, m476.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds