organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Cyclo­propyl-6-fluoro-7-(4-nitro­so­piperazin-1-yl)-4-oxo-1,4-di­hydro­quinoline-3-carboxylic acid

aSchool of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People's Republic of China, and bMaterial Engineering College, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People's Republic of China
*Correspondence e-mail: ltdl@sina.com

(Received 20 June 2009; accepted 27 July 2009; online 31 July 2009)

The title compound, C17H17FN4O4, is a derivative of ciprofloxacin [1-cyclo­propyl-6-fluoro-4-oxo-7-(1-piperazin­yl)-1,4-dihydro­quinoline-3-carboxylic acid]. The crystal packing is stabilized by inter­molecular C—H⋯O hydrogen bonds together with ππ electron ring inter­actions [centroid–centroid separations between quinoline rings of 3.5864 (11) and 3.9339 (13) Å]. A strong intra­molecular O—H⋯O hydrogen bonds is present as well as an intra­molecular C—H⋯F inter­action.

Related literature

For the biological activity of ciprofloxacin compounds, see: Neu (1987[Neu, H. C. (1987). Am. J. Med. 82, 395-404.]). For related structures, see: Turel et al. (1996[Turel, I., Leban, I., Zupancic, M., Bukovec, P. & Gruber, K. (1996). Acta Cryst. C52, 2443-2445.]); Drevenšek et al. (2003[Drevenšek, P., Leban, I., Turel, I., Giester, G. & Tillmanns, E. (2003). Acta Cryst. C59, m376-m378.]); Li et al. (2005[Li, X.-W., Zhi, F., Shen, J.-H. & Hu, Y.-Q. (2005). Acta Cryst. E61, o2235-o2236.]); Lou et al. (2007[Lou, B., Boström, D. & Velaga, S. P. (2007). Acta Cryst. C63, o731-o733.]). The nitroso-group geometry is similar to that observed in 1,4-dinitro­sopiperazine, see: Sekido et al. (1985[Sekido, K., Okamoto, K. & Hirokawa, S. (1985). Acta Cryst. C41, 741-743.]).

[Scheme 1]

Experimental

Crystal data
  • C17H17FN4O4

  • Mr = 360.35

  • Triclinic, [P \overline 1]

  • a = 8.378 (3) Å

  • b = 9.625 (4) Å

  • c = 10.328 (4) Å

  • α = 102.99 (2)°

  • β = 96.089 (14)°

  • γ = 97.392 (16)°

  • V = 797.0 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 293 K

  • 0.2 × 0.2 × 0.2 mm

Data collection
  • Rigaku Mercury CCD/AFC diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2007[Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.976, Tmax = 0.977

  • 6267 measured reflections

  • 3631 independent reflections

  • 2568 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.067

  • wR(F2) = 0.207

  • S = 1.06

  • 3631 reflections

  • 236 parameters

  • H-atom parameters constrained

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H18⋯O3 0.84 1.78 2.562 (2) 153
C15—H15A⋯O2i 0.99 2.50 3.405 (3) 151
C15—H15B⋯O3ii 0.99 2.51 3.385 (3) 147
C16—H16A⋯O1iii 0.99 2.60 3.264 (3) 125
C16—H16B⋯F1 0.99 2.14 2.852 (3) 128
Symmetry codes: (i) x+1, y+1, z+1; (ii) -x+1, -y+1, -z; (iii) -x, -y+1, -z.

Data collection: CrystalClear (Rigaku, 2007[Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXL97 and DIAMOND (Brandenburg, 2005[Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Ciprofloxacin (1-cyclopropyl-6-fluoro -1,4-dihydro-4-oxo-7-(1-piperazinyl)-3-quinoline carboxylic acid) is used as an antibacterial agent. Ciprofloxacin is widely used in clinical practice for the treatment of certain diseases caused by some Gram negative and as well as Gram positive microorganisms (Neu, 1987). Recently, several structures containing ciprofloxacin have been reported (Turel et al., 1996; Drevenšek et al., 2003; Lou et al., 2007).

Nitrosation of amines by nitrites takes place in acid medium. The nature of the product depends on the nature of the initial amine. Commonly the secondary alkyl amines yield N-nitrosoamines. In our case, the N-nitrosation of ciprofloxacin occurs by ytterbium nitrate in nitric acid and results in the formation of ON-ciprofloxacin under hydrothermal reaction.

The title compound is composed of an essentially planar quinoline ring system [the mean deviation from best plane is 0.0274 (2) Å] which is substituted with cyclopropyl, fluoro, oxo, carboxyl and nitrosopiperazinium groups (Fig. 1). The bond distances and angles are in agreement with those in 1-cyclopropyl-6-fluoro-7- (4-formylpiperazin-1-yl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid (Li et al., 2005).

In the title structure, the six-membered piperazinyl ring adopts a chair conformation. The nitroso-group geometry with the NO distance equal to 1.2382 (31) Å and O—N—N bond angle of 115.583 (20)° is similar to that observed in 1,4-dinitrosopiperazine (Sekido et al., 1985).

For the hydrogen bonding, please see Tab. 1 that comprises intramolecular and intermolecular hydrogen bonds in the structure (Fig. 2). As shown in Fig. 3, the crystal packing is stabilized by π-π stacking interactions of the quinoline rings, in which the N1 ring (N1/C4—C6/C7—C13) stacks with the inversion-related N1 rings, with the centroid-centroid separations of 3.5864 (11) and 3.9339 (13) Å.

Related literature top

For the biological activity of ciprofloxacin compounds, see: Neu (1987). For related structures, see: Turel et al. (1996); Drevenšek et al. (2003); Li et al. (2005); Lou et al. (2007). The nitroso-group geometry is similar to that observed in 1,4-dinitrosopiperazine, see: Sekido et al. (1985).

Experimental top

The title compound was hydrothermally synthesized under autogenous pressure. A mixture of C17H18FN3O3.HCl (ciprofloxacin hydrochloride) (50 mg, 0.14 mmol), Yb(NO3)3 (72 mg, 0.2 mmol), HNO3 (1 ml of 0.5 M), C2H5OH (4 ml) and H2O (8 ml) was sealed in a stainless reactor with a Teflon liner. The mixture was heated to 393 K for one day. After cooling at a rate of 10 K h-1 to room temperature, yellow needle crystals (average 4 mm long by 0.6 mm diameter) were separated by filtration, washed with distilled water and finally dried in air. Yield 75%, Anal. calc. for C17H17FN4O4: C, 56.66; H, 4.76; N, 15.55%; Found: C, 56.82; H, 4.75; N, 15.63%. IR (KBr pellet): 1719(s), 1627(s), 1489(m), 1454(m), 1334(m), 1339(m), 1257(s), 1152(m), 994(m), 896(m), 798(m), 743(m).

Refinement top

All the hydrogen atoms were discernible in the difference electron density maps. However, the hydrogens were situated into idealized positions and constrained by the riding model approximation: O—Hcarboxyl = 0.84 [the command AFIX 147 of SHELXL-97 has been applied (Sheldrick, 2008)], Caryl—Haryl = 0.95, Cmethylene—Hmethylene = 0.99 and Cmethine—Hmethine = 1.00 Å; UisoH = 1.2Ueq(C); UisoHcarboxyl = 1.5Ueq(O). The highest electron-density peak is situated 1.12 Å from H16A and the deepest hole 0.54 Å from C17.

Computing details top

Data collection: CrystalClear (Rigaku, 2007); cell refinement: CrystalClear (Rigaku, 2007); data reduction: CrystalClear (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXL97 (Sheldrick, 2008) and DIAMOND (Brandenburg, 2005); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title molecule. The displacement ellipsoids are drawn at the 30% propability level
[Figure 2] Fig. 2. The intramolecular and intermoleclar hydrogen bonds or interactions (the dashed lines) in title compound (see Table 1). Symmetry codes: (A) x+1, y+1, z+1; (B) x+1, y+1, z; (C) x, y+1, z
[Figure 3] Fig. 3. The packing of title molecules, showing the π-π-electron ring interactions. The H atoms have been omitted for clarity
1-Cyclopropyl-6-fluoro-7-(4-nitrosopiperazin-1-yl)-4-oxo- 1,4-dihydroquinoline-3-carboxylic acid top
Crystal data top
C17H17FN4O4Z = 2
Mr = 360.35F(000) = 376
Triclinic, P1Dx = 1.502 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.378 (3) ÅCell parameters from 771 reflections
b = 9.625 (4) Åθ = 2.0–27.4°
c = 10.328 (4) ŵ = 0.12 mm1
α = 102.99 (2)°T = 293 K
β = 96.089 (14)°Block, yellow
γ = 97.392 (16)°0.2 × 0.2 × 0.2 mm
V = 797.0 (6) Å3
Data collection top
Rigaku Mercury CCD/AFC
diffractometer
3631 independent reflections
Radiation source: fine-focus sealed tube2568 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ϕ and ω scansθmax = 27.4°, θmin = 2.5°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2007)
h = 1010
Tmin = 0.976, Tmax = 0.977k = 1212
6267 measured reflectionsl = 1311
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067Hydrogen site location: difference Fourier map
wR(F2) = 0.207H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.1165P)2 + 0.047P]
where P = (Fo2 + 2Fc2)/3
3631 reflections(Δ/σ)max < 0.001
236 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = 0.35 e Å3
67 constraints
Crystal data top
C17H17FN4O4γ = 97.392 (16)°
Mr = 360.35V = 797.0 (6) Å3
Triclinic, P1Z = 2
a = 8.378 (3) ÅMo Kα radiation
b = 9.625 (4) ŵ = 0.12 mm1
c = 10.328 (4) ÅT = 293 K
α = 102.99 (2)°0.2 × 0.2 × 0.2 mm
β = 96.089 (14)°
Data collection top
Rigaku Mercury CCD/AFC
diffractometer
3631 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2007)
2568 reflections with I > 2σ(I)
Tmin = 0.976, Tmax = 0.977Rint = 0.031
6267 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0670 restraints
wR(F2) = 0.207H-atom parameters constrained
S = 1.06Δρmax = 0.52 e Å3
3631 reflectionsΔρmin = 0.35 e Å3
236 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.14474 (19)0.38921 (17)0.16119 (15)0.0330 (4)
O20.1340 (2)0.09746 (18)0.25939 (15)0.0561 (5)
H180.08270.16740.28140.084*
O30.0676 (2)0.32428 (17)0.25086 (13)0.0472 (4)
C80.2117 (2)0.4611 (2)0.03990 (18)0.0331 (4)
F10.51960 (16)0.74426 (14)0.07933 (12)0.0505 (4)
C130.2335 (2)0.48548 (19)0.10118 (18)0.0318 (4)
C110.4372 (2)0.6987 (2)0.1245 (2)0.0342 (4)
C50.0120 (2)0.2477 (2)0.05450 (19)0.0356 (5)
O10.1742 (2)0.03235 (18)0.07173 (17)0.0580 (5)
C120.3415 (2)0.6063 (2)0.18211 (19)0.0344 (4)
H12A0.34880.62470.27700.041*
C90.3081 (3)0.5551 (2)0.0978 (2)0.0372 (5)
H9A0.29620.54150.19250.045*
N20.5528 (2)0.81427 (18)0.20147 (16)0.0380 (4)
C70.0944 (2)0.3414 (2)0.1242 (2)0.0361 (5)
C100.4184 (3)0.6654 (2)0.0179 (2)0.0361 (5)
C40.0408 (2)0.2758 (2)0.0830 (2)0.0359 (5)
H4A0.01630.21110.12570.043*
C60.1066 (3)0.1168 (2)0.1269 (2)0.0428 (5)
N30.7368 (3)1.0685 (2)0.37104 (18)0.0492 (5)
C30.1612 (3)0.4155 (2)0.30774 (19)0.0373 (5)
H3A0.11320.49970.35440.045*
C140.5794 (3)0.8301 (2)0.3473 (2)0.0473 (6)
H14A0.58690.73460.36630.057*
H14B0.48590.86660.38700.057*
C20.3112 (3)0.3878 (3)0.3816 (2)0.0512 (6)
H2A0.35490.45450.46960.061*
H2B0.39430.34930.32830.061*
C150.7354 (3)0.9344 (2)0.4114 (2)0.0487 (6)
H15A0.74340.95350.51030.058*
H15B0.83060.89010.38400.058*
C160.5548 (3)0.9558 (3)0.1687 (2)0.0570 (7)
H16A0.46331.00080.20390.068*
H16B0.53900.94170.07000.068*
C170.7110 (3)1.0550 (3)0.2268 (2)0.0574 (7)
H17A0.80221.01560.18560.069*
H17B0.70581.15090.20820.069*
C10.1525 (3)0.2910 (3)0.3709 (2)0.0551 (7)
H1A0.13790.19290.31110.066*
H1B0.09860.29810.45240.066*
N40.7544 (3)1.1903 (2)0.4635 (2)0.0654 (7)
O40.7463 (3)1.3001 (2)0.4211 (2)0.0895 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0369 (9)0.0264 (8)0.0303 (8)0.0042 (6)0.0015 (7)0.0040 (6)
O20.0664 (11)0.0464 (10)0.0397 (9)0.0092 (8)0.0087 (8)0.0047 (7)
O30.0588 (10)0.0433 (9)0.0306 (8)0.0015 (7)0.0052 (7)0.0012 (6)
C80.0372 (10)0.0277 (9)0.0302 (10)0.0036 (8)0.0017 (8)0.0023 (7)
F10.0587 (8)0.0475 (8)0.0438 (7)0.0084 (6)0.0111 (6)0.0155 (6)
C130.0359 (10)0.0249 (9)0.0310 (10)0.0015 (8)0.0008 (8)0.0029 (7)
C110.0373 (10)0.0278 (9)0.0340 (10)0.0004 (8)0.0015 (8)0.0061 (8)
C50.0382 (10)0.0268 (10)0.0348 (11)0.0003 (8)0.0037 (8)0.0008 (8)
O10.0590 (11)0.0456 (10)0.0569 (10)0.0192 (8)0.0103 (8)0.0103 (8)
C120.0416 (11)0.0270 (9)0.0295 (10)0.0019 (8)0.0003 (8)0.0025 (7)
C90.0455 (11)0.0354 (10)0.0293 (10)0.0065 (9)0.0029 (8)0.0057 (8)
N20.0446 (10)0.0308 (9)0.0329 (9)0.0071 (7)0.0044 (7)0.0074 (7)
C70.0390 (11)0.0306 (10)0.0336 (10)0.0058 (8)0.0010 (8)0.0002 (8)
C100.0395 (10)0.0312 (10)0.0375 (11)0.0008 (8)0.0039 (8)0.0115 (8)
C40.0361 (10)0.0284 (10)0.0380 (11)0.0023 (8)0.0013 (8)0.0043 (8)
C60.0426 (11)0.0340 (11)0.0436 (12)0.0024 (9)0.0064 (9)0.0002 (9)
N30.0662 (13)0.0354 (10)0.0359 (9)0.0088 (9)0.0016 (9)0.0013 (7)
C30.0473 (12)0.0311 (10)0.0294 (10)0.0022 (8)0.0031 (8)0.0045 (8)
C140.0608 (14)0.0394 (12)0.0337 (11)0.0112 (10)0.0030 (10)0.0075 (9)
C20.0527 (14)0.0551 (14)0.0393 (12)0.0017 (11)0.0041 (10)0.0086 (10)
C150.0607 (15)0.0401 (12)0.0364 (11)0.0056 (10)0.0068 (10)0.0051 (9)
C160.0679 (16)0.0395 (13)0.0546 (14)0.0137 (11)0.0191 (12)0.0179 (11)
C170.0767 (18)0.0424 (13)0.0451 (13)0.0128 (12)0.0004 (12)0.0104 (10)
C10.0709 (16)0.0458 (13)0.0420 (12)0.0121 (12)0.0059 (11)0.0150 (10)
N40.0859 (17)0.0430 (12)0.0536 (13)0.0081 (11)0.0084 (12)0.0059 (10)
O40.132 (2)0.0383 (11)0.0856 (16)0.0046 (12)0.0002 (14)0.0002 (10)
Geometric parameters (Å, º) top
N1—C41.346 (2)C4—H4A0.9500
N1—C131.405 (2)N3—N41.315 (3)
N1—C31.466 (2)N3—C151.442 (3)
O2—C61.330 (3)N3—C171.456 (3)
O2—H180.8400C3—C11.485 (3)
O3—C71.273 (2)C3—C21.485 (3)
C8—C91.410 (3)C3—H3A1.0000
C8—C131.411 (3)C14—C151.528 (3)
C8—C71.458 (3)C14—H14A0.9900
F1—C101.365 (2)C14—H14B0.9900
C13—C121.414 (3)C2—C11.501 (3)
C11—C121.394 (3)C2—H2A0.9900
C11—N21.404 (2)C2—H2B0.9900
C11—C101.420 (3)C15—H15A0.9900
C5—C41.373 (3)C15—H15B0.9900
C5—C71.431 (3)C16—C171.496 (3)
C5—C61.493 (3)C16—H16A0.9900
O1—C61.210 (3)C16—H16B0.9900
C12—H12A0.9500C17—H17A0.9900
C9—C101.361 (3)C17—H17B0.9900
C9—H9A0.9500C1—H1A0.9900
N2—C141.469 (3)C1—H1B0.9900
N2—C161.474 (3)N4—O41.238 (3)
C4—N1—C13119.38 (16)C1—C3—C260.70 (16)
C4—N1—C3120.52 (15)N1—C3—H3A115.5
C13—N1—C3120.07 (15)C1—C3—H3A115.5
C6—O2—H18109.5C2—C3—H3A115.5
C9—C8—C13118.03 (17)N2—C14—C15110.91 (17)
C9—C8—C7120.60 (17)N2—C14—H14A109.5
C13—C8—C7121.36 (18)C15—C14—H14A109.5
N1—C13—C8119.20 (16)N2—C14—H14B109.5
N1—C13—C12120.02 (17)C15—C14—H14B109.5
C8—C13—C12120.77 (17)H14A—C14—H14B108.0
C12—C11—N2122.48 (18)C3—C2—C159.64 (15)
C12—C11—C10116.46 (17)C3—C2—H2A117.8
N2—C11—C10120.98 (17)C1—C2—H2A117.8
C4—C5—C7120.37 (17)C3—C2—H2B117.8
C4—C5—C6117.68 (18)C1—C2—H2B117.8
C7—C5—C6121.95 (18)H2A—C2—H2B114.9
C11—C12—C13120.90 (18)N3—C15—C14110.6 (2)
C11—C12—H12A119.6N3—C15—H15A109.5
C13—C12—H12A119.6C14—C15—H15A109.5
C10—C9—C8119.97 (18)N3—C15—H15B109.5
C10—C9—H9A120.0C14—C15—H15B109.5
C8—C9—H9A120.0H15A—C15—H15B108.1
C11—N2—C14117.59 (15)N2—C16—C17111.9 (2)
C11—N2—C16117.81 (17)N2—C16—H16A109.2
C14—N2—C16111.17 (17)C17—C16—H16A109.2
O3—C7—C5123.16 (18)N2—C16—H16B109.2
O3—C7—C8121.43 (18)C17—C16—H16B109.2
C5—C7—C8115.41 (17)H16A—C16—H16B107.9
C9—C10—F1117.51 (17)N3—C17—C16108.62 (19)
C9—C10—C11123.63 (18)N3—C17—H17A110.0
F1—C10—C11118.81 (17)C16—C17—H17A110.0
N1—C4—C5124.20 (18)N3—C17—H17B110.0
N1—C4—H4A117.9C16—C17—H17B110.0
C5—C4—H4A117.9H17A—C17—H17B108.3
O1—C6—O2121.06 (19)C3—C1—C259.66 (15)
O1—C6—C5123.8 (2)C3—C1—H1A117.8
O2—C6—C5115.15 (19)C2—C1—H1A117.8
N4—N3—C15119.31 (19)C3—C1—H1B117.8
N4—N3—C17125.3 (2)C2—C1—H1B117.8
C15—N3—C17115.35 (18)H1A—C1—H1B114.9
N1—C3—C1119.44 (18)O4—N4—N3115.6 (2)
N1—C3—C2119.07 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H18···O30.841.782.562 (2)153
C4—H4A···O10.952.482.812 (3)101
C15—H15A···O2i0.992.503.405 (3)151
C15—H15B···O3ii0.992.513.385 (3)147
C16—H16A···O1iii0.992.603.264 (3)125
C16—H16B···F10.992.142.852 (3)128
C17—H17B···O40.992.302.692 (3)102
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC17H17FN4O4
Mr360.35
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.378 (3), 9.625 (4), 10.328 (4)
α, β, γ (°)102.99 (2), 96.089 (14), 97.392 (16)
V3)797.0 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.2 × 0.2 × 0.2
Data collection
DiffractometerRigaku Mercury CCD/AFC
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2007)
Tmin, Tmax0.976, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
6267, 3631, 2568
Rint0.031
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.207, 1.06
No. of reflections3631
No. of parameters236
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.52, 0.35

Computer programs: CrystalClear (Rigaku, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and DIAMOND (Brandenburg, 2005), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H18···O30.841.782.562 (2)153.4
C4—H4A···O10.952.482.812 (3)100.7
C15—H15A···O2i0.992.503.405 (3)151.3
C15—H15B···O3ii0.992.513.385 (3)147.1
C16—H16A···O1iii0.992.603.264 (3)124.8
C16—H16B···F10.992.142.852 (3)127.7
C17—H17B···O40.992.302.692 (3)102.1
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z; (iii) x, y+1, z.
 

Acknowledgements

The work was supported by a grant from the National Science Foundation of China (30771682).

References

First citationBrandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDrevenšek, P., Leban, I., Turel, I., Giester, G. & Tillmanns, E. (2003). Acta Cryst. C59, m376–m378.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, X.-W., Zhi, F., Shen, J.-H. & Hu, Y.-Q. (2005). Acta Cryst. E61, o2235–o2236.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLou, B., Boström, D. & Velaga, S. P. (2007). Acta Cryst. C63, o731–o733.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNeu, H. C. (1987). Am. J. Med. 82, 395-404.  CAS PubMed Web of Science Google Scholar
First citationRigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSekido, K., Okamoto, K. & Hirokawa, S. (1985). Acta Cryst. C41, 741–743.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTurel, I., Leban, I., Zupancic, M., Bukovec, P. & Gruber, K. (1996). Acta Cryst. C52, 2443–2445.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds