metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages m1004-m1005

Bis{μ-4,4′-dimeth­­oxy-2,2′-[propane-1,2-diylbis(nitrilo­methyl­­idyne)]diphenolato}bis­­({4,4′-dimeth­­oxy-2,2′-[propane-1,2-diylbis(nitrilo­methyl­­idyne)]diphenol}manganese(III)) bis­­(hexa­fluorido­phosphate)

aCatalysis Division, Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran, bDepartment of Chemistry, Yasouj University, Yasouj, 75914-353, Iran, and cDepartment of Chemistry, Faculty of Science, Okayama University, Tsushima-naka 3-1-1, Okayama 700-8530, Japan
*Correspondence e-mail: mhhabibi@yahoo.com

(Received 31 May 2009; accepted 20 July 2009; online 29 July 2009)

In the title complex, [Mn2(C19H20N2O4)2(C19H22N2O4)2](PF6)2, the MnIII ion is coordinated by two O [Mn—O = 1.855 (2) and 1.887 (2) Å] and two N [Mn—N = 1.982 (3) and 1.977 (3) Å] atoms from the tetra­dentate Schiff base ligand and a coordinated axial ligand [Mn—O = 2.129 (2) Å]. The centrosymmetric dimer contains two Jahn–Teller-distorted MnIII ions, each in a nearly octa­hedral geometry, connected through two phenolate bridges from two ligands. There are two stereogenic centers. The methyl group and the H atom attached to the middle propane C atom are disordered over two positions with occupancy factors in the ratio 0.58:0.42. The crystal is therefore a mixture of two diasteroisomers, viz. RS/SR and RR/SS. In the axial ligand, the two benzene rings form a dihedral angle of 56.97 (5)° and the dihedral angle between the two MnNC3O chelate rings is 2.98 (12)°

Related literature

For general background to Schiff bases, see: Vites & Lynam (1998[Vites, C. J. & Lynam, M. M. (1998). Coord. Chem. Rev. 172, 319-356.]); Pecoraro & Butler (1986[Pecoraro, V. L. & Butler, W. M. (1986). Acta Cryst. C42, 1151-1154.]); Antonyuk et al. (2000[Antonyuk, S. V., Melik-Adamayan, V. R., Popov, A. N., Lamzin, V. S., Hemsptead, P. D., Harrison, P. M., Artymyuk, P. J. & Barynin, V. V. (2000). Crystallogr. Rep. 45, 105-116.]); Barynin et al. (2001[Barynin, V. V., Whittaker, M. M., Antonyuk, S. V., Lamzin, V. S., Harrison, P. M., Artymyuk, P. J. & Whittaker, J. W. (2001). Structure, 9, 725-738.]); Meier et al. (1996[Meier, A. E., Whittaker, M. M. & Whittaker, J. W. (1996). Biochemistry, 35, 348-360.]); Stemmler et al. (1997[Stemmler, T. L., Sossong, T. M., Goldstein, J. I., Ash, D. E., Elgren, T. E., Krutz, D. M. & Penner Hahn, J. E. (1997). Biochemistry, 36, 9847-9858.]); Glatzel et al. (2004[Glatzel, P., Bergmann, U., Yano, J., Visser, H., Robblee, J. H., Gu, W., de Groot, F. M. F., Christou, G., Pecoraro, V. L., Cramer, S. P. & Yachandra, V. K. (2004). J. Am. Chem. Soc. 126, 9946-9959.]); Dixit & Srinivasan (1988[Dixit, P. S. & Srinivasan, K. (1988). Inorg. Chem. 27, 4507-4509.]); Lu et al. (2006[Lu, Z., Yuan, M., Pan, F., Gao, S., Zhang, D. & Zhu, D. (2006). Inorg. Chem. 45, 3538-3548.]); Stallings et al. (1985[Stallings, W. C., Pattridge, K. A., Strong, R. K. & Ludwig, M. L. (1985). J. Biol. Chem. 260, 16424-16432.]). For related structures, see: Habibi et al. (2007a[Habibi, M. H., Askari, E., Chantrapromma, S. & Fun, H.-K. (2007a). Acta Cryst. E63, m2905-m2906.],b[Habibi, M. H., Mokhtari, R., Harrington, R. W. & Clegg, W. (2007b). Acta Cryst. E63, m1998.],c[Habibi, M. H., Mokhtari, R., Harrington, R. W. & Clegg, W. (2007c). Acta Cryst. E63, m2304.]); Eltayeb et al. (2008a[Eltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Adnan, R. (2008a). Acta Cryst. E64, m535-m536.],b[Eltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Adnan, R. (2008b). Acta Cryst. E64, m570-m571.]); Mitra et al. (2006[Mitra, K., Biswas, S., Lucas, C. R. & Adhikary, B. (2006). Inorg. Chim. Acta, 359, 1997-2003.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn2(C19H20N2O4)2(C19H22N2O4)2](PF6)2

  • Mr = 1761.30

  • Monoclinic, P 21 /n

  • a = 13.2754 (5) Å

  • b = 22.658 (1) Å

  • c = 14.0774 (5) Å

  • β = 111.476 (1)°

  • V = 3940.4 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.46 mm−1

  • T = 200 K

  • 0.26 × 0.12 × 0.08 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: numerical (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.890, Tmax = 0.964

  • 60946 measured reflections

  • 8971 independent reflections

  • 5923 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.070

  • wR(F2) = 0.219

  • S = 1.08

  • 8971 reflections

  • 539 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.73 e Å−3

  • Δρmin = −0.62 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Schiff base ligands with nitrogen and oxygen donor atoms seem to stabilize the various oxidation states of manganese better than any other ligand systems, as it is evident from the sheer number of publications in this area (Vites & Lynam, 1998). The penta-coordinated [Mn(salen)Cl] (H2salen = N,N'-bis(salicylidene)-1,2-diaminoethane) was one of the earliest crystallographically characterized manganese(III) Schiff base complexes (Pecoraro & Butler, 1986).

Crystallographic studies on the active sites of a relatively rare class of manganese catalases found in bacteria-like Thermus thermophilus and Lactobacillus plantarum point to a dinuclear manganese core with an Mn···Mn separation of 3.13 Å (reduced state) and 3.03 Å (oxidized state) respectively (Antonyuk et al., 2000; Barynin et al., 2001). The Mn···Mn distances derived from the EPR and EXAFS data provide complementary structural parameters with the Mn···Mn distances being 3.4 Å and 3.54 Å, respectively (Meier et al., 1996; Stemmler et al., 1997).Here we report the crystal structure of a dimeric manganese complex with a Mn···Mn distance of 3.451 (2) Å, I (Figure 1).

Manganese complexes in various oxidation states and in various combinations of nitrogen and oxygen donor environment have been used as models for oxygen-evolving complex of photosystem II (Glatzel et al., 2004), catalysis (Dixit & Srinivasan, 1988), single-molecule magnet (Lu et al., 2006) and as active sites of manganese-containing metal enzymes (Stallings et al., 1985).

Recently, we reported the crystal structure MnIII, CuII and NiII with Schiff base ligands (Habibi et al., 2007a,b,c) and herein the crystal structure of the MnIII complex with N,N'-bis(5-methoxysalicylidene)-1,2-diimino-propane is reported. In (I), two manganese(III) ions, which are in slightly distorted octahedral environments, are linked by phenoxy bridges using the phenolic oxygen atoms of each ligand. The formation of the phenoxy bridges and the nearly planar nature of the tetradentate Schiff base ligand lead the hydroxy group of a free ligand to adopt a relatively rare unidentate bonding mode. There are two stereogenic centers C39 and C19. However, the methyl group and H atom attached to C19 are disordered over two positions with occupancy factors in the ratio 0.58/0.42. So, the crystal is a mixture of two diasteroisomers, RS/SR and RR/SS.

The Mn—O distances [Mn1—O1 = 1.887 (2) Å, Mn1—O2 = 1.855 (2) Å] and Mn—N distances [Mn1—N1 = 1.982 (3) Å, Mn1—N2 = 1.977 (3) Å] are in the same ranges as those observed in other related MnIII complexes of N2O2 Schiff base ligands (Eltayeb et al., 2008a,b; Mitra et al., 2006). An axial elongation, of the Mn–O Hydroxy bond [Mn1–O5 = 2.129 (2)Å], nearly orthogonal to the plane of the Schiff base, is indicative of the Jahn-Teller distortion anticipated of a high-spin manganese(III) ion in octahedral surroundings. This also causes a considerable weakening of the Mn–O bond along the phenoxy bridge [Mn1-O1' = 2.634 (2)Å], leading to an asymmetric Mn1–O–Mn1' bridge. Other bond lengths and angles observed in the structure are also normal (Allen et al., 1987).

Related literature top

For general background to Schiff bases, see: Vites & Lynam (1998); Pecoraro & Butler (1986); Antonyuk et al. (2000); Barynin et al. (2001); Meier et al. (1996); Stemmler et al. (1997); Glatzel et al. (2004); Dixit & Srinivasan (1988); Lu et al. (2006); Stallings et al. (1985). For related structures, see: Habibi et al. (2007a,b,c); Eltayeb et al. (2008a,b); Mitra et al. (2006). For bond-length data, see: Allen et al. (1987).

Experimental top

To a stirring solution of Mn(CH3COO)2.2H2O (0.0662 g, 0.5 mmol) in methanol (25 ml) was added an 1 mmol of (2-hydroxy5-methoxy banzenaldehyde and 1,2 diamino propane (0.342 g). The pinksolution turned dark brown immediately upon the formation of MnIIcomplex. 0.5 mmol of NH4PF6 was then added to the resulting dark brown solution and stirred for 5 minutes. A dark brown microcrystalline solid was produced by slow evaporation ofmethanol at room temperature. The product was then recrystallized from methanol-propanol (2:1 v/v) and dark brown crystals suitable for X-raycrystallography were obtained (m.p = 256 °c).

Refinement top

All H atoms were fixed geometrically and treated as riding on their parent C atoms with C—H = 0.93Å (aromatic), 0.96 Å (methyl), 0.97 Å (methylene) and 0.98\ %A (methine) and with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(methyl).

The disordered methyl C20A and C20B were treated using the tools (PART, EXYZ, EADP and DFIX) available in SHELXL-97 (Sheldrick, 2008)

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: SHELXS97 (Sheldrick, 2008); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXS97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and The hydrogen atoms are omitted for clarity. [Symmetry code: (') 1-x, 1-y, 1-z]
Bis{µ-4,4'-dimethoxy-2,2'-[propane-1,2- diylbis(nitrilomethylidyne)]diphenolato}bis({4,4'-dimethoxy-2,2'-[propane-1,2- diylbis(nitrilomethylidyne)]diphenol}manganese(III)) bis(hexafluoridophosphate) top
Crystal data top
[Mn2(C19H20N2O4)2(C19H22N2O4)2](PF6)2F(000) = 1816
Mr = 1761.30Dx = 1.484 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2ynCell parameters from 36538 reflections
a = 13.2754 (5) Åθ = 3.1–27.6°
b = 22.658 (1) ŵ = 0.46 mm1
c = 14.0774 (5) ÅT = 200 K
β = 111.476 (1)°Platelet, dark purple
V = 3940.4 (3) Å30.26 × 0.12 × 0.08 mm
Z = 2
Data collection top
Rigaku R-AXIS RAPID
diffractometer
8971 independent reflections
Radiation source: fine-focus sealed tube5923 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
Detector resolution: 10.00 pixels mm-1θmax = 27.5°, θmin = 3.1°
ω scansh = 1717
Absorption correction: numerical
(ABSCOR; Higashi, 1995)
k = 2929
Tmin = 0.890, Tmax = 0.964l = 1818
60946 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.070Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.219H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.1176P)2 + 2.1813P]
where P = (Fo2 + 2Fc2)/3
8971 reflections(Δ/σ)max = 0.002
539 parametersΔρmax = 0.73 e Å3
2 restraintsΔρmin = 0.62 e Å3
Crystal data top
[Mn2(C19H20N2O4)2(C19H22N2O4)2](PF6)2V = 3940.4 (3) Å3
Mr = 1761.30Z = 2
Monoclinic, P21/nMo Kα radiation
a = 13.2754 (5) ŵ = 0.46 mm1
b = 22.658 (1) ÅT = 200 K
c = 14.0774 (5) Å0.26 × 0.12 × 0.08 mm
β = 111.476 (1)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
8971 independent reflections
Absorption correction: numerical
(ABSCOR; Higashi, 1995)
5923 reflections with I > 2σ(I)
Tmin = 0.890, Tmax = 0.964Rint = 0.054
60946 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0702 restraints
wR(F2) = 0.219H-atom parameters constrained
S = 1.08Δρmax = 0.73 e Å3
8971 reflectionsΔρmin = 0.62 e Å3
539 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mn10.50832 (4)0.54235 (2)0.40128 (4)0.04105 (18)
P10.85574 (13)0.21346 (6)0.65195 (12)0.0802 (4)
O10.57882 (18)0.47151 (9)0.45950 (17)0.0408 (5)
O20.38872 (19)0.50383 (10)0.30998 (18)0.0464 (5)
O31.0178 (2)0.43197 (14)0.6173 (2)0.0669 (8)
O40.0250 (3)0.5749 (2)0.0818 (3)0.1104 (15)
O50.5854 (2)0.55631 (10)0.29423 (18)0.0468 (6)
O60.7419 (3)0.77319 (16)0.4936 (3)0.0909 (11)
O70.6231 (2)0.39559 (12)0.0143 (2)0.0601 (7)
O81.0484 (3)0.61541 (16)0.7263 (3)0.0824 (9)
N10.6205 (2)0.58638 (12)0.5116 (2)0.0468 (7)
N20.4319 (3)0.61889 (13)0.3818 (2)0.0510 (7)
N30.6265 (3)0.64129 (14)0.1882 (2)0.0545 (8)
N40.7710 (3)0.72855 (14)0.3342 (3)0.0590 (8)
C10.6873 (3)0.46627 (14)0.4941 (2)0.0397 (7)
C20.7313 (3)0.41140 (15)0.4848 (3)0.0456 (8)
H20.68570.38110.44950.055*
C30.8407 (3)0.40178 (17)0.5270 (3)0.0525 (9)
H30.86860.36490.52140.063*
C40.9108 (3)0.44740 (17)0.5788 (3)0.0516 (9)
C50.8698 (3)0.50179 (16)0.5868 (3)0.0466 (8)
H50.91630.53200.62110.056*
C60.7580 (3)0.51222 (14)0.5437 (3)0.0429 (7)
C70.7173 (3)0.56869 (16)0.5596 (3)0.0478 (8)
H70.76430.59390.60770.057*
C81.0930 (4)0.4760 (2)0.6710 (4)0.0789 (14)
H8A1.08380.51030.62860.118*
H8B1.16530.46110.68870.118*
H8C1.08090.48640.73210.118*
C90.5790 (4)0.64073 (18)0.5408 (4)0.0650 (11)
H9A0.63790.66800.57340.078*
H9B0.54330.63190.58810.078*
C110.2910 (3)0.52508 (17)0.2556 (3)0.0490 (8)
C120.2160 (3)0.48661 (19)0.1878 (3)0.0560 (9)
H120.23630.44800.18120.067*
C130.1140 (4)0.5050 (2)0.1317 (3)0.0707 (12)
H130.06560.47900.08660.085*
C140.0808 (4)0.5631 (3)0.1411 (3)0.0749 (13)
C150.1523 (4)0.6012 (2)0.2055 (3)0.0646 (11)
H150.13060.63950.21160.078*
C160.2595 (3)0.58344 (17)0.2636 (3)0.0502 (8)
C170.3304 (3)0.62637 (16)0.3275 (3)0.0524 (9)
H170.30110.66330.33040.063*
C180.0593 (6)0.6329 (4)0.0890 (6)0.163 (4)
H18A0.05110.64110.15840.244*
H18B0.13390.63720.04560.244*
H18C0.01610.66020.06790.244*
C19A0.4990 (4)0.66759 (18)0.4431 (4)0.0745 (13)0.58
H19A0.54350.68040.40470.089*0.58
C20A0.4552 (7)0.7222 (3)0.4682 (7)0.076 (2)0.58
H20A0.41610.74330.40650.114*0.58
H20B0.51360.74630.51130.114*0.58
H20C0.40740.71290.50330.114*0.58
C19B0.4990 (4)0.66759 (18)0.4431 (4)0.0745 (13)0.42
H19B0.45170.69480.46150.089*0.42
C20B0.5484 (11)0.6983 (5)0.3871 (11)0.090 (4)0.42
H20D0.60310.67400.37740.135*0.42
H20E0.58110.73350.42320.135*0.42
H20F0.49530.70870.32190.135*0.42
C210.5934 (3)0.51903 (15)0.2261 (3)0.0428 (7)
C220.5703 (3)0.45811 (15)0.2278 (3)0.0450 (8)
H220.54710.44370.27810.054*
C230.5816 (3)0.42025 (16)0.1573 (3)0.0475 (8)
H230.56590.38050.16090.057*
C240.6163 (3)0.43960 (16)0.0787 (3)0.0472 (8)
C250.6349 (3)0.49776 (16)0.0707 (3)0.0465 (8)
H250.65530.51120.01790.056*
C260.6232 (3)0.53851 (15)0.1434 (3)0.0435 (7)
C270.6347 (3)0.59874 (17)0.1272 (3)0.0506 (8)
H270.64900.60950.06960.061*
C280.6579 (4)0.4119 (2)0.0662 (3)0.0636 (11)
H28A0.60870.44040.10920.095*
H28B0.65940.37760.10570.095*
H28C0.72910.42870.03810.095*
C290.6360 (4)0.70408 (18)0.1668 (3)0.0617 (10)
H29A0.58510.72680.18680.074*
H29B0.61810.70960.09410.074*
C340.9724 (3)0.65620 (19)0.6738 (3)0.0612 (10)
C330.9172 (4)0.6930 (2)0.7160 (4)0.0745 (13)
H330.93140.69130.78580.089*
C320.8416 (4)0.7319 (2)0.6559 (4)0.0745 (13)
H320.80610.75680.68590.089*
C310.8165 (4)0.73497 (19)0.5504 (4)0.0643 (11)
C360.8711 (3)0.69699 (17)0.5065 (3)0.0550 (9)
C350.9476 (3)0.65829 (18)0.5691 (3)0.0575 (9)
H350.98340.63290.54010.069*
C370.8454 (3)0.69691 (17)0.3951 (3)0.0552 (9)
H370.88530.67270.36870.066*
C381.0812 (5)0.6140 (3)0.8338 (4)0.106 (2)
H38A1.11940.64980.86200.159*
H38B1.12800.58080.86010.159*
H38C1.01860.61070.85220.159*
C390.7505 (4)0.72634 (18)0.2248 (3)0.0604 (10)
H390.80240.69930.21300.073*
C400.7625 (5)0.7869 (2)0.1846 (4)0.0841 (15)
H40A0.71200.81360.19620.126*
H40B0.74800.78440.11280.126*
H40C0.83490.80100.21940.126*
F10.9469 (4)0.1776 (2)0.7337 (3)0.1372 (16)
F20.8327 (4)0.1668 (2)0.5674 (4)0.1596 (19)
F30.7669 (4)0.1813 (3)0.6821 (4)0.178 (2)
F40.8558 (4)0.2556 (2)0.7402 (4)0.1608 (19)
F50.7713 (7)0.2535 (3)0.5751 (5)0.258 (4)
F60.9398 (5)0.2407 (5)0.6197 (6)0.302 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0493 (3)0.0322 (3)0.0468 (3)0.0018 (2)0.0237 (2)0.0002 (2)
P10.0924 (10)0.0646 (8)0.0917 (9)0.0094 (7)0.0432 (8)0.0076 (7)
O10.0445 (12)0.0344 (11)0.0472 (13)0.0001 (9)0.0212 (10)0.0005 (9)
O20.0505 (13)0.0401 (12)0.0496 (13)0.0060 (10)0.0195 (11)0.0004 (10)
O30.0451 (15)0.0668 (18)0.086 (2)0.0062 (13)0.0207 (14)0.0128 (15)
O40.077 (2)0.131 (4)0.088 (3)0.042 (2)0.010 (2)0.019 (2)
O50.0595 (15)0.0395 (12)0.0494 (13)0.0020 (11)0.0296 (12)0.0001 (10)
O60.109 (3)0.082 (2)0.093 (2)0.038 (2)0.051 (2)0.0036 (19)
O70.088 (2)0.0548 (15)0.0507 (14)0.0082 (14)0.0407 (15)0.0001 (12)
O80.083 (2)0.084 (2)0.068 (2)0.0030 (18)0.0132 (17)0.0008 (17)
N10.0568 (18)0.0338 (14)0.0583 (17)0.0003 (12)0.0310 (15)0.0043 (12)
N20.0587 (19)0.0377 (15)0.0635 (19)0.0077 (13)0.0304 (16)0.0021 (13)
N30.065 (2)0.0424 (16)0.0576 (18)0.0042 (14)0.0240 (16)0.0071 (14)
N40.074 (2)0.0440 (17)0.064 (2)0.0029 (16)0.0315 (18)0.0003 (15)
C10.0484 (18)0.0372 (16)0.0415 (16)0.0018 (13)0.0258 (15)0.0017 (13)
C20.0504 (19)0.0400 (17)0.053 (2)0.0009 (14)0.0270 (16)0.0060 (15)
C30.054 (2)0.0464 (19)0.067 (2)0.0077 (16)0.0339 (19)0.0029 (17)
C40.047 (2)0.056 (2)0.057 (2)0.0067 (16)0.0261 (17)0.0010 (17)
C50.0486 (19)0.0462 (19)0.0499 (19)0.0033 (15)0.0238 (16)0.0045 (15)
C60.0528 (19)0.0375 (17)0.0455 (18)0.0018 (14)0.0264 (16)0.0021 (14)
C70.053 (2)0.0433 (18)0.055 (2)0.0058 (15)0.0287 (18)0.0083 (15)
C80.047 (2)0.083 (3)0.093 (4)0.002 (2)0.011 (2)0.012 (3)
C90.067 (3)0.044 (2)0.083 (3)0.0001 (18)0.027 (2)0.022 (2)
C110.059 (2)0.055 (2)0.0385 (17)0.0032 (17)0.0247 (17)0.0058 (15)
C120.059 (2)0.060 (2)0.047 (2)0.0063 (19)0.0172 (18)0.0039 (18)
C130.063 (3)0.088 (3)0.052 (2)0.006 (2)0.010 (2)0.003 (2)
C140.067 (3)0.095 (4)0.056 (2)0.027 (3)0.015 (2)0.003 (2)
C150.073 (3)0.070 (3)0.052 (2)0.022 (2)0.025 (2)0.003 (2)
C160.057 (2)0.057 (2)0.0433 (18)0.0152 (17)0.0255 (17)0.0108 (16)
C170.065 (2)0.0437 (19)0.058 (2)0.0135 (17)0.034 (2)0.0094 (16)
C180.107 (5)0.191 (9)0.136 (6)0.091 (6)0.021 (5)0.040 (6)
C19A0.081 (3)0.037 (2)0.106 (4)0.005 (2)0.035 (3)0.009 (2)
C20A0.081 (5)0.053 (4)0.098 (6)0.006 (4)0.037 (5)0.002 (4)
C19B0.081 (3)0.037 (2)0.106 (4)0.005 (2)0.035 (3)0.009 (2)
C20B0.094 (9)0.061 (7)0.125 (11)0.019 (6)0.052 (8)0.001 (7)
C210.0442 (18)0.0442 (17)0.0430 (17)0.0023 (14)0.0195 (15)0.0028 (14)
C220.057 (2)0.0415 (17)0.0453 (18)0.0022 (15)0.0291 (16)0.0055 (14)
C230.057 (2)0.0398 (17)0.051 (2)0.0016 (15)0.0254 (17)0.0035 (15)
C240.055 (2)0.0486 (19)0.0417 (18)0.0067 (16)0.0215 (16)0.0014 (15)
C250.0498 (19)0.055 (2)0.0407 (17)0.0016 (16)0.0242 (15)0.0088 (15)
C260.0457 (18)0.0458 (18)0.0423 (17)0.0020 (14)0.0200 (15)0.0069 (14)
C270.056 (2)0.053 (2)0.0464 (19)0.0053 (17)0.0232 (17)0.0060 (16)
C280.079 (3)0.077 (3)0.045 (2)0.015 (2)0.035 (2)0.0054 (19)
C290.073 (3)0.051 (2)0.064 (2)0.0044 (19)0.028 (2)0.0111 (19)
C340.061 (2)0.057 (2)0.068 (3)0.0103 (19)0.026 (2)0.005 (2)
C330.086 (3)0.082 (3)0.064 (3)0.017 (3)0.037 (3)0.013 (2)
C320.093 (3)0.070 (3)0.076 (3)0.003 (3)0.048 (3)0.017 (2)
C310.073 (3)0.058 (2)0.072 (3)0.004 (2)0.039 (2)0.008 (2)
C360.063 (2)0.049 (2)0.064 (2)0.0063 (17)0.037 (2)0.0069 (17)
C350.059 (2)0.055 (2)0.065 (2)0.0040 (18)0.030 (2)0.0049 (19)
C370.064 (2)0.046 (2)0.068 (2)0.0074 (18)0.039 (2)0.0068 (18)
C380.111 (5)0.102 (5)0.078 (4)0.008 (4)0.004 (3)0.000 (3)
C390.072 (3)0.049 (2)0.067 (2)0.0086 (19)0.034 (2)0.0060 (18)
C400.095 (4)0.065 (3)0.091 (4)0.017 (3)0.033 (3)0.008 (3)
F10.133 (3)0.162 (4)0.120 (3)0.068 (3)0.049 (3)0.009 (3)
F20.187 (4)0.158 (4)0.158 (4)0.032 (3)0.092 (4)0.082 (3)
F30.160 (4)0.246 (6)0.175 (4)0.074 (4)0.117 (4)0.061 (4)
F40.178 (4)0.121 (3)0.187 (4)0.030 (3)0.072 (4)0.050 (3)
F50.340 (10)0.207 (7)0.176 (5)0.159 (7)0.034 (6)0.034 (5)
F60.155 (5)0.434 (13)0.298 (9)0.117 (7)0.060 (5)0.169 (9)
Geometric parameters (Å, º) top
Mn1—O21.855 (2)C13—H130.9300
Mn1—O11.887 (2)C14—C151.355 (7)
Mn1—N21.977 (3)C15—C161.416 (6)
Mn1—N11.983 (3)C15—H150.9300
Mn1—O52.133 (2)C16—C171.421 (6)
Mn1—O1i2.634 (2)C17—H170.9300
P1—F61.484 (5)C18—H18A0.9600
P1—F21.536 (4)C18—H18B0.9600
P1—F51.537 (6)C18—H18C0.9600
P1—F11.559 (4)C19A—C20A1.464 (8)
P1—F41.566 (4)C19A—H19A0.9800
P1—F31.572 (5)C20A—H20A0.9600
O1—C11.346 (4)C20A—H20B0.9600
O2—C111.332 (4)C20A—H20C0.9600
O3—C41.368 (4)C20B—H20D0.9600
O3—C81.418 (6)C20B—H20E0.9600
O4—C141.372 (6)C20B—H20F0.9600
O4—C181.407 (8)C21—C221.416 (5)
O5—C211.311 (4)C21—C261.430 (5)
O6—C311.338 (6)C22—C231.360 (5)
O7—C241.373 (4)C22—H220.9300
O7—C281.421 (4)C23—C241.415 (5)
O8—C341.369 (5)C23—H230.9300
O8—C381.413 (7)C24—C251.353 (5)
N1—C71.278 (5)C25—C261.429 (5)
N1—C91.468 (5)C25—H250.9300
N2—C171.294 (5)C26—C271.401 (5)
N2—C19A1.481 (6)C27—H270.9300
N3—C271.322 (5)C28—H28A0.9600
N3—C291.469 (5)C28—H28B0.9600
N4—C371.266 (5)C28—H28C0.9600
N4—C391.463 (5)C29—C391.524 (6)
C1—C21.400 (4)C29—H29A0.9700
C1—C61.405 (5)C29—H29B0.9700
C2—C31.371 (5)C34—C331.379 (6)
C2—H20.9300C34—C351.388 (6)
C3—C41.403 (5)C33—C321.371 (7)
C3—H30.9300C33—H330.9300
C4—C51.369 (5)C32—C311.400 (6)
C5—C61.402 (5)C32—H320.9300
C5—H50.9300C31—C361.405 (5)
C6—C71.438 (5)C36—C351.386 (6)
C7—H70.9300C36—C371.479 (5)
C8—H8A0.9600C35—H350.9300
C8—H8B0.9600C37—H370.9300
C8—H8C0.9600C38—H38A0.9600
C9—C19A1.523 (7)C38—H38B0.9600
C9—H9A0.9700C38—H38C0.9600
C9—H9B0.9700C39—C401.514 (6)
C11—C121.402 (6)C39—H390.9800
C11—C161.404 (5)C40—H40A0.9600
C12—C131.360 (6)C40—H40B0.9600
C12—H120.9300C40—H40C0.9600
C13—C141.409 (7)
O2—Mn1—O193.63 (10)C11—C16—C15119.1 (4)
O2—Mn1—N292.93 (12)C11—C16—C17123.2 (3)
O1—Mn1—N2162.53 (11)C15—C16—C17117.7 (4)
O2—Mn1—N1170.57 (11)N2—C17—C16126.1 (3)
O1—Mn1—N188.68 (11)N2—C17—H17117.0
N2—Mn1—N182.38 (13)C16—C17—H17117.0
O2—Mn1—O595.20 (10)O4—C18—H18A109.5
O1—Mn1—O598.23 (9)O4—C18—H18B109.5
N2—Mn1—O597.28 (11)H18A—C18—H18B109.5
N1—Mn1—O593.51 (11)O4—C18—H18C109.5
O1—Mn1—O1i81.87 (9)H18A—C18—H18C109.5
O1i—Mn1—O287.81 (9)H18B—C18—H18C109.5
O1i—Mn1—O5176.98 (9)C20A—C19A—N2124.3 (5)
O1i—Mn1—N183.44 (10)C20A—C19A—C9109.1 (5)
O1i—Mn1—N282.24 (11)N2—C19A—C9107.5 (3)
F6—P1—F290.5 (5)C20A—C19A—H19A104.8
F6—P1—F588.6 (5)N2—C19A—H19A104.8
F2—P1—F588.5 (4)C9—C19A—H19A104.8
F6—P1—F188.6 (4)H20D—C20B—H20E109.5
F2—P1—F195.4 (3)H20D—C20B—H20F109.5
F5—P1—F1175.2 (4)H20E—C20B—H20F109.5
F6—P1—F4101.9 (5)O5—C21—C22122.7 (3)
F2—P1—F4167.3 (3)O5—C21—C26121.1 (3)
F5—P1—F489.2 (3)C22—C21—C26116.1 (3)
F1—P1—F487.6 (3)C23—C22—C21121.4 (3)
F6—P1—F3176.6 (5)C23—C22—H22119.3
F2—P1—F386.2 (3)C21—C22—H22119.3
F5—P1—F392.2 (5)C22—C23—C24121.9 (3)
F1—P1—F390.8 (3)C22—C23—H23119.0
F4—P1—F381.4 (3)C24—C23—H23119.0
C1—O1—Mn1121.79 (19)C25—C24—O7126.5 (3)
C11—O2—Mn1129.4 (2)C25—C24—C23119.3 (3)
C4—O3—C8117.3 (3)O7—C24—C23114.2 (3)
C14—O4—C18115.1 (5)C24—C25—C26119.9 (3)
C21—O5—Mn1127.5 (2)C24—C25—H25120.1
C24—O7—C28117.2 (3)C26—C25—H25120.1
C34—O8—C38118.0 (4)C27—C26—C25117.8 (3)
C7—N1—C9121.5 (3)C27—C26—C21120.8 (3)
C7—N1—Mn1125.3 (2)C25—C26—C21121.3 (3)
C9—N1—Mn1113.0 (2)N3—C27—C26124.4 (3)
C17—N2—C19A121.4 (3)N3—C27—H27117.8
C17—N2—Mn1124.6 (3)C26—C27—H27117.8
C19A—N2—Mn1113.8 (3)O7—C28—H28A109.5
C27—N3—C29122.7 (3)O7—C28—H28B109.5
C37—N4—C39119.4 (4)H28A—C28—H28B109.5
O1—C1—C2118.2 (3)O7—C28—H28C109.5
O1—C1—C6123.1 (3)H28A—C28—H28C109.5
C2—C1—C6118.7 (3)H28B—C28—H28C109.5
C3—C2—C1120.8 (3)N3—C29—C39110.8 (3)
C3—C2—H2119.6N3—C29—H29A109.5
C1—C2—H2119.6C39—C29—H29A109.5
C2—C3—C4120.3 (3)N3—C29—H29B109.5
C2—C3—H3119.9C39—C29—H29B109.5
C4—C3—H3119.9H29A—C29—H29B108.1
O3—C4—C5125.7 (4)O8—C34—C33125.3 (4)
O3—C4—C3114.4 (3)O8—C34—C35115.9 (4)
C5—C4—C3119.9 (3)C33—C34—C35118.7 (4)
C4—C5—C6120.4 (3)C32—C33—C34120.5 (4)
C4—C5—H5119.8C32—C33—H33119.8
C6—C5—H5119.8C34—C33—H33119.8
C5—C6—C1119.9 (3)C33—C32—C31121.5 (4)
C5—C6—C7118.8 (3)C33—C32—H32119.2
C1—C6—C7121.1 (3)C31—C32—H32119.2
N1—C7—C6124.0 (3)O6—C31—C32120.2 (4)
N1—C7—H7118.0O6—C31—C36121.5 (4)
C6—C7—H7118.0C32—C31—C36118.4 (4)
O3—C8—H8A109.5C35—C36—C31118.9 (4)
O3—C8—H8B109.5C35—C36—C37120.3 (3)
H8A—C8—H8B109.5C31—C36—C37120.7 (4)
O3—C8—H8C109.5C36—C35—C34122.0 (4)
H8A—C8—H8C109.5C36—C35—H35119.0
H8B—C8—H8C109.5C34—C35—H35119.0
N1—C9—C19A106.9 (3)N4—C37—C36122.5 (4)
N1—C9—H9A110.3N4—C37—H37118.7
C19A—C9—H9A110.3C36—C37—H37118.7
N1—C9—H9B110.3O8—C38—H38A109.5
C19A—C9—H9B110.3O8—C38—H38B109.5
H9A—C9—H9B108.6H38A—C38—H38B109.5
O2—C11—C12117.8 (3)O8—C38—H38C109.5
O2—C11—C16123.4 (3)H38A—C38—H38C109.5
C12—C11—C16118.8 (4)H38B—C38—H38C109.5
C13—C12—C11120.8 (4)N4—C39—C40110.9 (4)
C13—C12—H12119.6N4—C39—C29109.8 (3)
C11—C12—H12119.6C40—C39—C29108.7 (4)
C12—C13—C14120.7 (4)N4—C39—H39109.1
C12—C13—H13119.6C40—C39—H39109.1
C14—C13—H13119.6C29—C39—H39109.1
C15—C14—O4126.3 (5)C39—C40—H40A109.5
C15—C14—C13119.4 (4)C39—C40—H40B109.5
O4—C14—C13114.3 (5)H40A—C40—H40B109.5
C14—C15—C16121.1 (4)C39—C40—H40C109.5
C14—C15—H15119.5H40A—C40—H40C109.5
C16—C15—H15119.5H40B—C40—H40C109.5
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Mn2(C19H20N2O4)2(C19H22N2O4)2](PF6)2
Mr1761.30
Crystal system, space groupMonoclinic, P21/n
Temperature (K)200
a, b, c (Å)13.2754 (5), 22.658 (1), 14.0774 (5)
β (°) 111.476 (1)
V3)3940.4 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.46
Crystal size (mm)0.26 × 0.12 × 0.08
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionNumerical
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.890, 0.964
No. of measured, independent and
observed [I > 2σ(I)] reflections
60946, 8971, 5923
Rint0.054
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.070, 0.219, 1.08
No. of reflections8971
No. of parameters539
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.73, 0.62

Computer programs: PROCESS-AUTO (Rigaku, 1998), SHELXS97 (Sheldrick, 2008), CrystalStructure (Rigaku/MSC, 2004), SIR2004 (Burla et al., 2005), ORTEP-3 for Windows (Farrugia, 1997).

 

Acknowledgements

We thank the University of Isfahan and Yasouj University for partial support of this work.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAntonyuk, S. V., Melik-Adamayan, V. R., Popov, A. N., Lamzin, V. S., Hemsptead, P. D., Harrison, P. M., Artymyuk, P. J. & Barynin, V. V. (2000). Crystallogr. Rep. 45, 105–116.  Web of Science CrossRef Google Scholar
First citationBarynin, V. V., Whittaker, M. M., Antonyuk, S. V., Lamzin, V. S., Harrison, P. M., Artymyuk, P. J. & Whittaker, J. W. (2001). Structure, 9, 725–738.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDixit, P. S. & Srinivasan, K. (1988). Inorg. Chem. 27, 4507–4509.  CrossRef CAS Web of Science Google Scholar
First citationEltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Adnan, R. (2008a). Acta Cryst. E64, m535–m536.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Adnan, R. (2008b). Acta Cryst. E64, m570–m571.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGlatzel, P., Bergmann, U., Yano, J., Visser, H., Robblee, J. H., Gu, W., de Groot, F. M. F., Christou, G., Pecoraro, V. L., Cramer, S. P. & Yachandra, V. K. (2004). J. Am. Chem. Soc. 126, 9946–9959.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHabibi, M. H., Askari, E., Chantrapromma, S. & Fun, H.-K. (2007a). Acta Cryst. E63, m2905–m2906.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHabibi, M. H., Mokhtari, R., Harrington, R. W. & Clegg, W. (2007b). Acta Cryst. E63, m1998.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHabibi, M. H., Mokhtari, R., Harrington, R. W. & Clegg, W. (2007c). Acta Cryst. E63, m2304.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLu, Z., Yuan, M., Pan, F., Gao, S., Zhang, D. & Zhu, D. (2006). Inorg. Chem. 45, 3538–3548.  Web of Science CSD CrossRef PubMed Google Scholar
First citationMeier, A. E., Whittaker, M. M. & Whittaker, J. W. (1996). Biochemistry, 35, 348–360.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMitra, K., Biswas, S., Lucas, C. R. & Adhikary, B. (2006). Inorg. Chim. Acta, 359, 1997–2003.  Web of Science CrossRef CAS Google Scholar
First citationPecoraro, V. L. & Butler, W. M. (1986). Acta Cryst. C42, 1151–1154.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStallings, W. C., Pattridge, K. A., Strong, R. K. & Ludwig, M. L. (1985). J. Biol. Chem. 260, 16424–16432.  CAS PubMed Web of Science Google Scholar
First citationStemmler, T. L., Sossong, T. M., Goldstein, J. I., Ash, D. E., Elgren, T. E., Krutz, D. M. & Penner Hahn, J. E. (1997). Biochemistry, 36, 9847–9858.  CrossRef CAS PubMed Web of Science Google Scholar
First citationVites, C. J. & Lynam, M. M. (1998). Coord. Chem. Rev. 172, 319–356.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages m1004-m1005
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds