organic compounds
2,2′-[1,1′-(Decane-1,10-diyldioxydinitrilo)diethylidyne]diphenol
aSchool of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, People's Republic of China
*Correspondence e-mail: dongwk@mail.lzjtu.cn
The salen-type bis-oxime title compound, C26H36N2O4, lies about a crystallographic inversion centre. Classical intramolecular O—H⋯N hydrogen bonds generate two S(6) ring motifs. In the pairs of weak intermolecular C—H⋯O hydrogen bonds link adjacent molecules into an infinite one-dimensional supramolecular structure.
Related literature
For the strong coordination capability and diverse biological activity of et al. (2003); Koizumi et al. (2005); Oshiob et al. (2005). For the use of Schiff base derivatives to develop protein and enzyme mimics, see: Santos et al. (2001). For our studies of synthesis and structure of salen-type bisoxime compounds obtained by Schiff base reactions, see: Dong et al. (2008a,b, 2009). For hydrogen bonds, see: Desiraju (1996).
see: BoskovicExperimental
Crystal data
|
Refinement
|
Data collection: SMART (Siemens, 1996); cell SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536809029341/ds2001sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809029341/ds2001Isup2.hkl
2,2'-[1,1'-(Decane-1,10-diyldioxydinitrilo)diethylidyne]diphenol was synthesized according to the literature (Dong, et al., 2009). To an absolute ethanol solution (4 ml) of 2'-hydroxyacetophenone (375.8 mg, 2.76 mmol) was added an absolute ethanol solution (4 ml) of 1, 10-bis(aminooxy)decane (180.9 mg, 1.38 mmol). The mixture solution was stirred at 328–333 K for 48 h. When cool to room temperature (298 K), white precipitate was formed which was filtered and washed successively with absolute ethanol (2 ml) and n-hexane (8 ml), respectively. The product was dried under vacuum and purified by recrystallization from ethanol to yield 331.9 mg of the title compound. Yield, 52.75%. m. p. 343–344 K. Anal. Calcd. for C26H36N2O4: C, 70.88; H, 8.24; N, 6.36. Found: C, 70.59; H, 8.23; N, 6.57.
Colorless block-like single crystals suitable for X-ray diffraction studies were obtained after several days by slow evaporation from a diethyl ether solution of the title compound.
Non-H atoms were refined anisotropically. H atoms were treated as riding atoms with distances C—H = 0.96 Å (CH3), 0.97 Å (CH2), 0.93 Å (CH), 0.82 Å (OH), andUiso(H) = 1.20 Ueq(C) for methylene and methylidyne, 1.50 Ueq(C) for methyl, 1.50 Ueq(O). The crystal quality was not good enough to provide data completeness to 1.0, which is also reflected in the weighted R.
Data collection: SMART (Siemens, 1996); cell
SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C26H36N2O4 | F(000) = 952 |
Mr = 440.57 | Dx = 1.181 Mg m−3 |
Monoclinic, C2/c | Melting point = 343–344 K |
Hall symbol: -C 2yc | Mo Kα radiation, λ = 0.71073 Å |
a = 13.0031 (16) Å | Cell parameters from 1361 reflections |
b = 4.6922 (6) Å | θ = 2.5–26.9° |
c = 40.654 (3) Å | µ = 0.08 mm−1 |
β = 93.109 (2)° | T = 298 K |
V = 2476.8 (5) Å3 | Block-like, colorless |
Z = 4 | 0.50 × 0.48 × 0.23 mm |
Siemens SMART 1000 CCD area-detector diffractometer | 2124 independent reflections |
Radiation source: fine-focus sealed tube | 1209 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.076 |
ϕ and ω scans | θmax = 25.0°, θmin = 2.0° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −15→15 |
Tmin = 0.962, Tmax = 0.982 | k = −5→5 |
5830 measured reflections | l = −44→48 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.052 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.260 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.1008P)2 + 5.3906P] where P = (Fo2 + 2Fc2)/3 |
2124 reflections | (Δ/σ)max < 0.001 |
145 parameters | Δρmax = 0.21 e Å−3 |
0 restraints | Δρmin = −0.23 e Å−3 |
C26H36N2O4 | V = 2476.8 (5) Å3 |
Mr = 440.57 | Z = 4 |
Monoclinic, C2/c | Mo Kα radiation |
a = 13.0031 (16) Å | µ = 0.08 mm−1 |
b = 4.6922 (6) Å | T = 298 K |
c = 40.654 (3) Å | 0.50 × 0.48 × 0.23 mm |
β = 93.109 (2)° |
Siemens SMART 1000 CCD area-detector diffractometer | 2124 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 1209 reflections with I > 2σ(I) |
Tmin = 0.962, Tmax = 0.982 | Rint = 0.076 |
5830 measured reflections |
R[F2 > 2σ(F2)] = 0.052 | 0 restraints |
wR(F2) = 0.260 | H-atom parameters constrained |
S = 1.03 | Δρmax = 0.21 e Å−3 |
2124 reflections | Δρmin = −0.23 e Å−3 |
145 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.6948 (2) | 0.6651 (8) | 0.60162 (7) | 0.0693 (9) | |
O2 | 0.5126 (2) | 0.3324 (9) | 0.66379 (8) | 0.0803 (11) | |
H2 | 0.5375 | 0.4228 | 0.6489 | 0.120* | |
N1 | 0.6559 (2) | 0.5081 (8) | 0.62776 (8) | 0.0544 (9) | |
C1 | 0.6125 (3) | 0.8304 (11) | 0.58630 (10) | 0.0620 (12) | |
H1A | 0.6413 | 0.9723 | 0.5721 | 0.074* | |
H1B | 0.5769 | 0.9302 | 0.6032 | 0.074* | |
C2 | 0.5353 (3) | 0.6509 (11) | 0.56611 (10) | 0.0573 (11) | |
H2A | 0.5718 | 0.5358 | 0.5507 | 0.069* | |
H2B | 0.5010 | 0.5226 | 0.5807 | 0.069* | |
C3 | 0.4551 (3) | 0.8281 (11) | 0.54718 (10) | 0.0584 (11) | |
H3A | 0.4895 | 0.9470 | 0.5316 | 0.070* | |
H3B | 0.4227 | 0.9536 | 0.5625 | 0.070* | |
C4 | 0.3718 (3) | 0.6584 (11) | 0.52849 (10) | 0.0596 (11) | |
H4A | 0.3377 | 0.5384 | 0.5440 | 0.071* | |
H4B | 0.4040 | 0.5342 | 0.5130 | 0.071* | |
C5 | 0.2911 (3) | 0.8377 (11) | 0.50978 (10) | 0.0639 (12) | |
H5A | 0.3253 | 0.9613 | 0.4947 | 0.077* | |
H5B | 0.2574 | 0.9581 | 0.5253 | 0.077* | |
C6 | 0.8336 (3) | 0.3275 (14) | 0.63241 (13) | 0.0859 (17) | |
H6A | 0.8384 | 0.1795 | 0.6163 | 0.129* | |
H6B | 0.8786 | 0.2842 | 0.6513 | 0.129* | |
H6C | 0.8535 | 0.5060 | 0.6231 | 0.129* | |
C7 | 0.7246 (3) | 0.3474 (10) | 0.64272 (9) | 0.0508 (10) | |
C8 | 0.6903 (3) | 0.1753 (10) | 0.67002 (9) | 0.0510 (10) | |
C9 | 0.5870 (3) | 0.1717 (11) | 0.67948 (11) | 0.0626 (12) | |
C10 | 0.5576 (4) | 0.0034 (13) | 0.70503 (12) | 0.0759 (14) | |
H10 | 0.4895 | 0.0057 | 0.7109 | 0.091* | |
C11 | 0.6286 (4) | −0.1700 (13) | 0.72215 (12) | 0.0785 (15) | |
H11 | 0.6078 | −0.2850 | 0.7392 | 0.094* | |
C12 | 0.7295 (4) | −0.1711 (12) | 0.71384 (12) | 0.0778 (15) | |
H12 | 0.7773 | −0.2859 | 0.7254 | 0.093* | |
C13 | 0.7603 (3) | −0.0015 (11) | 0.68828 (10) | 0.0639 (12) | |
H13 | 0.8290 | −0.0041 | 0.6830 | 0.077* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0520 (16) | 0.081 (2) | 0.0734 (19) | −0.0094 (18) | −0.0129 (14) | 0.0220 (19) |
O2 | 0.0520 (17) | 0.085 (2) | 0.104 (2) | 0.0082 (19) | 0.0014 (16) | 0.027 (2) |
N1 | 0.0458 (17) | 0.058 (2) | 0.0580 (19) | −0.0004 (19) | −0.0087 (15) | 0.0059 (19) |
C1 | 0.057 (2) | 0.064 (3) | 0.064 (2) | −0.010 (3) | −0.016 (2) | 0.019 (2) |
C2 | 0.051 (2) | 0.061 (3) | 0.058 (2) | 0.004 (2) | −0.0098 (18) | 0.009 (2) |
C3 | 0.055 (2) | 0.060 (3) | 0.060 (2) | −0.003 (2) | −0.0069 (19) | 0.017 (2) |
C4 | 0.053 (2) | 0.062 (3) | 0.063 (2) | −0.001 (3) | −0.0090 (19) | 0.012 (2) |
C5 | 0.054 (2) | 0.071 (3) | 0.066 (3) | 0.003 (3) | −0.011 (2) | 0.016 (3) |
C6 | 0.056 (3) | 0.100 (4) | 0.102 (4) | 0.008 (3) | 0.001 (3) | 0.029 (4) |
C7 | 0.045 (2) | 0.050 (2) | 0.056 (2) | 0.002 (2) | −0.0076 (18) | −0.007 (2) |
C8 | 0.051 (2) | 0.046 (2) | 0.055 (2) | 0.012 (2) | −0.0067 (18) | −0.007 (2) |
C9 | 0.062 (3) | 0.056 (3) | 0.069 (3) | 0.005 (3) | 0.000 (2) | −0.002 (3) |
C10 | 0.074 (3) | 0.075 (3) | 0.079 (3) | 0.003 (3) | 0.010 (3) | 0.003 (3) |
C11 | 0.102 (4) | 0.066 (3) | 0.067 (3) | −0.003 (4) | 0.008 (3) | 0.006 (3) |
C12 | 0.101 (4) | 0.065 (3) | 0.066 (3) | 0.024 (3) | −0.010 (3) | −0.002 (3) |
C13 | 0.066 (3) | 0.062 (3) | 0.062 (3) | 0.013 (3) | −0.007 (2) | −0.005 (3) |
O1—N1 | 1.409 (4) | C5—H5A | 0.9700 |
O1—C1 | 1.436 (5) | C5—H5B | 0.9700 |
O2—C9 | 1.359 (5) | C6—C7 | 1.502 (6) |
O2—H2 | 0.8200 | C6—H6A | 0.9600 |
N1—C7 | 1.296 (5) | C6—H6B | 0.9600 |
C1—C2 | 1.517 (6) | C6—H6C | 0.9600 |
C1—H1A | 0.9700 | C7—C8 | 1.462 (6) |
C1—H1B | 0.9700 | C8—C13 | 1.413 (5) |
C2—C3 | 1.511 (5) | C8—C9 | 1.417 (6) |
C2—H2A | 0.9700 | C9—C10 | 1.376 (7) |
C2—H2B | 0.9700 | C10—C11 | 1.389 (7) |
C3—C4 | 1.515 (6) | C10—H10 | 0.9300 |
C3—H3A | 0.9700 | C11—C12 | 1.373 (7) |
C3—H3B | 0.9700 | C11—H11 | 0.9300 |
C4—C5 | 1.516 (5) | C12—C13 | 1.385 (7) |
C4—H4A | 0.9700 | C12—H12 | 0.9300 |
C4—H4B | 0.9700 | C13—H13 | 0.9300 |
C5—C5i | 1.537 (8) | ||
N1—O1—C1 | 108.7 (3) | C4—C5—H5B | 108.8 |
C9—O2—H2 | 109.5 | C5i—C5—H5B | 108.8 |
C7—N1—O1 | 113.1 (3) | H5A—C5—H5B | 107.7 |
O1—C1—C2 | 113.0 (4) | C7—C6—H6A | 109.5 |
O1—C1—H1A | 109.0 | C7—C6—H6B | 109.5 |
C2—C1—H1A | 109.0 | H6A—C6—H6B | 109.5 |
O1—C1—H1B | 109.0 | C7—C6—H6C | 109.5 |
C2—C1—H1B | 109.0 | H6A—C6—H6C | 109.5 |
H1A—C1—H1B | 107.8 | H6B—C6—H6C | 109.5 |
C3—C2—C1 | 112.8 (4) | N1—C7—C8 | 116.5 (3) |
C3—C2—H2A | 109.0 | N1—C7—C6 | 122.8 (4) |
C1—C2—H2A | 109.0 | C8—C7—C6 | 120.6 (4) |
C3—C2—H2B | 109.0 | C13—C8—C9 | 116.4 (4) |
C1—C2—H2B | 109.0 | C13—C8—C7 | 120.6 (4) |
H2A—C2—H2B | 107.8 | C9—C8—C7 | 123.1 (4) |
C2—C3—C4 | 114.9 (4) | O2—C9—C10 | 116.9 (4) |
C2—C3—H3A | 108.5 | O2—C9—C8 | 121.9 (4) |
C4—C3—H3A | 108.5 | C10—C9—C8 | 121.2 (4) |
C2—C3—H3B | 108.5 | C9—C10—C11 | 120.7 (5) |
C4—C3—H3B | 108.5 | C9—C10—H10 | 119.7 |
H3A—C3—H3B | 107.5 | C11—C10—H10 | 119.7 |
C3—C4—C5 | 114.6 (4) | C12—C11—C10 | 119.8 (5) |
C3—C4—H4A | 108.6 | C12—C11—H11 | 120.1 |
C5—C4—H4A | 108.6 | C10—C11—H11 | 120.1 |
C3—C4—H4B | 108.6 | C11—C12—C13 | 120.1 (5) |
C5—C4—H4B | 108.6 | C11—C12—H12 | 119.9 |
H4A—C4—H4B | 107.6 | C13—C12—H12 | 119.9 |
C4—C5—C5i | 113.9 (5) | C12—C13—C8 | 121.8 (4) |
C4—C5—H5A | 108.8 | C12—C13—H13 | 119.1 |
C5i—C5—H5A | 108.8 | C8—C13—H13 | 119.1 |
C1—O1—N1—C7 | 178.7 (3) | C13—C8—C9—O2 | −180.0 (4) |
N1—O1—C1—C2 | −72.6 (4) | C7—C8—C9—O2 | −0.7 (7) |
O1—C1—C2—C3 | −174.0 (4) | C13—C8—C9—C10 | −0.2 (7) |
C1—C2—C3—C4 | −175.9 (4) | C7—C8—C9—C10 | 179.0 (4) |
C2—C3—C4—C5 | 179.5 (4) | O2—C9—C10—C11 | 179.3 (5) |
C3—C4—C5—C5i | 178.5 (5) | C8—C9—C10—C11 | −0.5 (8) |
O1—N1—C7—C8 | −179.5 (3) | C9—C10—C11—C12 | 0.9 (8) |
O1—N1—C7—C6 | −1.4 (6) | C10—C11—C12—C13 | −0.5 (8) |
N1—C7—C8—C13 | −178.6 (4) | C11—C12—C13—C8 | −0.2 (8) |
C6—C7—C8—C13 | 3.3 (6) | C9—C8—C13—C12 | 0.6 (6) |
N1—C7—C8—C9 | 2.2 (6) | C7—C8—C13—C12 | −178.7 (4) |
C6—C7—C8—C9 | −175.9 (5) |
Symmetry code: (i) −x+1/2, −y+3/2, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···N1 | 0.82 | 1.85 | 2.568 (5) | 146 |
C13—H13···O2ii | 0.93 | 2.66 | 3.565 (6) | 163 |
Symmetry code: (ii) x+1/2, y−1/2, z. |
Experimental details
Crystal data | |
Chemical formula | C26H36N2O4 |
Mr | 440.57 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 298 |
a, b, c (Å) | 13.0031 (16), 4.6922 (6), 40.654 (3) |
β (°) | 93.109 (2) |
V (Å3) | 2476.8 (5) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.08 |
Crystal size (mm) | 0.50 × 0.48 × 0.23 |
Data collection | |
Diffractometer | Siemens SMART 1000 CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.962, 0.982 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5830, 2124, 1209 |
Rint | 0.076 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.052, 0.260, 1.03 |
No. of reflections | 2124 |
No. of parameters | 145 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.21, −0.23 |
Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···N1 | 0.82 | 1.85 | 2.568 (5) | 145.9 |
C13—H13···O2i | 0.93 | 2.66 | 3.565 (6) | 163.4 |
Symmetry code: (i) x+1/2, y−1/2, z. |
Acknowledgements
This work was supported by the Foundation of the Education Department of Gansu Province (No. 0904-11) and the `Jing Lan' Talent Engineering Funds of Lanzhou Jiaotong University, which are gratefully acknowledged.
References
Boskovic, C., Bircher, R., Tregenna-Piggott, P. L. W., Gudel, H. U., Paulsen, C., Wernsdorfer, W., Barra, A. L., Khatsko, E., Neels, A. & Stoeckli-Evans, H. (2003). J. Am. Chem. Soc. 125, 14046–14058. Web of Science CSD CrossRef PubMed CAS Google Scholar
Desiraju, G. R. (1996). Acc. Chem. Res. 29, 441–449. CrossRef CAS PubMed Web of Science Google Scholar
Dong, W.-K., He, X.-N., Guan, Y.-H., Xu, L. & Ren, Z.-L. (2008a). Acta Cryst. E64, o1600–o1601. Web of Science CSD CrossRef IUCr Journals Google Scholar
Dong, W.-K., He, X.-N., Li, L., Lv, Z.-W. & Tong, J.-F. (2008b). Acta Cryst. E64, o1405. Web of Science CSD CrossRef IUCr Journals Google Scholar
Dong, W. K., Zhao, C. Y., Sun, Y. X., Tang, X. L. & He, X. N. (2009). Inorg. Chem. Commun. 12, 234–236. Web of Science CSD CrossRef CAS Google Scholar
Koizumi, S., Nihei, M., Nakano, M. & Oshio, H. (2005). Inorg. Chem. 44, 1208–1210. Web of Science CSD CrossRef PubMed CAS Google Scholar
Oshiob, H., Nihei, M., Koizumi, S., Shiga, T., Nojiri, H., Nakano, M., Shirakawa, N. & Akatsu, M. (2005). J. Am. Chem. Soc. 127, 4568–4569. Web of Science PubMed Google Scholar
Santos, M. L. P., Bagatin, I. A., Pereira, E. M. & Ferreira, A. M. D. C. (2001). J. Chem. Soc. Dalton Trans. pp. 838–844. Web of Science CrossRef Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Schiff bases are one of most prevalent mixed-donor ligands in the field of coordination chemistry and have been intensively studied due to their strong coordination capability as well as their diverse biological activities, such as antibacterial, antitumor, etc. (Koizumi et al., 2005; Boskovic et al., 2003; Oshiob et al., 2005). In addition, many Schiff base derivatives have been synthesized and employed to develop protein and enzyme mimics (Santos et al., 2001). Our group is interested in the synthesis and structure of salen-type bisoxime compounds by Schiff base reaction (Dong et al., 2008a; Dong et al., 2008b). Here, we report, for the first time, the synthesis and crystal structure of a salen-type bisoxime compound containing ten-methene bridge, 2,2'-[1,1'-(decane-1,10-diyldioxydinitrilo)diethylidyne]diphenol.
Perspective view of the title molecule, showing the atomic numbering scheme, is given in Fig. 1. Each molecule exists in a trans configuration with respect to the methylidene unit. The two phenyl rings in each molecule are parallel to each other, with C1—O1—N1—C7 torsion angles of 178.7 (3)° and a perpendicular interplanar spacing of ca 6.695 (2) Å. In each title compound, there exist two classical intramolecular O—H···N hydrogen bonds (Fig. 1) which generate two six-membered rings, producing two S(6) ring motifs. In the crystal structure, pairs of weak intermolecular C—H···O hydrogen bonds (Table 1, Fig. 2)(Desiraju, 1996) link the adjacent molecules into an infinite one-dimensional supramolecular structure (Fig. 2).