organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Fluoro-3-methyl­sulfinyl-2-phenyl-1-benzo­furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 3 July 2009; accepted 17 July 2009; online 22 July 2009)

In the title compound, C15H11FO2S, the O atom and the methyl group of the methyl­sulfinyl substituent lie on opposite sides of the plane of the benzofuran fragment. The 2-phenyl ring is rotated out of the benzofuran plane, making a dihedral angle of 32.1 (2)°. The crystal structure is stabilized by aromatic ππ inter­actions between the benzene rings of neighbouring mol­ecules [centroid–centroid distance = 3.690 (5) Å]. In addition, the crystal structure exhibits inter­molecular C—H⋯O and C—H⋯F inter­actions.

Related literature

For the crystal structures of similar 5-halo-3-methyl­sulfinyl-2-phenyl-1-benzofuran derivatives, see: Choi et al. (2007a[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2007a). Acta Cryst. E63, o1315-o1316.],b[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2007b). Acta Cryst. E63, o3745.]). For the biological and pharmacological activity of benzofuran compounds, see: Howlett et al. (1999[Howlett, D. R., Perry, A. E., Godfrey, F., Swatton, J. E., Jennings, K. H., Spitzfaden, C., Wadsworth, H., Wood, S. J. & Markwell, R. E. (1999). Biochem. J. 340, 283-289.]); Ward (1997[Ward, R. S. (1997). Nat. Prod. Rep. 14, 43-74.]).

[Scheme 1]

Experimental

Crystal data
  • C15H11FO2S

  • Mr = 274.30

  • Monoclinic, P 21 /c

  • a = 8.507 (4) Å

  • b = 16.655 (7) Å

  • c = 9.553 (4) Å

  • β = 113.732 (5)°

  • V = 1239.1 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 273 K

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: none

  • 8954 measured reflections

  • 2251 independent reflections

  • 1478 reflections with I > 2σ(I)

  • Rint = 0.133

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.157

  • S = 1.07

  • 2251 reflections

  • 173 parameters

  • H-atom parameters constrained

  • Δρmax = 0.64 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O2i 0.93 2.48 3.282 (5) 145
C12—H12⋯O2ii 0.93 2.48 3.371 (5) 160
C13—H13⋯O2iii 0.93 2.64 3.555 (5) 170
C15—H15B⋯O1iv 0.96 2.67 3.493 (6) 144
C15—H15A⋯Fv 0.96 2.62 3.509 (6) 155
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) x-1, y, z-1; (iii) [x-1, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iv) -x+1, -y+1, -z+1; (v) -x+2, -y+1, -z+2.

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The benzofuran ring systems have been received considerable attenttion in the field of their biological and pharmacological properties (Howlett et al., 1999; Ward, 1997). This work is related to our communications on the synthesis and structures of 5-halo-3-methylsulfinyl-2-phenyl-1-benzofuran analogues, viz. 5-bromo-3-methylsulfinyl-2-phenyl-1-benzofuran (Choi et al., 2007a) and 5-iodo-3-methylsulfinyl-2-phenyl-1-benzofuran (Choi et al., 2007b). Here we report the crystal structure of the title compound, 5-fluoro-3-methylsulfinyl-2-phenyl-1-benzofuran (Fig. 1).

The benzofuran unit is essentially planar, with a mean deviation of 0.011 (3) Å from the least-squares plane defined by the nine constituent atoms. The dihedral angle formed by the planes of the benzofuran and the phenyl rings is 3.690 (5)°. The crystal packing (Fig. 2) is stabilized by aromatic ππ interactions between the benzene rings of the adjacent molecules, with a Cg···Cg distance of 3.690 (5) Å (Cg is the centroid of the C2–C7 benzene ring). The crystal packing (Fig. 2) exhibits four C–H···O and an C–H···F intermolecular interactions (Table 1 and Fig. 2).

Related literature top

For the crystal structures of similar 5-halo-3-methylsulfinyl-2-phenyl-1-benzofuran derivatives, see: Choi et al. (2007a,b). For the biological and pharmacological activity of benzofuran compounds, see: Howlett et al. (1999); Ward (1997).

Experimental top

The 77% 3-chloroperoxybenzoic acid (291 mg, 1.3 mmol) was added in small portions to a stirred solution of 5-fluoro-3-methylsulfanyl-2-phenyl-1-benzofuran (310 mg, 1.2 mmol) in dichloromethane (30 mL) at 273 K. After being stirred at room temperature for 3h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated in vacuum. The residue was purified by column chromatography (hexane-ethyl acetate, 1 : 1 v/v) to afford the title compound as a colorless solid [yield 83%, m.p. 462-463 K; Rf = 0.47 (hexane-ethyl acetate, 1 : 1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in tetrahydrofuran at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C–H = 0.93 Å for aromatic H atoms and 0.96 Å for methyl H atoms, respectively, and with Uiso(H) = 1.2Ueq(C) for aromatic H atoms and 1.5 Ueq(C) for methyl H atoms, respectively.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. ππ, C–H···O, and C–H···F interactions (dotted lines) in the crystal structure of title compound. Cg denotes the ring centroid. [Symmetry code: (i) -x + 2, y - 1/2, -z + 3/2; (ii) x - 1, y, z - 1; (iii) x - 1, -y + 3/2, z - 1/2 ; (iv) -x + 1, -y + 1, -z + 1; (v) -x + 2, -y + 1, -z + 2; (vi) -x + 2, -y + 1, -z + 1; (vii) -x + 2, y + 1/2, -z + 3/2.]
5-Fluoro-3-methylsulfinyl-2-phenyl-1-benzofuran top
Crystal data top
C15H11FO2SF(000) = 568
Mr = 274.30Dx = 1.470 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2317 reflections
a = 8.507 (4) Åθ = 2.5–26.7°
b = 16.655 (7) ŵ = 0.27 mm1
c = 9.553 (4) ÅT = 273 K
β = 113.732 (5)°Block, colourless
V = 1239.1 (9) Å30.20 × 0.10 × 0.10 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
1478 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.133
Graphite monochromatorθmax = 25.5°, θmin = 2.5°
Detector resolution: 10.0 pixels mm-1h = 1010
ϕ and ω scansk = 2020
8954 measured reflectionsl = 1111
2251 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: difference Fourier map
wR(F2) = 0.157H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0649P)2 + 1.1956P]
where P = (Fo2 + 2Fc2)/3
2251 reflections(Δ/σ)max < 0.001
173 parametersΔρmax = 0.64 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C15H11FO2SV = 1239.1 (9) Å3
Mr = 274.30Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.507 (4) ŵ = 0.27 mm1
b = 16.655 (7) ÅT = 273 K
c = 9.553 (4) Å0.20 × 0.10 × 0.10 mm
β = 113.732 (5)°
Data collection top
Bruker SMART CCD
diffractometer
1478 reflections with I > 2σ(I)
8954 measured reflectionsRint = 0.133
2251 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0610 restraints
wR(F2) = 0.157H-atom parameters constrained
S = 1.07Δρmax = 0.64 e Å3
2251 reflectionsΔρmin = 0.34 e Å3
173 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S0.68313 (13)0.69115 (6)0.59163 (12)0.0254 (3)
F1.1429 (3)0.43327 (15)0.9193 (3)0.0410 (7)
O10.6667 (3)0.49692 (15)0.3511 (3)0.0239 (6)
O20.8646 (4)0.71756 (17)0.6700 (4)0.0382 (8)
C10.6897 (5)0.5933 (2)0.5247 (4)0.0195 (8)
C20.8108 (5)0.5306 (2)0.6026 (4)0.0212 (8)
C30.9321 (5)0.5180 (2)0.7509 (5)0.0255 (9)
H30.94900.55480.82890.031*
C41.0255 (5)0.4483 (3)0.7757 (5)0.0280 (9)
C51.0078 (5)0.3919 (2)0.6625 (5)0.0292 (10)
H51.07540.34580.68640.035*
C60.8909 (5)0.4045 (2)0.5168 (5)0.0275 (9)
H60.87770.36820.43880.033*
C70.7926 (5)0.4737 (2)0.4896 (4)0.0224 (8)
C80.6087 (5)0.5703 (2)0.3762 (4)0.0207 (8)
C90.4741 (5)0.6076 (2)0.2420 (4)0.0209 (8)
C100.4709 (5)0.5957 (3)0.0963 (5)0.0303 (10)
H100.55420.56400.08380.036*
C110.3445 (6)0.6311 (3)0.0293 (5)0.0371 (11)
H110.34380.62360.12600.044*
C120.2182 (5)0.6779 (3)0.0119 (5)0.0339 (10)
H120.13290.70160.09660.041*
C130.2205 (5)0.6887 (2)0.1312 (5)0.0269 (9)
H130.13530.71960.14280.032*
C140.3464 (5)0.6547 (2)0.2579 (5)0.0238 (9)
H140.34670.66310.35420.029*
C150.6122 (6)0.6672 (3)0.7391 (5)0.0403 (12)
H15A0.69210.63080.81040.060*
H15B0.50090.64260.69470.060*
H15C0.60550.71550.79140.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S0.0240 (5)0.0220 (5)0.0278 (6)0.0001 (4)0.0079 (4)0.0029 (4)
F0.0295 (14)0.0525 (17)0.0367 (15)0.0104 (11)0.0086 (12)0.0157 (12)
O10.0211 (14)0.0263 (15)0.0259 (15)0.0005 (11)0.0112 (12)0.0010 (11)
O20.0293 (17)0.0332 (17)0.048 (2)0.0098 (13)0.0108 (15)0.0085 (14)
C10.0155 (18)0.0189 (19)0.023 (2)0.0004 (14)0.0071 (16)0.0009 (15)
C20.0142 (19)0.026 (2)0.026 (2)0.0018 (15)0.0110 (17)0.0027 (15)
C30.020 (2)0.031 (2)0.027 (2)0.0018 (16)0.0115 (18)0.0017 (16)
C40.016 (2)0.040 (2)0.028 (2)0.0038 (17)0.0091 (18)0.0123 (18)
C50.027 (2)0.031 (2)0.039 (3)0.0073 (17)0.022 (2)0.0095 (18)
C60.028 (2)0.025 (2)0.036 (2)0.0015 (17)0.0193 (19)0.0002 (17)
C70.020 (2)0.026 (2)0.026 (2)0.0025 (15)0.0139 (18)0.0039 (16)
C80.021 (2)0.0170 (19)0.028 (2)0.0004 (15)0.0135 (17)0.0001 (15)
C90.0177 (19)0.023 (2)0.022 (2)0.0030 (15)0.0075 (16)0.0018 (15)
C100.026 (2)0.040 (2)0.026 (2)0.0028 (18)0.0120 (19)0.0037 (18)
C110.035 (3)0.053 (3)0.025 (2)0.000 (2)0.014 (2)0.000 (2)
C120.026 (2)0.037 (3)0.034 (3)0.0002 (18)0.007 (2)0.0096 (18)
C130.016 (2)0.032 (2)0.034 (2)0.0027 (16)0.0114 (18)0.0044 (18)
C140.017 (2)0.029 (2)0.026 (2)0.0027 (16)0.0107 (18)0.0009 (16)
C150.047 (3)0.043 (3)0.044 (3)0.003 (2)0.033 (2)0.008 (2)
Geometric parameters (Å, º) top
S—O21.486 (3)C6—H60.9300
S—C11.760 (4)C8—C91.470 (5)
S—C151.786 (5)C9—C101.395 (5)
F—C41.357 (4)C9—C141.397 (5)
O1—C81.375 (4)C10—C111.380 (6)
O1—C71.381 (5)C10—H100.9300
C1—C81.358 (5)C11—C121.390 (6)
C1—C21.446 (5)C11—H110.9300
C2—C31.392 (5)C12—C131.372 (6)
C2—C71.398 (5)C12—H120.9300
C3—C41.373 (6)C13—C141.374 (5)
C3—H30.9300C13—H130.9300
C4—C51.393 (6)C14—H140.9300
C5—C61.363 (6)C15—H15A0.9600
C5—H50.9300C15—H15B0.9600
C6—C71.385 (5)C15—H15C0.9600
O2—S—C1106.19 (17)C1—C8—C9133.0 (3)
O2—S—C15106.3 (2)O1—C8—C9115.6 (3)
C1—S—C1598.6 (2)C10—C9—C14119.0 (4)
C8—O1—C7106.0 (3)C10—C9—C8120.4 (3)
C8—C1—C2106.9 (3)C14—C9—C8120.6 (3)
C8—C1—S124.3 (3)C11—C10—C9120.2 (4)
C2—C1—S127.0 (3)C11—C10—H10119.9
C3—C2—C7119.4 (4)C9—C10—H10119.9
C3—C2—C1135.7 (4)C10—C11—C12120.3 (4)
C7—C2—C1104.9 (3)C10—C11—H11119.8
C4—C3—C2116.3 (4)C12—C11—H11119.8
C4—C3—H3121.9C13—C12—C11119.4 (4)
C2—C3—H3121.9C13—C12—H12120.3
F—C4—C3118.0 (4)C11—C12—H12120.3
F—C4—C5117.8 (4)C12—C13—C14121.1 (4)
C3—C4—C5124.2 (4)C12—C13—H13119.5
C6—C5—C4119.7 (4)C14—C13—H13119.5
C6—C5—H5120.2C13—C14—C9120.0 (4)
C4—C5—H5120.2C13—C14—H14120.0
C5—C6—C7117.2 (4)C9—C14—H14120.0
C5—C6—H6121.4S—C15—H15A109.5
C7—C6—H6121.4S—C15—H15B109.5
O1—C7—C6126.1 (4)H15A—C15—H15B109.5
O1—C7—C2110.6 (3)S—C15—H15C109.5
C6—C7—C2123.3 (4)H15A—C15—H15C109.5
C1—C8—O1111.5 (3)H15B—C15—H15C109.5
O2—S—C1—C8123.7 (3)C3—C2—C7—C60.5 (6)
C15—S—C1—C8126.4 (4)C1—C2—C7—C6177.9 (3)
O2—S—C1—C239.2 (4)C2—C1—C8—O10.4 (4)
C15—S—C1—C270.7 (4)S—C1—C8—O1166.2 (3)
C8—C1—C2—C3178.7 (4)C2—C1—C8—C9179.9 (4)
S—C1—C2—C313.4 (6)S—C1—C8—C914.3 (6)
C8—C1—C2—C70.6 (4)C7—O1—C8—C11.3 (4)
S—C1—C2—C7164.6 (3)C7—O1—C8—C9179.1 (3)
C7—C2—C3—C40.8 (5)C1—C8—C9—C10147.8 (4)
C1—C2—C3—C4178.6 (4)O1—C8—C9—C1032.7 (5)
C2—C3—C4—F178.9 (3)C1—C8—C9—C1432.9 (6)
C2—C3—C4—C51.3 (6)O1—C8—C9—C14146.6 (3)
F—C4—C5—C6179.8 (3)C14—C9—C10—C110.8 (6)
C3—C4—C5—C60.4 (6)C8—C9—C10—C11179.8 (4)
C4—C5—C6—C71.0 (6)C9—C10—C11—C120.8 (7)
C8—O1—C7—C6177.6 (4)C10—C11—C12—C130.1 (7)
C8—O1—C7—C21.7 (4)C11—C12—C13—C140.6 (6)
C5—C6—C7—O1179.3 (3)C12—C13—C14—C90.6 (6)
C5—C6—C7—C21.4 (6)C10—C9—C14—C130.1 (6)
C3—C2—C7—O1179.9 (3)C8—C9—C14—C13179.5 (3)
C1—C2—C7—O11.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O2i0.932.483.282 (5)145
C12—H12···O2ii0.932.483.371 (5)160
C13—H13···O2iii0.932.643.555 (5)170
C15—H15B···O1iv0.962.673.493 (6)144
C15—H15A···Fv0.962.623.509 (6)155
Symmetry codes: (i) x+2, y1/2, z+3/2; (ii) x1, y, z1; (iii) x1, y+3/2, z1/2; (iv) x+1, y+1, z+1; (v) x+2, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC15H11FO2S
Mr274.30
Crystal system, space groupMonoclinic, P21/c
Temperature (K)273
a, b, c (Å)8.507 (4), 16.655 (7), 9.553 (4)
β (°) 113.732 (5)
V3)1239.1 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8954, 2251, 1478
Rint0.133
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.157, 1.07
No. of reflections2251
No. of parameters173
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.64, 0.34

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O2i0.932.483.282 (5)144.6
C12—H12···O2ii0.932.483.371 (5)160.2
C13—H13···O2iii0.932.643.555 (5)169.7
C15—H15B···O1iv0.962.673.493 (6)144.3
C15—H15A···Fv0.962.623.509 (6)154.5
Symmetry codes: (i) x+2, y1/2, z+3/2; (ii) x1, y, z1; (iii) x1, y+3/2, z1/2; (iv) x+1, y+1, z+1; (v) x+2, y+1, z+2.
 

Acknowledgements

This work was supported by Dong-eui University (grant No. 2009AA099).

References

First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2007a). Acta Cryst. E63, o1315–o1316.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2007b). Acta Cryst. E63, o3745.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHowlett, D. R., Perry, A. E., Godfrey, F., Swatton, J. E., Jennings, K. H., Spitzfaden, C., Wadsworth, H., Wood, S. J. & Markwell, R. E. (1999). Biochem. J. 340, 283–289.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWard, R. S. (1997). Nat. Prod. Rep. 14, 43–74.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds