metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­chlorido(2,9-dimeth­­oxy-1,10-phenanthroline-κ2N,N′)zinc(II)

aCollege of Sciences, Henan Agricultural University, Zhengzhou 450002, People's Republic of China
*Correspondence e-mail: niu_cy2000@yahoo.com.cn

(Received 13 June 2009; accepted 28 June 2009; online 4 July 2009)

In the crystal structure of the title compound, [ZnCl2(C14H12N2O2)], the ZnII center is four-coordinated by two N atoms from one 2,9-dimeth­oxy-1,10-phenanthroline ligand and two Cl atoms. The coordination geometry is distorted tetra­hedral, as the Zn—N bond distances are shorter than the Zn—Cl distances, and the Cl—Zn—N and Cl—Zn—Cl bond angles are much larger than the N—Zn—N angle. For the ligand, the O and C atoms of the meth­oxy groups are almost in the plane defined by the phenanthroline ring. The two O atoms deviate from the phenanthroline mean plane by 0.076 (2) and 0.084 (2) Å, and the two methyl C atoms deviate from the phenanthroline mean plane by 0.035 (3) and 0.361 (3) Å. There are medium ππ stacking interactions between two parallel phenanthroline rings with a centroid–centroid distance of 3.7860 (2) Å and a dihedral angle between the plane defined by the two parallel phenanthroline rings of 1.13 (5)°.

Related literature

For background information, see: Majumder et al. (2006[Majumder, A., Westerhausen, M., Kneifel, A. N., Sutter, J.-P., Daro, N. & Mitra, S. (2006). Inorg. Chim. Acta, 359, 3841-3846.]); Bie et al. (2006[Bie, H. Y., Wei, J., Yu, J. H., Wang, T. G., Lu, J. & Xu, J. Q. (2006). Mater. Lett. 60, 2475-2479.]). For the synthesis, see: Pijper et al. (1984[Pijper, P. L., Van der Goot, H., Timmerman, H. & Nauta, W. T. (1984). Eur. J. Med. Chem. 19, 399-404.]).

[Scheme 1]

Experimental

Crystal data
  • [ZnCl2(C14H12N2O2)]

  • Mr = 376.53

  • Monoclinic, P 21 /c

  • a = 9.0494 (8) Å

  • b = 10.3783 (9) Å

  • c = 16.3517 (14) Å

  • β = 99.022 (1)°

  • V = 1516.7 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.98 mm−1

  • T = 291 K

  • 0.27 × 0.14 × 0.10 mm

Data collection
  • Bruker APEXII CCD detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS . Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.616, Tmax = 0.835

  • 9326 measured reflections

  • 3465 independent reflections

  • 2917 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.065

  • S = 1.03

  • 3465 reflections

  • 192 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Selected geometric parameters (Å, °)

Zn1—N1 2.0659 (14)
Zn1—N2 2.0911 (14)
Zn1—Cl1 2.2007 (6)
Zn1—Cl2 2.2219 (6)
N1—Zn1—N2 80.58 (6)
N1—Zn1—Cl1 113.27 (4)
N2—Zn1—Cl1 120.54 (4)
N1—Zn1—Cl2 110.66 (4)
N2—Zn1—Cl2 108.06 (4)
Cl1—Zn1—Cl2 117.82 (2)

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1994[Siemens (1994). SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXL97 and DIAMOND (Brandenburg, 2005[Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR. Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The compound 1,10-phenanthroline was reported to be used to synthesize some potential strong luminescent materials with d10 metals. It can be predicted that the title compound that composed of a derivative of 1,10-phenanthroline and a d10 metal zinc would possess strong ligand to ligand or metal perturbed ligand to ligand emissions (Majumder et al., 2006; Bie, et al., 2006). 2,9-Dimethoxy-1,10-phenanthroline and 2,9-Diethoxy-1,10-phenanthroline as derivatives of 1,10-phenanthroline were synthesized at early time and they possess antimycoplasmal activity in the presence of copper (Pijper, et al., 1984).

The title compound (I) is a mononuclear zinc(II) complex of 2,9-dimethoxy-1,10-phenanthroline (shown as Fig.1). The zinc metal centre is four coordinated to two nitrogen atoms (N1, N2) from the 1,10-phenanthroline ring and two independent chlorine atoms (Cl1, Cl2), defining a deformed tetrahedron coordination geometry around the metal center. The Zn—Cl bond distances are 2.2007 (6) and 2.2219 (6) Å, which are longer than the Zn—N bond distances from 2.0659 (14) to 2.0911 (14) Å. The Cl—Zn—N and Cl—Zn—Cl bond angles are at the range of 108.06 (4) to 120.54 (4) °, which are larger than that of N—Zn—N [80.58 (6)°]. Furthermore, there are medium π-π stackings between two parallel phenanthroline rings from two symmetry-related monomers with the centroid-to-centroid distances of about 3.7860 (2) Å and dihedral angle of 1.13 (5) ° (Fig. 2). For the ligand, two methoxy groups are basically coplanar to the phenanthroline ring. Two oxygen atoms deviate from the phenanthroline plane by 0.076 (2) and 0.084 (2) Å, and two methyl carbon atoms deviate from the phenanthroline plane by 0.035 (3) and 0.361 (3) Å.

Three-dimensional supramolecular structure of the title compound is formed via the above-mentioned π-π stackings and weak van der waals interactions. Some interesting packings along three crystallographic directions can be seen from Fig. 3.

Related literature top

For background information, see: Majumder et al. (2006); Bie et al. (2006). For the synthesis, see: Pijper et al. (1984).

Experimental top

The organic ligand 2,9-dimethoxy-1,10-phenanthroline was prepared according to the procedure of literature (Pijper, et al., 1984). The slow evaporation of mixture of the ligand (0.022 g, 0.1 mmol) and zinc dichloride (0.014 g, 0.1 mmol) in 30 ml me thanol afforded suitable colourless block crystals in about 7 days (yield 45%).

Refinement top

Carbon-bound H atoms were positioned geometrically and refined using a riding model [C—H = 0.93 Å and Uiso(H) = 1.2 Ueq(C) for aromatic H atoms; C—H = 0.96 Å and Uiso(H) = 1.5 Ueq(C) for methyl H atoms;]. The final difference Fourier map had a highest peak at 0.85 Å from atom Cl2 and a deepest hole at 0.59 Å from atom Cl2, but were otherwise featureless.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1994); data reduction: SAINT (Siemens, 1994); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: 'SHELXL97 (Sheldrick, 2008) and DIAMOND (Brandenburg, 2005); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the ZnII coordination environment in (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Packing diagram showing the π-π interaction (purple dotted line). All H atoms have been omitted for clarity.
[Figure 3] Fig. 3. Diagrams showing the three-dimensional packing forms along three crystallographic directions.
Dichlorido(2,9-dimethoxy-1,10-phenanthroline-κ2N,N')zinc(II) top
Crystal data top
[ZnCl2(C14H12N2O2)]F(000) = 760
Mr = 376.53Dx = 1.649 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4023 reflections
a = 9.0494 (8) Åθ = 2.3–27.9°
b = 10.3783 (9) ŵ = 1.98 mm1
c = 16.3517 (14) ÅT = 291 K
β = 99.022 (1)°Block, colorless
V = 1516.7 (2) Å30.27 × 0.14 × 0.10 mm
Z = 4
Data collection top
Bruker APEXII CCD detector
diffractometer
3465 independent reflections
Radiation source: fine-focus sealed tube2917 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ϕ and ω scansθmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 711
Tmin = 0.616, Tmax = 0.835k = 1313
9326 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.065H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0298P)2 + 0.4767P]
where P = (Fo2 + 2Fc2)/3
3465 reflections(Δ/σ)max = 0.001
192 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
[ZnCl2(C14H12N2O2)]V = 1516.7 (2) Å3
Mr = 376.53Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.0494 (8) ŵ = 1.98 mm1
b = 10.3783 (9) ÅT = 291 K
c = 16.3517 (14) Å0.27 × 0.14 × 0.10 mm
β = 99.022 (1)°
Data collection top
Bruker APEXII CCD detector
diffractometer
3465 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2917 reflections with I > 2σ(I)
Tmin = 0.616, Tmax = 0.835Rint = 0.017
9326 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.065H-atom parameters constrained
S = 1.03Δρmax = 0.30 e Å3
3465 reflectionsΔρmin = 0.25 e Å3
192 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.85210 (2)0.73107 (2)0.142693 (13)0.03691 (8)
Cl11.07679 (6)0.76186 (5)0.21365 (3)0.05122 (14)
Cl20.68839 (6)0.89157 (5)0.13748 (4)0.05898 (15)
O10.99184 (17)0.81556 (14)0.01403 (8)0.0502 (3)
O20.71476 (16)0.58258 (13)0.28668 (8)0.0481 (3)
N10.85558 (16)0.65629 (14)0.02592 (9)0.0366 (3)
N20.73776 (16)0.55838 (14)0.15361 (9)0.0360 (3)
C10.9193 (2)0.70500 (19)0.03500 (11)0.0405 (4)
C20.9063 (3)0.6460 (2)0.11341 (12)0.0502 (5)
H20.95230.68200.15500.060*
C30.8256 (3)0.5361 (2)0.12718 (12)0.0519 (5)
H30.81600.49670.17880.062*
C40.7557 (2)0.48020 (19)0.06404 (12)0.0447 (4)
C50.6660 (2)0.3663 (2)0.07373 (14)0.0548 (5)
H50.65230.32320.12420.066*
C60.6011 (2)0.3201 (2)0.01103 (14)0.0540 (5)
H60.54150.24680.01920.065*
C70.6228 (2)0.38262 (18)0.06829 (13)0.0434 (4)
C80.5595 (2)0.3401 (2)0.13704 (14)0.0500 (5)
H80.49850.26750.13190.060*
C90.5859 (2)0.40325 (19)0.21063 (13)0.0464 (5)
H90.54370.37480.25570.056*
C100.6789 (2)0.51305 (18)0.21712 (12)0.0391 (4)
C110.71040 (19)0.49372 (17)0.07990 (11)0.0369 (4)
C120.7758 (2)0.54491 (17)0.01209 (11)0.0367 (4)
C131.0711 (3)0.8779 (2)0.07353 (13)0.0554 (5)
H13A1.14450.81990.08910.083*
H13B1.11990.95400.04920.083*
H13C1.00140.90130.12170.083*
C140.6826 (3)0.5280 (2)0.36304 (12)0.0536 (5)
H14A0.57630.51960.36040.080*
H14B0.72160.58340.40830.080*
H14C0.72850.44470.37120.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.03791 (13)0.03966 (13)0.03454 (12)0.00516 (9)0.01002 (9)0.00396 (8)
Cl10.0399 (3)0.0714 (4)0.0431 (3)0.0099 (2)0.0087 (2)0.0143 (2)
Cl20.0501 (3)0.0513 (3)0.0795 (4)0.0074 (2)0.0226 (3)0.0024 (3)
O10.0623 (9)0.0531 (8)0.0391 (7)0.0104 (7)0.0201 (6)0.0019 (6)
O20.0561 (9)0.0513 (8)0.0389 (7)0.0155 (7)0.0138 (6)0.0014 (6)
N10.0378 (8)0.0402 (9)0.0323 (7)0.0027 (6)0.0071 (6)0.0009 (6)
N20.0342 (8)0.0367 (8)0.0370 (8)0.0032 (6)0.0057 (6)0.0017 (6)
C10.0419 (10)0.0461 (11)0.0342 (9)0.0081 (8)0.0083 (8)0.0043 (8)
C20.0608 (13)0.0582 (13)0.0339 (10)0.0133 (10)0.0148 (9)0.0022 (9)
C30.0647 (14)0.0557 (13)0.0348 (10)0.0144 (11)0.0057 (9)0.0088 (9)
C40.0468 (11)0.0458 (11)0.0392 (10)0.0126 (9)0.0006 (8)0.0068 (8)
C50.0601 (13)0.0487 (12)0.0520 (12)0.0071 (10)0.0030 (10)0.0183 (10)
C60.0510 (12)0.0410 (11)0.0661 (14)0.0020 (9)0.0028 (10)0.0123 (10)
C70.0364 (10)0.0381 (10)0.0530 (11)0.0008 (8)0.0007 (8)0.0035 (8)
C80.0405 (11)0.0411 (11)0.0660 (14)0.0081 (9)0.0011 (10)0.0013 (10)
C90.0405 (11)0.0448 (11)0.0544 (12)0.0067 (8)0.0087 (9)0.0086 (9)
C100.0353 (9)0.0400 (10)0.0422 (10)0.0016 (7)0.0065 (8)0.0039 (8)
C110.0322 (9)0.0356 (9)0.0411 (9)0.0038 (7)0.0006 (7)0.0018 (7)
C120.0345 (9)0.0377 (10)0.0365 (9)0.0072 (7)0.0009 (7)0.0021 (7)
C130.0574 (13)0.0644 (14)0.0490 (12)0.0040 (11)0.0226 (10)0.0113 (10)
C140.0590 (13)0.0624 (14)0.0427 (11)0.0119 (11)0.0179 (10)0.0042 (9)
Geometric parameters (Å, º) top
Zn1—N12.0659 (14)C4—C51.429 (3)
Zn1—N22.0911 (14)C5—C61.347 (3)
Zn1—Cl12.2007 (6)C5—H50.9300
Zn1—Cl22.2219 (6)C6—C71.436 (3)
O1—C11.340 (2)C6—H60.9300
O1—C131.449 (2)C7—C111.395 (3)
O2—C101.343 (2)C7—C81.410 (3)
O2—C141.442 (2)C8—C91.358 (3)
N1—C11.327 (2)C8—H80.9300
N1—C121.363 (2)C9—C101.411 (3)
N2—C101.325 (2)C9—H90.9300
N2—C111.368 (2)C11—C121.438 (3)
C1—C21.409 (3)C13—H13A0.9600
C2—C31.354 (3)C13—H13B0.9600
C2—H20.9300C13—H13C0.9600
C3—C41.417 (3)C14—H14A0.9600
C3—H30.9300C14—H14B0.9600
C4—C121.401 (3)C14—H14C0.9600
N1—Zn1—N280.58 (6)C7—C6—H6119.6
N1—Zn1—Cl1113.27 (4)C11—C7—C8116.32 (18)
N2—Zn1—Cl1120.54 (4)C11—C7—C6119.39 (19)
N1—Zn1—Cl2110.66 (4)C8—C7—C6124.29 (19)
N2—Zn1—Cl2108.06 (4)C9—C8—C7121.19 (18)
Cl1—Zn1—Cl2117.82 (2)C9—C8—H8119.4
C1—O1—C13119.03 (15)C7—C8—H8119.4
C10—O2—C14117.89 (15)C8—C9—C10118.47 (19)
C1—N1—C12118.68 (16)C8—C9—H9120.8
C1—N1—Zn1128.47 (13)C10—C9—H9120.8
C12—N1—Zn1112.80 (11)N2—C10—O2113.56 (16)
C10—N2—C11118.48 (16)N2—C10—C9122.41 (18)
C10—N2—Zn1129.50 (13)O2—C10—C9124.03 (17)
C11—N2—Zn1111.65 (11)N2—C11—C7123.09 (17)
N1—C1—O1112.80 (16)N2—C11—C12117.31 (16)
N1—C1—C2122.24 (19)C7—C11—C12119.60 (17)
O1—C1—C2124.95 (17)N1—C12—C4123.06 (17)
C3—C2—C1118.91 (19)N1—C12—C11117.18 (15)
C3—C2—H2120.5C4—C12—C11119.76 (17)
C1—C2—H2120.5O1—C13—H13A109.5
C2—C3—C4120.96 (18)O1—C13—H13B109.5
C2—C3—H3119.5H13A—C13—H13B109.5
C4—C3—H3119.5O1—C13—H13C109.5
C12—C4—C3116.14 (19)H13A—C13—H13C109.5
C12—C4—C5119.19 (19)H13B—C13—H13C109.5
C3—C4—C5124.66 (18)O2—C14—H14A109.5
C6—C5—C4121.18 (19)O2—C14—H14B109.5
C6—C5—H5119.4H14A—C14—H14B109.5
C4—C5—H5119.4O2—C14—H14C109.5
C5—C6—C7120.8 (2)H14A—C14—H14C109.5
C5—C6—H6119.6H14B—C14—H14C109.5
N2—Zn1—N1—C1177.42 (16)C7—C8—C9—C100.1 (3)
Cl1—Zn1—N1—C158.12 (16)C11—N2—C10—O2178.99 (16)
Cl2—Zn1—N1—C176.72 (16)Zn1—N2—C10—O28.7 (2)
N2—Zn1—N1—C125.17 (12)C11—N2—C10—C91.9 (3)
Cl1—Zn1—N1—C12124.47 (11)Zn1—N2—C10—C9170.42 (14)
Cl2—Zn1—N1—C12100.69 (12)C14—O2—C10—N2167.68 (17)
N1—Zn1—N2—C10179.01 (17)C14—O2—C10—C913.3 (3)
Cl1—Zn1—N2—C1069.45 (17)C8—C9—C10—N21.8 (3)
Cl2—Zn1—N2—C1070.22 (16)C8—C9—C10—O2179.18 (18)
N1—Zn1—N2—C116.24 (12)C10—N2—C11—C70.3 (3)
Cl1—Zn1—N2—C11117.78 (11)Zn1—N2—C11—C7173.33 (14)
Cl2—Zn1—N2—C11102.56 (11)C10—N2—C11—C12179.91 (16)
C12—N1—C1—O1178.81 (15)Zn1—N2—C11—C126.43 (19)
Zn1—N1—C1—O11.5 (2)C8—C7—C11—N21.3 (3)
C12—N1—C1—C20.5 (3)C6—C7—C11—N2179.37 (17)
Zn1—N1—C1—C2176.81 (14)C8—C7—C11—C12178.48 (17)
C13—O1—C1—N1178.04 (17)C6—C7—C11—C120.9 (3)
C13—O1—C1—C23.7 (3)C1—N1—C12—C41.1 (3)
N1—C1—C2—C30.2 (3)Zn1—N1—C12—C4176.62 (14)
O1—C1—C2—C3177.93 (19)C1—N1—C12—C11178.97 (16)
C1—C2—C3—C40.3 (3)Zn1—N1—C12—C113.35 (19)
C2—C3—C4—C120.2 (3)C3—C4—C12—N10.9 (3)
C2—C3—C4—C5178.6 (2)C5—C4—C12—N1177.93 (17)
C12—C4—C5—C60.2 (3)C3—C4—C12—C11179.10 (17)
C3—C4—C5—C6178.9 (2)C5—C4—C12—C112.0 (3)
C4—C5—C6—C71.4 (3)N2—C11—C12—N12.2 (2)
C5—C6—C7—C111.0 (3)C7—C11—C12—N1177.58 (16)
C5—C6—C7—C8179.7 (2)N2—C11—C12—C4177.84 (16)
C11—C7—C8—C91.4 (3)C7—C11—C12—C42.4 (3)
C6—C7—C8—C9179.3 (2)

Experimental details

Crystal data
Chemical formula[ZnCl2(C14H12N2O2)]
Mr376.53
Crystal system, space groupMonoclinic, P21/c
Temperature (K)291
a, b, c (Å)9.0494 (8), 10.3783 (9), 16.3517 (14)
β (°) 99.022 (1)
V3)1516.7 (2)
Z4
Radiation typeMo Kα
µ (mm1)1.98
Crystal size (mm)0.27 × 0.14 × 0.10
Data collection
DiffractometerBruker APEXII CCD detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.616, 0.835
No. of measured, independent and
observed [I > 2σ(I)] reflections
9326, 3465, 2917
Rint0.017
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.065, 1.03
No. of reflections3465
No. of parameters192
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.25

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1994), SHELXS97 (Sheldrick, 2008), 'SHELXL97 (Sheldrick, 2008) and DIAMOND (Brandenburg, 2005).

Selected geometric parameters (Å, º) top
Zn1—N12.0659 (14)Zn1—Cl12.2007 (6)
Zn1—N22.0911 (14)Zn1—Cl22.2219 (6)
N1—Zn1—N280.58 (6)N1—Zn1—Cl2110.66 (4)
N1—Zn1—Cl1113.27 (4)N2—Zn1—Cl2108.06 (4)
N2—Zn1—Cl1120.54 (4)Cl1—Zn1—Cl2117.82 (2)
 

Acknowledgements

We are grateful to Mrs Li for her assistance with the X-ray crystallographic analysis.

References

First citationBie, H. Y., Wei, J., Yu, J. H., Wang, T. G., Lu, J. & Xu, J. Q. (2006). Mater. Lett. 60, 2475–2479.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (2005). DIAMOND. Crystal Impact GbR. Bonn, Germany.  Google Scholar
First citationMajumder, A., Westerhausen, M., Kneifel, A. N., Sutter, J.-P., Daro, N. & Mitra, S. (2006). Inorg. Chim. Acta, 359, 3841–3846.  Web of Science CSD CrossRef CAS Google Scholar
First citationPijper, P. L., Van der Goot, H., Timmerman, H. & Nauta, W. T. (1984). Eur. J. Med. Chem. 19, 399-404.  CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS . Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1994). SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSiemens (1996). SMART. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds