metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino-5-nitro­pyridinium tetraoxido­rhenate(VII) monohydrate

aCEMDRX, Department of Physics, University of Coimbra, P-3004-516 Coimbra, Portugal, and bDepartamento de Física, Universidade do Minho, P-4710-057 Braga, Portugal
*Correspondence e-mail: vhugo@fis.uc.pt

(Received 13 July 2009; accepted 23 July 2009; online 29 July 2009)

All the residues of the title compound, (C5H6N3O2)[ReO4]·H2O, are located on general crystallographic positions. The 2-amino-5-nitro­pyridinium cation has a typical planar conformation with one of the nitro O atoms −0.058 (5) Å out of plane; the amine H atoms are also a little out of the main ring plane towards the opposite side of the aforementioned O atom [by 0.02 (4) and 0.04 (4) Å]. The perrhenate anion is nearly ideally tetra­hedral. Three distinct N—H⋯O hydrogen bonds give rise to C(8) zigzag chains running along [100]. R44(12) rings involving the two hydrogen bonds in which the water mol­ecules inter­act with the perrhenate anions are also present.

Related literature

For the structural analyses of related 2-amino-5-nitro­pyridium salts and their potential application as non-linear optical materials, see: Masse & Zyss (1991[Masse, R. & Zyss, J. (1991). Mol. Eng. 1, 141-152.]); Puig-Molina et al. (1998[Puig-Molina, A., Alvarez-Larena, A., Piniella, J. F., Howard, S. T. & Baert, F. (1998). Struct. Chem. 9, 395-402.]); Aakeröy et al. (1998[Aakeröy, C. B., Beatty, A. M., Nieuwenhuyzen, M. & Zou, M. (1998). J. Mater. Chem. 8, 1385-1389.]); Pecaut et al. (1993[Pecaut, J., Le Fur, Y. & Masse, R. (1993). Acta Cryst. B49, 535-541.]).

[Scheme 1]

Experimental

Crystal data
  • (C5H6N3O2)[ReO4]·H2O

  • Mr = 408.34

  • Monoclinic, P 21 /c

  • a = 9.6914 (3) Å

  • b = 9.1357 (3) Å

  • c = 13.4636 (4) Å

  • β = 120.120 (2)°

  • V = 1031.08 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 11.81 mm−1

  • T = 295 K

  • 0.10 × 0.06 × 0.05 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.33, Tmax = 0.55

  • 30757 measured reflections

  • 2374 independent reflections

  • 2175 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.015

  • wR(F2) = 0.033

  • S = 1.05

  • 2374 reflections

  • 158 parameters

  • 5 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.88 e Å−3

  • Δρmin = −0.72 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O3 0.86 1.93 2.738 (3) 157
N1—H1⋯O6i 0.86 2.63 3.049 (4) 112
N2—H2A⋯O3 0.89 (3) 2.33 (3) 3.030 (4) 135 (3)
N2—H2A⋯O4ii 0.89 (3) 2.65 (3) 3.259 (4) 127 (3)
N2—H2B⋯O5 0.89 (3) 1.98 (3) 2.846 (3) 164 (3)
O3—H3A⋯O7iii 0.89 (3) 1.93 (3) 2.802 (4) 167 (3)
O3—H3B⋯O4ii 0.89 (3) 2.13 (3) 2.862 (4) 139 (3)
Symmetry codes: (i) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) -x+1, -y, -z; (iii) x-1, y, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supporting information


Related literature top

For the structural analyses of related 2-amino-5-nitropyridium salts and their potential application as non-linear optical materials, see: Masse et al. (1991); Puig-Molina et al. (1998); Aakeröy et al. (1998); Pecaut et al. (1993).

Experimental top

Crystals of the title compound were obtained by slow evaporation from a water solution of analytical grade reagents on a 1:1 molar ratio. The reagents used were 2-amino-5-nitropyridine (99.5%) and a perrhenic acid solution (65–75% water 99.5%), both purchased from Aldrich.

Refinement top

The structure was solved by direct methods using SHELXS97. All H atoms were first located on a difference Fourier map as a check for data quality; those bonded to C and N aromatic atoms were then placed at idealized positions and refined as riding [C—H=0.93 Å, N—H=0.86 Å, Uiso(H)=1.2Ueq(C) and Uiso(H)=1.2Ueq(N)]. The coordinates of the amine H atoms were then refined only with the restraint that the N—H distance would be 0.89 Å within 0.2 Å. The positions of the H atoms belonging to the water molecule were also restrained so that the intramolecular O—H distance would be 0.89 Å and the H—H distance 1.40 Å, both within 0.02 Å, thus enforcing an acceptable geometry of the water molecule [Uiso(H)=1.5Ueq(O)].

Examination of the crystal structure with PLATON (Spek, 2009) showed that there are no solvent-accessible voids in the crystal lattice.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. ORTEPII (Johnson, 1976) plot of the title compound. Displacement ellipsoids are drawn at the 50% level.
[Figure 2] Fig. 2. Zigzag chain running along the a axis. Small ring motifs made of a perrhenate anion and two water molecules are included in the chain. Hydrogen bonds are indicated with dashed lines.
2-Amino-5-nitropyridinium tetraoxidorhenate(VII) monohydrate top
Crystal data top
(C5H6N3O2)[ReO4]·H2OF(000) = 760
Mr = 408.34Dx = 2.631 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9920 reflections
a = 9.6914 (3) Åθ = 2.4–32.3°
b = 9.1357 (3) ŵ = 11.81 mm1
c = 13.4636 (4) ÅT = 295 K
β = 120.120 (2)°Prism, translucent colourless
V = 1031.08 (6) Å30.10 × 0.06 × 0.05 mm
Z = 4
Data collection top
Bruker APEXII
diffractometer
2374 independent reflections
Radiation source: fine-focus sealed tube2175 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ϕ and ω scansθmax = 27.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.33, Tmax = 0.55k = 1111
30757 measured reflectionsl = 1717
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.015H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.033 w = 1/[σ2(Fo2) + (0.0122P)2 + 1.4451P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
2374 reflectionsΔρmax = 0.88 e Å3
158 parametersΔρmin = 0.72 e Å3
5 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00774 (16)
Crystal data top
(C5H6N3O2)[ReO4]·H2OV = 1031.08 (6) Å3
Mr = 408.34Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.6914 (3) ŵ = 11.81 mm1
b = 9.1357 (3) ÅT = 295 K
c = 13.4636 (4) Å0.10 × 0.06 × 0.05 mm
β = 120.120 (2)°
Data collection top
Bruker APEXII
diffractometer
2374 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2175 reflections with I > 2σ(I)
Tmin = 0.33, Tmax = 0.55Rint = 0.030
30757 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0155 restraints
wR(F2) = 0.033H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.88 e Å3
2374 reflectionsΔρmin = 0.72 e Å3
158 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.2958 (3)0.4684 (3)0.0719 (2)0.0338 (5)
H10.21450.41190.04930.041*
C20.4404 (3)0.4063 (3)0.1067 (2)0.0315 (6)
N20.4512 (3)0.2632 (3)0.1047 (3)0.0434 (6)
H2A0.367 (3)0.204 (3)0.080 (3)0.052*
H2B0.543 (2)0.219 (4)0.124 (3)0.052*
C30.5736 (3)0.4998 (3)0.1440 (3)0.0352 (6)
H30.67410.46050.16840.042*
C40.5549 (3)0.6463 (3)0.1442 (2)0.0362 (6)
H40.64200.70860.16880.043*
C50.4020 (3)0.7029 (3)0.1067 (2)0.0332 (6)
N30.3785 (4)0.8592 (3)0.1068 (2)0.0437 (6)
O10.4946 (4)0.9377 (3)0.1387 (3)0.0717 (9)
O20.2459 (3)0.9055 (3)0.0781 (3)0.0632 (7)
C60.2737 (3)0.6133 (3)0.0712 (2)0.0336 (6)
H60.17280.65170.04690.040*
O30.1012 (3)0.2314 (2)0.0301 (2)0.0538 (6)
H3A0.083 (5)0.174 (3)0.076 (2)0.081*
H3B0.079 (5)0.174 (3)0.030 (2)0.081*
Re0.905465 (12)0.037384 (13)0.215124 (10)0.03195 (6)
O40.8222 (3)0.1153 (3)0.1338 (2)0.0680 (7)
O50.7677 (3)0.1758 (3)0.1707 (3)0.0632 (7)
O60.9713 (4)0.0024 (3)0.3551 (2)0.0674 (8)
O71.0618 (3)0.0893 (3)0.1987 (3)0.0664 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0264 (11)0.0290 (12)0.0452 (15)0.0007 (9)0.0174 (11)0.0031 (11)
C20.0289 (12)0.0319 (14)0.0329 (15)0.0032 (11)0.0150 (11)0.0054 (12)
N20.0375 (13)0.0281 (13)0.0627 (18)0.0052 (11)0.0237 (14)0.0057 (13)
C30.0262 (13)0.0400 (16)0.0369 (16)0.0004 (11)0.0142 (12)0.0010 (13)
C40.0312 (13)0.0411 (17)0.0341 (16)0.0090 (12)0.0147 (12)0.0035 (13)
C50.0417 (15)0.0277 (14)0.0296 (15)0.0020 (12)0.0175 (12)0.0023 (12)
N30.0597 (17)0.0299 (13)0.0415 (15)0.0009 (12)0.0254 (13)0.0003 (11)
O10.080 (2)0.0345 (13)0.108 (3)0.0181 (13)0.0530 (19)0.0083 (14)
O20.0674 (17)0.0398 (14)0.0761 (19)0.0152 (13)0.0313 (15)0.0003 (13)
C60.0320 (13)0.0329 (15)0.0351 (15)0.0054 (12)0.0161 (12)0.0046 (13)
O30.0643 (16)0.0382 (13)0.0750 (19)0.0090 (12)0.0471 (15)0.0043 (13)
Re0.02646 (7)0.03566 (8)0.03418 (8)0.00296 (4)0.01554 (5)0.00215 (5)
O40.0773 (19)0.0537 (16)0.0667 (18)0.0151 (14)0.0315 (15)0.0156 (14)
O50.0447 (13)0.0583 (16)0.0843 (19)0.0226 (12)0.0307 (13)0.0131 (15)
O60.085 (2)0.0780 (19)0.0394 (15)0.0150 (16)0.0313 (14)0.0090 (13)
O70.0398 (13)0.083 (2)0.086 (2)0.0057 (13)0.0389 (14)0.0225 (17)
Geometric parameters (Å, º) top
N1—C61.341 (4)C5—C61.360 (4)
N1—C21.358 (3)C5—N31.446 (4)
N1—H10.8600N3—O11.216 (4)
C2—N21.313 (4)N3—O21.217 (4)
C2—C31.413 (4)C6—H60.9300
N2—H2A0.89 (3)O3—H3A0.89 (3)
N2—H2B0.89 (3)O3—H3B0.89 (3)
C3—C41.351 (4)Re—O61.698 (3)
C3—H30.9300Re—O71.704 (2)
C4—C51.402 (4)Re—O41.705 (3)
C4—H40.9300Re—O51.714 (2)
C6—N1—C2123.2 (2)C6—C5—N3118.6 (3)
C6—N1—H1118.4C4—C5—N3120.1 (3)
C2—N1—H1118.4O1—N3—O2123.3 (3)
N2—C2—N1119.2 (3)O1—N3—C5117.7 (3)
N2—C2—C3122.8 (3)O2—N3—C5119.0 (3)
N1—C2—C3118.0 (3)N1—C6—C5118.5 (2)
C2—N2—H2A123 (2)N1—C6—H6120.7
C2—N2—H2B122 (2)C5—C6—H6120.7
H2A—N2—H2B115 (3)H3A—O3—H3B104 (3)
C4—C3—C2120.0 (3)O6—Re—O7109.89 (15)
C4—C3—H3120.0O6—Re—O4109.31 (15)
C2—C3—H3120.0O7—Re—O4108.01 (15)
C3—C4—C5118.9 (3)O6—Re—O5109.77 (14)
C3—C4—H4120.6O7—Re—O5109.69 (13)
C5—C4—H4120.6O4—Re—O5110.15 (14)
C6—C5—C4121.3 (3)
C6—N1—C2—N2179.9 (3)C4—C5—N3—O11.0 (4)
C6—N1—C2—C30.1 (4)C6—C5—N3—O21.9 (4)
N2—C2—C3—C4179.9 (3)C4—C5—N3—O2177.2 (3)
N1—C2—C3—C40.1 (4)C2—N1—C6—C50.1 (4)
C2—C3—C4—C50.2 (4)C4—C5—C6—N10.4 (4)
C3—C4—C5—C60.4 (4)N3—C5—C6—N1179.5 (3)
C3—C4—C5—N3179.5 (3)N1—C2—N2—H2A1 (3)
C6—C5—N3—O1179.9 (3)C3—C2—N2—H2B3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O30.861.932.738 (3)157
N1—H1···O6i0.862.633.049 (4)112
N2—H2A···O30.89 (3)2.33 (3)3.030 (4)135 (3)
N2—H2A···O4ii0.89 (3)2.65 (3)3.259 (4)127 (3)
N2—H2B···O50.89 (3)1.98 (3)2.846 (3)164 (3)
O3—H3A···O7iii0.89 (3)1.93 (3)2.802 (4)167 (3)
O3—H3B···O4ii0.89 (3)2.13 (3)2.862 (4)139 (3)
Symmetry codes: (i) x1, y+1/2, z1/2; (ii) x+1, y, z; (iii) x1, y, z.

Experimental details

Crystal data
Chemical formula(C5H6N3O2)[ReO4]·H2O
Mr408.34
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)9.6914 (3), 9.1357 (3), 13.4636 (4)
β (°) 120.120 (2)
V3)1031.08 (6)
Z4
Radiation typeMo Kα
µ (mm1)11.81
Crystal size (mm)0.10 × 0.06 × 0.05
Data collection
DiffractometerBruker APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.33, 0.55
No. of measured, independent and
observed [I > 2σ(I)] reflections
30757, 2374, 2175
Rint0.030
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.015, 0.033, 1.05
No. of reflections2374
No. of parameters158
No. of restraints5
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.88, 0.72

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEPII (Johnson, 1976), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O30.861.932.738 (3)157.1
N1—H1···O6i0.862.633.049 (4)111.7
N2—H2A···O30.89 (3)2.33 (3)3.030 (4)135 (3)
N2—H2A···O4ii0.89 (3)2.65 (3)3.259 (4)127 (3)
N2—H2B···O50.89 (3)1.98 (3)2.846 (3)164 (3)
O3—H3A···O7iii0.89 (3)1.93 (3)2.802 (4)167 (3)
O3—H3B···O4ii0.89 (3)2.13 (3)2.862 (4)139 (3)
Symmetry codes: (i) x1, y+1/2, z1/2; (ii) x+1, y, z; (iii) x1, y, z.
 

Acknowledgements

This work was supported by Fundação para a Ciência e a Tecnologia (FCT).

References

First citationAakeröy, C. B., Beatty, A. M., Nieuwenhuyzen, M. & Zou, M. (1998). J. Mater. Chem. 8, 1385–1389.  Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationMasse, R. & Zyss, J. (1991). Mol. Eng. 1, 141–152.  CSD CrossRef CAS Google Scholar
First citationPecaut, J., Le Fur, Y. & Masse, R. (1993). Acta Cryst. B49, 535–541.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPuig-Molina, A., Alvarez-Larena, A., Piniella, J. F., Howard, S. T. & Baert, F. (1998). Struct. Chem. 9, 395–402.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds