metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A new coordination tetra­mer of copper(I) iodide and benzyl­di­methyl­amine: tetra-μ3-iodido-tetra­kis[(benzyl­di­methyl­amine-κN)copper(I)]

aState Key Laboratory Base of Novel Functional Materials and Preparation Science, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
*Correspondence e-mail: panjianguo@nbu.edu.cn

(Received 4 June 2009; accepted 6 July 2009; online 11 July 2009)

The title compound, [Cu4I4(C9H13N)4], has a distorted cubane-like [Cu4I4] core structure. Each CuI atom is tetra­hedrally coordinated by three I atoms and one N atom of an benzyl­dimethyl­amine ligand. Each I atom acts as a μ3-ligand, linking three CuI atoms. The Cu—I bond distances vary between 2.6328 (7) and 2.7121 (6) Å, while the Cu—N bond distances vary between 2.107 (3) and 2.122 (3) Å.

Related literature

For the synthesis and structures of copper iodide coordination polymers, see: Bi et al. (2007a[Bi, M., Li, G., Hua, J., Liu, Y., Liu, X., Hu, Y., Shi, Z. & Feng, S. (2007a). Cryst. Growth Des. 7, 2066-2070.],b[Bi, M., Li, G., Hua, J., Liu, X., Hu, Y., Shi, Z. & Feng, S. (2007b). CrystEngComm, 9, 984-986.]); Chen et al. (2008[Chen, Y., Li, H.-X., Liu, D., Liu, L.-L., Li, N., Ye, H.-Y., Zhang, Y. & Lang, J.-P. (2008). Cryst. Growth Des. 8, 3810-3816.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu4I4(C9H13N)4]

  • Mr = 1302.58

  • Monoclinic, P 21 /n

  • a = 17.758 (4) Å

  • b = 11.544 (2) Å

  • c = 21.540 (4) Å

  • β = 100.16 (3)°

  • V = 4346.3 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.80 mm−1

  • T = 298 K

  • 0.38 × 0.29 × 0.27 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.719, Tmax = 1.000 (expected range = 0.197–0.274)

  • 40151 measured reflections

  • 9884 independent reflections

  • 8944 reflections with I > 2σ(I)

  • Rint = 0.063

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.059

  • S = 1.08

  • 9884 reflections

  • 434 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 1.77 e Å−3

  • Δρmin = −0.94 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cu1—N1 2.107 (3)
Cu1—I4 2.6711 (8)
Cu1—I1 2.6892 (6)
Cu1—I2 2.6953 (8)
Cu2—N2 2.108 (3)
Cu2—I3 2.6609 (6)
Cu2—I4 2.6750 (6)
Cu2—I1 2.6819 (9)
Cu3—N3 2.122 (3)
Cu3—I4 2.6611 (6)
Cu3—I2 2.6947 (8)
Cu3—I3 2.7121 (6)
Cu4—N4 2.112 (3)
Cu4—I1 2.6328 (7)
Cu4—I2 2.6788 (6)
Cu4—I3 2.7090 (10)

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Copper halides have been widely investigated due to their rich photoluminescent properties and intriguing topology. In recent years, great efforts have been taken to synthesize and characterize copper iodide coordination polymers which have special crystal structure and properties. By now several classes of copper iodide coordination polymers have been successfully synthesized and investigated (Bi et al., 2007a,b; Chen et al., 2008). Herein, we report the synthesis and crystal structure of the title complex.

The title compound (Fig.1) has a distorted cubanelike [Cu4I4] core structure. Each copper(I) atom is tetrahedrally coordinated by three iodide atoms and one N atom of n-benzyldimethylamine. Each iodide atom acting as µ3-I links three copper(I) atoms. The Cu—I bond distances vary between 2.6328 (7) and 2.7121 (6) Å, while the Cu—N bond distances vary between 2.107 (3) and 2.122 (3) Å. The Cu—I and Cu—N bond distances correspond well with that found in the literatures listed in the comment. Finally, Cu4I4(C9H13N)4 forms the supramolecular structure via intermolecular forces.

Related literature top

For the synthesis and structures of copper iodide coordination polymers, see: Bi et al. (2007a,b); Chen et al. (2008).

Experimental top

Cuprous iodide (0.3881 g) and n-benzyldimethylamine (1 ml) were sealed in a glass vial, which was heated at 353 K for two days. Then, the solution (0.5 ml) was put in another glass vial. One day later colorless and transparent crystals were obtained by slow evaporation of the solution at 353 K.

Refinement top

All H atoms associated with C atoms were positioned geometrically and refined as riding model [C—H1=0.93 Å, C—H2=0.97 Å, C—H3=0.96Å Uiso(H)=1.2Ueq(C), Uiso(H)=1.5Ueq(C)].

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The symmetric unit structure of Cu4I4(C9H13N)4 with displacement ellipsoids drawn at the 45% probability level.
[Figure 2] Fig. 2. The supramolecular structure formed via intermolecular forces.
tetra-µ3-iodido-tetrakis[(benzyldimethylamine-κN)copper(I)] top
Crystal data top
[Cu4I4(C9H13N)4]F(000) = 2496
Mr = 1302.58Dx = 1.991 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 40151 reflections
a = 17.758 (4) Åθ = 3.0–27.4°
b = 11.544 (2) ŵ = 4.80 mm1
c = 21.540 (4) ÅT = 298 K
β = 100.16 (3)°Block, colorless
V = 4346.3 (15) Å30.38 × 0.29 × 0.27 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
9884 independent reflections
Radiation source: fine-focus sealed tube8944 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.063
ω scansθmax = 27.4°, θmin = 3.0°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 2323
Tmin = 0.719, Tmax = 1.000k = 1414
40151 measured reflectionsl = 2727
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.059 w = 1/[σ2(Fo2) + 6.5262P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.003
9884 reflectionsΔρmax = 1.77 e Å3
434 parametersΔρmin = 0.94 e Å3
6 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00015 (4)
Crystal data top
[Cu4I4(C9H13N)4]V = 4346.3 (15) Å3
Mr = 1302.58Z = 4
Monoclinic, P21/nMo Kα radiation
a = 17.758 (4) ŵ = 4.80 mm1
b = 11.544 (2) ÅT = 298 K
c = 21.540 (4) Å0.38 × 0.29 × 0.27 mm
β = 100.16 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
9884 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
8944 reflections with I > 2σ(I)
Tmin = 0.719, Tmax = 1.000Rint = 0.063
40151 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0316 restraints
wR(F2) = 0.059H-atom parameters constrained
S = 1.08Δρmax = 1.77 e Å3
9884 reflectionsΔρmin = 0.94 e Å3
434 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.00846 (2)0.35843 (3)0.16475 (2)0.01613 (9)
Cu20.12653 (2)0.45686 (3)0.18503 (2)0.01504 (9)
Cu30.05779 (2)0.42114 (3)0.289283 (19)0.01594 (9)
Cu40.00552 (2)0.58059 (3)0.20498 (2)0.01611 (9)
I10.020897 (11)0.530945 (17)0.088571 (10)0.01611 (6)
I20.093901 (11)0.439045 (17)0.247110 (10)0.01551 (6)
I30.144530 (11)0.610927 (17)0.278368 (10)0.01425 (5)
I40.110408 (11)0.244188 (17)0.230246 (10)0.01544 (6)
C10.1133 (2)0.1608 (3)0.14134 (18)0.0230 (7)
H1A0.14680.10990.11400.034*
H1B0.14150.19900.16950.034*
H1C0.07240.11660.16530.034*
C20.14480 (18)0.3176 (3)0.06819 (17)0.0218 (7)
H2A0.17840.26800.04010.033*
H2B0.12480.37670.04430.033*
H2C0.17270.35290.09750.033*
C30.03673 (17)0.1916 (3)0.05871 (16)0.0170 (7)
H3A0.00470.14790.08340.020*
H3B0.01400.25150.03640.020*
C40.08217 (17)0.1108 (3)0.01039 (16)0.0172 (7)
C50.0909 (2)0.0059 (3)0.02337 (18)0.0212 (7)
H5A0.06880.03560.06250.025*
C60.13257 (19)0.0788 (3)0.02167 (18)0.0237 (8)
H6A0.13850.15650.01220.028*
C70.16496 (19)0.0367 (3)0.08022 (18)0.0239 (8)
H7A0.19240.08590.11020.029*
C80.15646 (19)0.0791 (3)0.09414 (18)0.0232 (8)
H8A0.17830.10810.13350.028*
C90.11522 (18)0.1522 (3)0.04909 (17)0.0200 (7)
H9A0.10960.22980.05880.024*
C110.29409 (18)0.4446 (3)0.20081 (17)0.0192 (7)
H11A0.34120.44810.18490.029*
H11B0.28890.36950.21870.029*
H11C0.29430.50280.23270.029*
C120.2371 (2)0.5829 (3)0.12264 (17)0.0207 (7)
H12A0.28360.58700.10580.031*
H12B0.23850.63920.15560.031*
H12C0.19430.59850.08970.031*
C130.2257 (2)0.3751 (3)0.09826 (17)0.0221 (7)
H13A0.17640.38080.07070.027*
H13B0.22830.29960.11820.027*
C140.2872 (2)0.3810 (3)0.05807 (18)0.0266 (8)
C150.2717 (3)0.4335 (4)0.0012 (2)0.0582 (16)
H15A0.22290.46200.01600.070*
C160.3270 (4)0.4439 (5)0.0382 (3)0.0761 (19)
H16A0.31560.48070.07710.091*
C170.3996 (4)0.4000 (4)0.0177 (3)0.0686 (18)
H17A0.43700.40710.04280.082*
C180.4163 (3)0.3456 (4)0.0402 (2)0.0439 (11)
H18A0.46490.31570.05430.053*
C190.3596 (2)0.3359 (3)0.07735 (19)0.0281 (8)
H19A0.37090.29810.11600.034*
C210.0141 (2)0.3227 (3)0.40695 (18)0.0243 (8)
H21A0.01790.32270.45200.036*
H21B0.03060.24910.39350.036*
H21C0.03810.33610.38740.036*
C220.03421 (19)0.5276 (3)0.40854 (17)0.0207 (7)
H22A0.03600.52680.45330.031*
H22B0.01760.53910.38750.031*
H22C0.06570.58930.39770.031*
C230.14486 (18)0.3971 (3)0.41885 (17)0.0217 (7)
H23A0.17530.45900.40540.026*
H23B0.16250.32490.40340.026*
C240.15991 (19)0.3937 (3)0.49034 (18)0.0249 (8)
C250.17937 (19)0.4938 (4)0.52562 (19)0.0316 (9)
H25A0.18440.56340.50500.038*
C260.1913 (2)0.4913 (4)0.5908 (2)0.0378 (10)
H26A0.20450.55870.61370.045*
C270.1834 (2)0.3883 (5)0.6217 (2)0.0398 (11)
H27A0.19060.38690.66560.048*
C280.1650 (2)0.2878 (4)0.58806 (19)0.0362 (10)
H28A0.16040.21850.60910.043*
C290.1533 (2)0.2902 (4)0.52248 (18)0.0295 (9)
H29A0.14090.22220.49980.035*
C310.0059 (2)0.8294 (3)0.17982 (18)0.0238 (8)
H31A0.01590.90560.17870.036*
H31B0.01220.80730.13810.036*
H31C0.05490.82940.20720.036*
C320.1203 (2)0.7451 (3)0.16079 (18)0.0246 (8)
H32A0.14330.82040.16040.037*
H32B0.15310.68880.17520.037*
H32C0.11300.72550.11890.037*
C330.05426 (19)0.7741 (3)0.26976 (16)0.0186 (7)
H33A0.00450.76710.29660.022*
H33B0.08750.71640.28350.022*
C340.08608 (19)0.8926 (3)0.28009 (16)0.0171 (7)
C350.03778 (19)0.9878 (3)0.29292 (18)0.0224 (7)
H35A0.01470.97750.29600.027*
C360.0660 (2)1.0976 (3)0.30126 (18)0.0233 (8)
H36A0.03281.16030.30880.028*
C370.1438 (2)1.1136 (3)0.29828 (17)0.0220 (7)
H37A0.16291.18690.30450.026*
C380.19297 (19)1.0205 (3)0.28603 (17)0.0214 (7)
H38A0.24531.03120.28390.026*
C390.16446 (19)0.9105 (3)0.27686 (17)0.0189 (7)
H39A0.19800.84840.26850.023*
N10.08119 (14)0.2486 (2)0.10298 (13)0.0157 (6)
N20.22903 (15)0.4653 (2)0.14853 (13)0.0158 (6)
N30.06292 (15)0.4150 (2)0.38841 (13)0.0162 (6)
N40.04546 (15)0.7461 (2)0.20371 (13)0.0171 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01373 (18)0.01576 (18)0.0179 (2)0.00103 (16)0.00007 (15)0.00207 (15)
Cu20.01317 (18)0.01511 (18)0.0169 (2)0.00067 (15)0.00288 (15)0.00087 (15)
Cu30.01647 (19)0.01768 (19)0.0138 (2)0.00067 (16)0.00297 (15)0.00108 (15)
Cu40.01831 (19)0.01386 (18)0.0161 (2)0.00297 (16)0.00278 (15)0.00088 (15)
I10.01885 (10)0.01741 (10)0.01135 (11)0.00066 (8)0.00072 (8)0.00055 (8)
I20.01233 (10)0.01651 (10)0.01800 (12)0.00070 (8)0.00350 (8)0.00110 (8)
I30.01502 (10)0.01455 (10)0.01326 (11)0.00241 (8)0.00275 (7)0.00213 (7)
I40.01374 (10)0.01215 (9)0.02016 (12)0.00196 (8)0.00229 (8)0.00118 (8)
C10.0227 (17)0.0228 (17)0.025 (2)0.0068 (15)0.0082 (14)0.0037 (14)
C20.0144 (15)0.0229 (17)0.026 (2)0.0043 (14)0.0024 (13)0.0055 (14)
C30.0113 (14)0.0206 (15)0.0190 (18)0.0016 (13)0.0025 (12)0.0043 (13)
C40.0114 (14)0.0207 (16)0.0210 (19)0.0002 (13)0.0066 (12)0.0047 (13)
C50.0228 (17)0.0171 (15)0.023 (2)0.0033 (14)0.0018 (14)0.0027 (13)
C60.0213 (17)0.0179 (16)0.032 (2)0.0015 (14)0.0062 (15)0.0055 (14)
C70.0179 (16)0.0252 (17)0.029 (2)0.0020 (15)0.0046 (14)0.0115 (15)
C80.0189 (16)0.0320 (19)0.0186 (19)0.0016 (15)0.0032 (14)0.0050 (15)
C90.0207 (16)0.0197 (16)0.0208 (19)0.0018 (14)0.0070 (13)0.0022 (13)
C110.0144 (15)0.0217 (16)0.0216 (19)0.0030 (13)0.0039 (13)0.0006 (13)
C120.0246 (17)0.0164 (15)0.023 (2)0.0022 (14)0.0102 (14)0.0037 (13)
C130.0245 (17)0.0197 (16)0.022 (2)0.0025 (15)0.0030 (14)0.0068 (14)
C140.039 (2)0.0215 (17)0.022 (2)0.0121 (17)0.0131 (16)0.0004 (14)
C150.094 (4)0.059 (3)0.025 (3)0.051 (3)0.021 (3)0.011 (2)
C160.139 (5)0.061 (3)0.044 (3)0.061 (3)0.059 (3)0.030 (3)
C170.121 (5)0.044 (3)0.062 (4)0.026 (3)0.076 (3)0.019 (2)
C180.051 (3)0.038 (2)0.052 (3)0.010 (2)0.034 (2)0.004 (2)
C190.037 (2)0.0242 (18)0.026 (2)0.0077 (17)0.0160 (16)0.0042 (15)
C210.0254 (18)0.0253 (18)0.022 (2)0.0069 (16)0.0042 (14)0.0059 (15)
C220.0193 (16)0.0251 (17)0.0189 (19)0.0020 (15)0.0069 (13)0.0016 (14)
C230.0148 (15)0.0314 (18)0.0195 (19)0.0052 (15)0.0042 (13)0.0052 (15)
C240.0130 (15)0.042 (2)0.020 (2)0.0067 (16)0.0032 (13)0.0017 (16)
C250.0154 (16)0.052 (2)0.027 (2)0.0037 (18)0.0019 (15)0.0029 (18)
C260.0194 (18)0.067 (3)0.026 (2)0.000 (2)0.0035 (16)0.012 (2)
C270.0194 (18)0.082 (3)0.019 (2)0.013 (2)0.0049 (15)0.002 (2)
C280.0246 (19)0.063 (3)0.022 (2)0.016 (2)0.0071 (15)0.015 (2)
C290.0240 (18)0.044 (2)0.021 (2)0.0129 (17)0.0057 (15)0.0046 (17)
C310.0315 (19)0.0167 (15)0.025 (2)0.0036 (15)0.0112 (15)0.0066 (14)
C320.0249 (18)0.0231 (17)0.024 (2)0.0081 (15)0.0021 (14)0.0026 (14)
C330.0231 (16)0.0173 (15)0.0162 (18)0.0047 (14)0.0062 (13)0.0018 (13)
C340.0205 (16)0.0165 (15)0.0146 (17)0.0015 (14)0.0038 (13)0.0000 (12)
C350.0154 (15)0.0268 (18)0.025 (2)0.0008 (15)0.0033 (14)0.0070 (15)
C360.0241 (17)0.0201 (16)0.026 (2)0.0077 (15)0.0069 (15)0.0082 (14)
C370.0260 (18)0.0179 (16)0.024 (2)0.0031 (15)0.0088 (14)0.0017 (14)
C380.0147 (15)0.0264 (17)0.024 (2)0.0032 (14)0.0044 (13)0.0003 (14)
C390.0169 (15)0.0197 (16)0.0204 (19)0.0029 (14)0.0044 (13)0.0009 (13)
N10.0117 (12)0.0168 (13)0.0187 (15)0.0010 (11)0.0026 (10)0.0023 (11)
N20.0169 (13)0.0131 (12)0.0179 (15)0.0009 (11)0.0043 (11)0.0002 (11)
N30.0158 (13)0.0183 (13)0.0149 (15)0.0004 (11)0.0034 (11)0.0029 (11)
N40.0205 (14)0.0167 (13)0.0143 (15)0.0042 (12)0.0039 (11)0.0023 (11)
Geometric parameters (Å, º) top
Cu1—N12.107 (3)C14—C191.381 (5)
Cu1—Cu22.6189 (7)C14—C151.396 (6)
Cu1—I42.6711 (8)C15—C161.374 (8)
Cu1—I12.6892 (6)C15—H15A0.9300
Cu1—I22.6953 (8)C16—C171.383 (9)
Cu1—Cu42.7043 (7)C16—H16A0.9300
Cu1—Cu32.8266 (9)C17—C181.381 (7)
Cu2—N22.108 (3)C17—H17A0.9300
Cu2—I32.6609 (6)C18—C191.397 (6)
Cu2—I42.6750 (6)C18—H18A0.9300
Cu2—Cu42.6774 (7)C19—H19A0.9300
Cu2—I12.6819 (9)C21—N31.473 (4)
Cu2—Cu32.7694 (9)C21—H21A0.9600
Cu3—N32.122 (3)C21—H21B0.9600
Cu3—Cu42.6368 (7)C21—H21C0.9600
Cu3—I42.6611 (6)C22—N31.488 (4)
Cu3—I22.6947 (8)C22—H22A0.9600
Cu3—I32.7121 (6)C22—H22B0.9600
Cu4—N42.112 (3)C22—H22C0.9600
Cu4—I12.6328 (7)C23—N31.501 (4)
Cu4—I22.6788 (6)C23—C241.516 (5)
Cu4—I32.7090 (10)C23—H23A0.9700
C1—N11.484 (4)C23—H23B0.9700
C1—H1A0.9600C24—C251.393 (6)
C1—H1B0.9600C24—C291.396 (5)
C1—H1C0.9600C25—C261.382 (6)
C2—N11.474 (4)C25—H25A0.9300
C2—H2A0.9600C26—C271.382 (7)
C2—H2B0.9600C26—H26A0.9300
C2—H2C0.9600C27—C281.377 (7)
C3—N11.494 (4)C27—H27A0.9300
C3—C41.519 (4)C28—C291.391 (5)
C3—H3A0.9700C28—H28A0.9300
C3—H3B0.9700C29—H29A0.9300
C4—C51.391 (5)C31—N41.480 (4)
C4—C91.396 (5)C31—H31A0.9600
C5—C61.394 (5)C31—H31B0.9600
C5—H5A0.9300C31—H31C0.9600
C6—C71.379 (5)C32—N41.479 (4)
C6—H6A0.9300C32—H32A0.9600
C7—C81.385 (5)C32—H32B0.9600
C7—H7A0.9300C32—H32C0.9600
C8—C91.392 (5)C33—N41.494 (4)
C8—H8A0.9300C33—C341.510 (4)
C9—H9A0.9300C33—H33A0.9700
C11—N21.484 (4)C33—H33B0.9700
C11—H11A0.9600C34—C351.392 (5)
C11—H11B0.9600C34—C391.397 (5)
C11—H11C0.9600C35—C361.386 (5)
C12—N21.483 (4)C35—H35A0.9300
C12—H12A0.9600C36—C371.384 (5)
C12—H12B0.9600C36—H36A0.9300
C12—H12C0.9600C37—C381.380 (5)
C13—N21.496 (4)C37—H37A0.9300
C13—C141.510 (5)C38—C391.393 (5)
C13—H13A0.9700C38—H38A0.9300
C13—H13B0.9700C39—H39A0.9300
N1—Cu1—Cu2143.85 (8)N2—C11—H11A109.5
N1—Cu1—I4112.06 (8)N2—C11—H11B109.5
Cu2—Cu1—I460.74 (2)H11A—C11—H11B109.5
N1—Cu1—I1102.92 (8)N2—C11—H11C109.5
Cu2—Cu1—I160.68 (2)H11A—C11—H11C109.5
I4—Cu1—I1117.89 (2)H11B—C11—H11C109.5
N1—Cu1—I2105.65 (8)N2—C12—H12A109.5
Cu2—Cu1—I2110.21 (2)N2—C12—H12B109.5
I4—Cu1—I2107.88 (2)H12A—C12—H12B109.5
I1—Cu1—I2109.76 (2)N2—C12—H12C109.5
N1—Cu1—Cu4141.67 (7)H12A—C12—H12C109.5
Cu2—Cu1—Cu460.368 (17)H12B—C12—H12C109.5
I4—Cu1—Cu4106.24 (2)N2—C13—C14116.4 (3)
I1—Cu1—Cu458.436 (18)N2—C13—H13A108.2
I2—Cu1—Cu459.485 (14)C14—C13—H13A108.2
N1—Cu1—Cu3149.25 (8)N2—C13—H13B108.2
Cu2—Cu1—Cu360.99 (3)C14—C13—H13B108.2
I4—Cu1—Cu357.82 (2)H13A—C13—H13B107.3
I1—Cu1—Cu3107.241 (19)C19—C14—C15117.5 (4)
I2—Cu1—Cu358.36 (2)C19—C14—C13122.7 (3)
Cu4—Cu1—Cu356.893 (14)C15—C14—C13119.9 (4)
N2—Cu2—Cu1141.53 (8)C16—C15—C14121.5 (5)
N2—Cu2—I3104.72 (8)C16—C15—H15A119.3
Cu1—Cu2—I3113.60 (3)C14—C15—H15A119.3
N2—Cu2—I4109.47 (7)C15—C16—C17120.3 (5)
Cu1—Cu2—I460.592 (18)C15—C16—H16A119.8
I3—Cu2—I4110.16 (2)C17—C16—H16A119.8
N2—Cu2—Cu4143.63 (7)C18—C17—C16119.5 (5)
Cu1—Cu2—Cu461.40 (2)C18—C17—H17A120.2
I3—Cu2—Cu460.99 (2)C16—C17—H17A120.2
I4—Cu2—Cu4106.90 (2)C17—C18—C19119.5 (5)
N2—Cu2—I1103.19 (8)C17—C18—H18A120.2
Cu1—Cu2—I160.96 (2)C19—C18—H18A120.2
I3—Cu2—I1110.28 (2)C14—C19—C18121.6 (4)
I4—Cu2—I1118.005 (16)C14—C19—H19A119.2
Cu4—Cu2—I158.845 (19)C18—C19—H19A119.2
N2—Cu2—Cu3147.38 (8)N3—C21—H21A109.5
Cu1—Cu2—Cu363.21 (3)N3—C21—H21B109.5
I3—Cu2—Cu359.886 (17)H21A—C21—H21B109.5
I4—Cu2—Cu358.490 (13)N3—C21—H21C109.5
Cu4—Cu2—Cu357.88 (2)H21A—C21—H21C109.5
I1—Cu2—Cu3109.12 (2)H21B—C21—H21C109.5
N3—Cu3—Cu4131.57 (8)N3—C22—H22A109.5
N3—Cu3—I4119.92 (7)N3—C22—H22B109.5
Cu4—Cu3—I4108.51 (2)H22A—C22—H22B109.5
N3—Cu3—I2101.81 (8)N3—C22—H22C109.5
Cu4—Cu3—I260.31 (2)H22A—C22—H22C109.5
I4—Cu3—I2108.19 (2)H22B—C22—H22C109.5
N3—Cu3—I3100.94 (8)N3—C23—C24115.5 (3)
Cu4—Cu3—I360.84 (2)N3—C23—H23A108.4
I4—Cu3—I3109.03 (2)C24—C23—H23A108.4
I2—Cu3—I3117.263 (17)N3—C23—H23B108.4
N3—Cu3—Cu2150.92 (7)C24—C23—H23B108.4
Cu4—Cu3—Cu259.313 (18)H23A—C23—H23B107.5
I4—Cu3—Cu258.983 (17)C25—C24—C29118.3 (4)
I2—Cu3—Cu2105.82 (3)C25—C24—C23121.0 (4)
I3—Cu3—Cu258.072 (16)C29—C24—C23120.7 (4)
N3—Cu3—Cu1152.01 (7)C26—C25—C24121.0 (4)
Cu4—Cu3—Cu159.22 (2)C26—C25—H25A119.5
I4—Cu3—Cu158.159 (17)C24—C25—H25A119.5
I2—Cu3—Cu158.38 (3)C25—C26—C27119.9 (4)
I3—Cu3—Cu1105.80 (2)C25—C26—H26A120.1
Cu2—Cu3—Cu155.798 (19)C27—C26—H26A120.1
N4—Cu4—I1107.50 (8)C28—C27—C26120.4 (4)
N4—Cu4—Cu3137.59 (8)C28—C27—H27A119.8
I1—Cu4—Cu3114.89 (2)C26—C27—H27A119.8
N4—Cu4—Cu2146.59 (8)C27—C28—C29119.8 (4)
I1—Cu4—Cu260.66 (3)C27—C28—H28A120.1
Cu3—Cu4—Cu262.81 (2)C29—C28—H28A120.1
N4—Cu4—I2104.45 (8)C28—C29—C24120.7 (4)
I1—Cu4—I2112.03 (2)C28—C29—H29A119.7
Cu3—Cu4—I260.92 (2)C24—C29—H29A119.7
Cu2—Cu4—I2108.94 (2)N4—C31—H31A109.5
N4—Cu4—Cu1147.00 (8)N4—C31—H31B109.5
I1—Cu4—Cu160.494 (14)H31A—C31—H31B109.5
Cu3—Cu4—Cu163.89 (2)N4—C31—H31C109.5
Cu2—Cu4—Cu158.236 (17)H31A—C31—H31C109.5
I2—Cu4—Cu160.089 (18)H31B—C31—H31C109.5
N4—Cu4—I3103.60 (7)N4—C32—H32A109.5
I1—Cu4—I3110.30 (3)N4—C32—H32B109.5
Cu3—Cu4—I360.95 (2)H32A—C32—H32B109.5
Cu2—Cu4—I359.205 (17)N4—C32—H32C109.5
I2—Cu4—I3117.93 (2)H32A—C32—H32C109.5
Cu1—Cu4—I3109.405 (17)H32B—C32—H32C109.5
Cu4—I1—Cu260.49 (2)N4—C33—C34116.2 (3)
Cu4—I1—Cu161.070 (17)N4—C33—H33A108.2
Cu2—I1—Cu158.366 (16)C34—C33—H33A108.2
Cu4—I2—Cu358.773 (17)N4—C33—H33B108.2
Cu4—I2—Cu160.43 (2)C34—C33—H33B108.2
Cu3—I2—Cu163.26 (2)H33A—C33—H33B107.4
Cu2—I3—Cu459.81 (2)C35—C34—C39117.8 (3)
Cu2—I3—Cu362.04 (2)C35—C34—C33120.7 (3)
Cu4—I3—Cu358.208 (14)C39—C34—C33121.5 (3)
Cu3—I4—Cu164.025 (19)C36—C35—C34121.6 (3)
Cu3—I4—Cu262.53 (2)C36—C35—H35A119.2
Cu1—I4—Cu258.665 (15)C34—C35—H35A119.2
N1—C1—H1A109.5C37—C36—C35119.8 (3)
N1—C1—H1B109.5C37—C36—H36A120.1
H1A—C1—H1B109.5C35—C36—H36A120.1
N1—C1—H1C109.5C38—C37—C36119.8 (3)
H1A—C1—H1C109.5C38—C37—H37A120.1
H1B—C1—H1C109.5C36—C37—H37A120.1
N1—C2—H2A109.5C37—C38—C39120.2 (3)
N1—C2—H2B109.5C37—C38—H38A119.9
H2A—C2—H2B109.5C39—C38—H38A119.9
N1—C2—H2C109.5C38—C39—C34120.8 (3)
H2A—C2—H2C109.5C38—C39—H39A119.6
H2B—C2—H2C109.5C34—C39—H39A119.6
N1—C3—C4115.5 (2)C2—N1—C1108.5 (3)
N1—C3—H3A108.4C2—N1—C3110.9 (3)
C4—C3—H3A108.4C1—N1—C3110.7 (3)
N1—C3—H3B108.4C2—N1—Cu1108.97 (19)
C4—C3—H3B108.4C1—N1—Cu1108.2 (2)
H3A—C3—H3B107.5C3—N1—Cu1109.50 (18)
C5—C4—C9118.2 (3)C12—N2—C11108.6 (3)
C5—C4—C3121.5 (3)C12—N2—C13111.0 (3)
C9—C4—C3120.4 (3)C11—N2—C13111.3 (3)
C4—C5—C6120.6 (3)C12—N2—Cu2109.2 (2)
C4—C5—H5A119.7C11—N2—Cu2108.5 (2)
C6—C5—H5A119.7C13—N2—Cu2108.2 (2)
C7—C6—C5120.5 (3)C21—N3—C22107.7 (3)
C7—C6—H6A119.7C21—N3—C23110.7 (3)
C5—C6—H6A119.7C22—N3—C23110.4 (3)
C6—C7—C8119.6 (3)C21—N3—Cu3112.0 (2)
C6—C7—H7A120.2C22—N3—Cu3107.9 (2)
C8—C7—H7A120.2C23—N3—Cu3108.1 (2)
C7—C8—C9119.9 (3)C32—N4—C31109.2 (3)
C7—C8—H8A120.1C32—N4—C33111.3 (3)
C9—C8—H8A120.1C31—N4—C33111.4 (3)
C8—C9—C4121.1 (3)C32—N4—Cu4109.7 (2)
C8—C9—H9A119.4C31—N4—Cu4107.7 (2)
C4—C9—H9A119.4C33—N4—Cu4107.49 (19)

Experimental details

Crystal data
Chemical formula[Cu4I4(C9H13N)4]
Mr1302.58
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)17.758 (4), 11.544 (2), 21.540 (4)
β (°) 100.16 (3)
V3)4346.3 (15)
Z4
Radiation typeMo Kα
µ (mm1)4.80
Crystal size (mm)0.38 × 0.29 × 0.27
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.719, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
40151, 9884, 8944
Rint0.063
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.059, 1.08
No. of reflections9884
No. of parameters434
No. of restraints6
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.77, 0.94

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976).

Selected bond lengths (Å) top
Cu1—N12.107 (3)Cu3—N32.122 (3)
Cu1—I42.6711 (8)Cu3—I42.6611 (6)
Cu1—I12.6892 (6)Cu3—I22.6947 (8)
Cu1—I22.6953 (8)Cu3—I32.7121 (6)
Cu2—N22.108 (3)Cu4—N42.112 (3)
Cu2—I32.6609 (6)Cu4—I12.6328 (7)
Cu2—I42.6750 (6)Cu4—I22.6788 (6)
Cu2—I12.6819 (9)Cu4—I32.7090 (10)
 

Acknowledgements

This work was partially supported by the Zhejiang Provincial Natural Science Foundation (No.Y406277), the Ningbo Municipal Natural Science Foundation (No. 2005 A620023) and the K. C. Wang Magna Fund in Ningbo University.

References

First citationBi, M., Li, G., Hua, J., Liu, X., Hu, Y., Shi, Z. & Feng, S. (2007b). CrystEngComm, 9, 984–986.  Web of Science CSD CrossRef CAS Google Scholar
First citationBi, M., Li, G., Hua, J., Liu, Y., Liu, X., Hu, Y., Shi, Z. & Feng, S. (2007a). Cryst. Growth Des. 7, 2066–2070.  Web of Science CSD CrossRef CAS Google Scholar
First citationChen, Y., Li, H.-X., Liu, D., Liu, L.-L., Li, N., Ye, H.-Y., Zhang, Y. & Lang, J.-P. (2008). Cryst. Growth Des. 8, 3810–3816.  Web of Science CSD CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds