metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages m909-m910

Aqua­(2,2′-bi­pyridine-κ2N,N′)bis­­(thio­phene-2-carboxyl­ato-κO)copper(II)

aInstitut für Anorganische und Analytische Chemie, Universität Freiburg, Albertstrasse 21, D-79104 Freiburg, Germany
*Correspondence e-mail: janiak@uni-freiburg.de

(Received 22 June 2009; accepted 8 July 2009; online 11 July 2009)

In the title complex, [Cu(C5H3O2S)2(C10H8N2)(H2O)], the CuII atom is in a distorted square-pyramidal environment, with an Addison τ parameter of 0.07. The coordination geometry is defined by two nitro­gen donors from the 2,2′-bipyridine ligand, two O atoms from two monodentate thio­phene-2-carboxyl­ate ligands and one O atom from the aqua ligand. The latter occupies the elongated apical position. This is different from the related structure of aqua­(1,10-phenanthroline)bis­(thio­phene-2-carboxyl­ato)copper(II) where a carboxyl­ate O atom is in the apical position [Feng et al. (2005[Feng, D.-M., He, H.-Y., Jin, H.-X. & Zhu, L.-G. (2005). Z. Kristallogr. New Ctyst. Struct. 220, 429-430.]). Z. Kristallogr. New Cryst. Struct. 220, 429–430]. The uncoordinated carboxyl­ate O atoms form intra- and inter­molecular hydrogen bonds to the aqua ligand. Two neighbouring 2,2′-bipyridine ligands form a π-stack, with a centroid–centroid distance of 3.683 (2) Å.

Related literature

Thio­phenes substituted in the 2-position are an important constituent of the drugs methapyrilene, temidap, tienilic acid and temocillin (Rance & Damani, 1989[Rance, D. J. & Damani, L. A. (1989). Editors. Sulfur-Containing Drugs and Related Organic Compounds, Vol. 1, part B, ch. 9. Chichester: Ellis Horwood.]). Metal complexes containing the thio­phene unit have exhibited enhanced anti-amoebic activity (Bharti et al., 2003[Bharti, S.-N., Naqvi, F. & Azam, A. (2003). Bioorg. Med. Chem. Lett. 13, 689-692.]). For the use of thio­phene-2-carboxylic acid (Htpc) to prepare single mol­ecular magnet (SMM) and photoluminescence materials, see: Kuroda-Sowa et al. (2003[Kuroda-Sowa, T., Nogami, T., Konaka, H., Maekawa, M., Munakata, M., Miyasaka, H. & Yamashita, M. (2003). Polyhedron, 22, 1795-1801.]); Teotonio et al. (2004[Teotonio, E. E. S., Felinto, M. C. F. C., Brito, M. F., Malta, O. L., Trindade, A. C., Najjar, R. & Strek, W. (2004). Inorg. Chim. Acta, 357, 451-460.]). For the thermal behavior of metal–tpc complexes, see: Lumme & Korvola (1975[Lumme, P. & Korvola, M. L. (1975). Thermochim. Acta, 13, 419-439.]). For the structures of 2-thio­phene­carboxyl­ate complexes, see: Feng et al. (2005[Feng, D.-M., He, H.-Y., Jin, H.-X. & Zhu, L.-G. (2005). Z. Kristallogr. New Ctyst. Struct. 220, 429-430.]); Panagoulis et al. (2007[Panagoulis, D., Pontiki, E., Skeva, E., Raptopoulou, C., Girousi, S., Hadjipavlou-Litina, D. & Dendrinou-Samara, C. (2007). J. Inorg. Biochem. 101, 623-634.]); Byrnes et al. (2004[Byrnes, M. J., Chisholm, M. H., Clark, R. J. H., Gallucci, J. C., Hadad, C. M. & Patmore, N. J. (2004). Inorg. Chem. 43, 6334-6344.]); Yin & Sun (2005[Yin, M. & Sun, J. (2005). J. Coord. Chem. 58, 335-342.]); Yin et al. (2004[Yin, M.-C., Yuan, L.-J., Ai, C.-C., Wang, C.-W., Yuan, E.-T. & Sun, J.-T. (2004). Polyhedron, 23, 529-536.]). For hydrogen bonds from the aqua ligand to uncoordinated carboxyl O atoms, see: Habib & Janiak (2008[Habib, H. A. & Janiak, C. (2008). Acta Cryst. E64, o1199.]); Wisser & Janiak (2007a[Wisser, B. & Janiak, C. (2007a). Acta Cryst. E63, m1732-m1733.],b[Wisser, B. & Janiak, C. (2007b). Acta Cryst. E63, o2871-o2872.]); Janiak (2000[Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.]). For details of the Addison τ parameter, see: Addison et al. (1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C5H3O2S)2(C10H8N2)(H2O)]

  • Mr = 492.01

  • Monoclinic, P 21 /c

  • a = 6.8458 (5) Å

  • b = 18.3799 (15) Å

  • c = 16.8421 (12) Å

  • β = 101.5164 (19)°

  • V = 2076.5 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.29 mm−1

  • T = 123 K

  • 0.35 × 0.22 × 0.18 mm

Data collection
  • Rigaku R-AXIS Spider image-plate detector diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.661, Tmax = 0.801

  • 32855 measured reflections

  • 4224 independent reflections

  • 3637 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.099

  • S = 1.05

  • 4224 reflections

  • 277 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.64 e Å−3

  • Δρmin = −0.60 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cu—O1 1.9447 (18)
Cu—O3 1.9909 (19)
Cu—N1 2.011 (2)
Cu—N2 2.018 (2)
Cu—O5 2.236 (2)
O1—Cu—O3 90.18 (8)
O1—Cu—N1 167.13 (8)
O3—Cu—N1 94.08 (8)
O1—Cu—N2 92.15 (8)
O3—Cu—N2 163.16 (8)
N1—Cu—N2 80.33 (8)
O1—Cu—O5 92.18 (8)
O3—Cu—O5 99.70 (8)
N1—Cu—O5 99.04 (8)
N2—Cu—O5 96.87 (8)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯O2 0.73 (4) 1.99 (4) 2.682 (3) 160 (4)
O5—H5B⋯O4i 0.73 (4) 2.02 (4) 2.741 (3) 171 (4)
Symmetry code: (i) x+1, y, z.

Data collection: CrystalClear (Rigaku, 2007[Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Crystal Impact, 2009[Crystal Impact (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Comment top

Thiophenes substituted in the 2-position are an important constituent of the drugs methapyrilene, temidap, tienilic acid and temocillin (Rance & Damani, 1989). Metal complexes containing the thiophene moiety have exhibited enhanced antiamoebic activity (Bharti et al., 2003). Knowledge of the structural peculiarities of a biologically active molecule and its inherent 3 -dimensional structure is a necessary condition for investigating the interaction with metal ions and for designing new compounds. Recently, thiophene-2-carboxylic acid (Htpc) has been used to prepare single molecular magnet (SMM) and photoluminescence materials (Kuroda-Sowa et al., 2003; Teotonio et al., 2004). The thermal behavior of metal-tpc complexes was studied (Lumme & Korvola, 1975). Single crystal structures of 2- thiophenecarboxylate complexes are still limited (Feng et al., 2005), with recent additions of a tpc-bridged di-copper (Panagoulis et al., 2007), di-molybdenum (Byrnes et al., 2004), di-terbium and di-europium complex (Yin & Sun, 2005; Yin et al., 2004).

The molecular structure of the title complex is shown in Fig. 1. The Cu atoms are in a square-pyramidal environment with a long apical Cu—OH2 bond due to the Jahn-Teller effect. No relevant ππ or C—H···π interactions are found between the thiophene rings only between bipyridine ligands (Fig. 2). There, the π-stacking interactions can be viewed as strong because of the rather short centroid-centroid contacts (3.683 Å), small slip angles (22.9°) and short interplanar separation (3.4 Å) which translate into a sizable overlap of the near parallel aromatic planes (interplanar angle 2.5°) (Janiak, 2000). The intra- and intermolecular hydrogen bonds from the aqua ligand to the uncoordinated carboxyl oxygen atoms are normal (Habib & Janiak, 2008; Wisser & Janiak, 2007a; Wisser & Janiak, 2007b).

Related literature top

Thiophenes substituted in the 2-position are an important constituent of the drugs methapyrilene, temidap, tienilic acid and temocillin (Rance & Damani, 1989). Metal complexes containing the thiophene unit have exhibited enhanced anti-amoebic activity (Bharti et al., 2003). For the use of thiophene-2-carboxylic acid (Htpc) to prepare single molecular magnet (SMM) and photoluminescence materials, see: Kuroda-Sowa et al. (2003); Teotonio et al. (2004). For the thermal behavior of metal–tpc complexes, see: Lumme & Korvola (1975). For the structures of 2-thiophenecarboxylate complexes, see: Feng et al. (2005); Panagoulis et al. (2007); Byrnes et al. (2004); Yin & Sun (2005); Yin et al. (2004). For hydrogen bonds from the aqua ligand to uncoordinated carboxyl O atoms, see: Habib & Janiak (2008); Wisser & Janiak (2007a,b); Janiak (2000).

Experimental top

A mixture of copper acetate, Cu(CH3COO)2. H2O (57.9 mg, 0.29 mmol) and thiophene-2-carboxylic acid, Htpc (76.9 mg, 0.6 mmol) in 10 ml water was added to a 10 ml CH3OH solution of 2,2'-bipyridine (48.4 mg, 0.31 mmol). Then the resulting solution was set aside and the solvent allowed to evaporate at room temperature. After three days, blue rod-shaped crystals were obtained in (yield 99 mg, 32% based on Htpc). Elemental analysis C22H16CuN2O5S2(516.05) calcd. C 51.20, H 3.13, N 5.43, S 12.43; found: C 50.97, H 3.16, N 5.33, S 12.20%.

Refinement top

Hydrogen atoms for aromatic CH were positioned geometrically (C—H = 0.94 Å) and refined using a riding model. Protic hydrogen atoms of the aqua ligand were found and refined with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: D*TREK in CrystalClear (Rigaku, 2007); cell refinement: FSPROC in CrystalClear (Rigaku, 2007); data reduction: FSPROC in CrystalClear (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Crystal Impact, 2009); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. : Asymmetric molecular unit of [Cu(C4H3SCOO)2(C10H8N2)(H2O)] in a perspective view with thermal ellipsoids (at 50% probability); intramolecular hydrogen bond as dashed line.
[Figure 2] Fig. 2. : Crystal packing of [Cu(C4H3SCOO)2(C10H8N2)(H2O)] projected onto the bc-plane.
Aqua(2,2'-bipyridine-κ2N,N')bis(thiophene-2-carboxylato- κO)copper(II) top
Crystal data top
[Cu(C5H3O2S)2(C10H8N2)(H2O)]F(000) = 1004
Mr = 492.01Dx = 1.574 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 28386 reflections
a = 6.8458 (5) Åθ = 3.0–27.5°
b = 18.3799 (15) ŵ = 1.29 mm1
c = 16.8421 (12) ÅT = 123 K
β = 101.5164 (19)°Column, blue
V = 2076.5 (3) Å30.35 × 0.22 × 0.18 mm
Z = 4
Data collection top
Rigaku R-AXIS Spider image-plate detector
diffractometer
4224 independent reflections
Radiation source: fine-focus sealed tube3637 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ω scansθmax = 26.4°, θmin = 3.0°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 88
Tmin = 0.661, Tmax = 0.801k = 2222
32855 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0489P)2 + 2.2127P]
where P = (Fo2 + 2Fc2)/3
4224 reflections(Δ/σ)max < 0.001
277 parametersΔρmax = 0.64 e Å3
0 restraintsΔρmin = 0.60 e Å3
Crystal data top
[Cu(C5H3O2S)2(C10H8N2)(H2O)]V = 2076.5 (3) Å3
Mr = 492.01Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.8458 (5) ŵ = 1.29 mm1
b = 18.3799 (15) ÅT = 123 K
c = 16.8421 (12) Å0.35 × 0.22 × 0.18 mm
β = 101.5164 (19)°
Data collection top
Rigaku R-AXIS Spider image-plate detector
diffractometer
4224 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3637 reflections with I > 2σ(I)
Tmin = 0.661, Tmax = 0.801Rint = 0.034
32855 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.64 e Å3
4224 reflectionsΔρmin = 0.60 e Å3
277 parameters
Special details top

Experimental. IR (ATR): 3315 (m, br, νO-H, H-bonded), 3075 (m, sh, νC-H, aromatic), 3115 (m, sh) 1557 (s, sh, νasymCO2, ionically bonded to COO-Cu), 1520 (s, sh, νasymCO2, intramolecularly H-bonded), 1470 (m, sh) 1422 (s, sh) 1370 (s, sh, νsymCO2), 1336 (m, sh) (νC-O, free), 1312 (w, br, νC-O···H—O, H-bonded), 1224 (m, sh, νC-O), 1115 (s, sh, νC-N), 1056 (m, sh), 1026 (s, sh), 982 (m, sh), 911 (m, sh), 860 (s, sh), 808 (m, sh), 770 (s, sh), 713 (s, sh), 659 (w, sh), 631 (w, br), 539 (w, sh, νCu-O), 506 (m, sh), 461 (m, sh), 412 (s, sh, νCu-N) cm-1.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu0.67488 (4)0.151034 (16)0.393556 (18)0.02638 (11)
S10.63575 (13)0.46085 (4)0.37885 (5)0.0465 (2)
S20.31914 (12)0.17767 (6)0.10820 (5)0.0497 (2)
O10.5925 (3)0.25157 (10)0.40169 (12)0.0373 (4)
O20.8271 (3)0.31699 (10)0.35780 (12)0.0355 (4)
O30.5534 (3)0.15076 (10)0.27585 (11)0.0331 (4)
O40.2930 (3)0.12147 (11)0.32959 (11)0.0351 (4)
O50.9860 (3)0.18398 (12)0.38761 (14)0.0391 (5)
H5A0.964 (6)0.221 (2)0.374 (2)0.059*
H5B1.062 (6)0.168 (2)0.368 (2)0.059*
N10.7125 (3)0.04250 (12)0.39954 (12)0.0266 (4)
N20.7215 (3)0.13725 (11)0.51474 (12)0.0277 (4)
C10.7038 (4)0.00185 (15)0.33635 (17)0.0340 (6)
H10.68550.01860.28360.041*
C20.7204 (4)0.07660 (16)0.34483 (19)0.0391 (6)
H20.71400.10690.29870.047*
C30.7463 (4)0.10622 (15)0.4214 (2)0.0395 (7)
H30.75830.15740.42880.047*
C40.7545 (4)0.06063 (14)0.48737 (18)0.0324 (6)
H40.77130.08020.54050.039*
C50.7381 (3)0.01361 (13)0.47514 (15)0.0256 (5)
C60.7470 (3)0.06754 (13)0.54036 (15)0.0252 (5)
C70.7786 (4)0.05039 (16)0.62249 (16)0.0331 (6)
H70.79310.00110.63980.040*
C80.7884 (4)0.10584 (18)0.67850 (17)0.0398 (7)
H80.81170.09510.73480.048*
C90.7643 (5)0.17670 (18)0.65216 (18)0.0423 (7)
H90.77120.21550.68990.051*
C100.7296 (4)0.19039 (15)0.56982 (17)0.0371 (6)
H100.71080.23930.55160.045*
C110.6649 (4)0.30992 (14)0.37863 (14)0.0289 (5)
C120.5375 (4)0.37527 (14)0.38065 (15)0.0300 (5)
C130.3272 (5)0.37346 (17)0.38295 (17)0.0406 (7)
H130.24570.33160.38300.049*
C140.2658 (5)0.45070 (18)0.3853 (2)0.0508 (8)
H140.13360.46470.38780.061*
C150.4127 (5)0.49975 (17)0.3835 (2)0.0488 (8)
H150.39300.55090.38470.059*
C160.3672 (4)0.13855 (13)0.27060 (15)0.0285 (5)
C170.2351 (4)0.14483 (13)0.18962 (16)0.0300 (5)
C180.0315 (4)0.12344 (15)0.16881 (17)0.0351 (6)
H180.04380.10360.20530.042*
C190.0425 (5)0.13653 (18)0.0838 (2)0.0492 (8)
H190.17540.12590.05730.059*
C200.0926 (5)0.1648 (2)0.04594 (19)0.0513 (8)
H200.06570.17670.01010.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.02852 (17)0.02612 (17)0.02524 (17)0.00260 (12)0.00714 (12)0.00575 (12)
S10.0513 (5)0.0344 (4)0.0543 (5)0.0013 (3)0.0115 (4)0.0014 (3)
S20.0458 (4)0.0696 (6)0.0346 (4)0.0073 (4)0.0100 (3)0.0159 (4)
O10.0436 (11)0.0269 (9)0.0451 (11)0.0056 (8)0.0177 (9)0.0092 (8)
O20.0343 (10)0.0339 (10)0.0397 (11)0.0042 (8)0.0108 (8)0.0075 (8)
O30.0298 (9)0.0420 (11)0.0278 (9)0.0031 (8)0.0064 (7)0.0086 (8)
O40.0352 (10)0.0409 (11)0.0318 (10)0.0069 (8)0.0131 (8)0.0117 (8)
O50.0311 (10)0.0376 (11)0.0523 (13)0.0088 (9)0.0172 (9)0.0111 (10)
N10.0231 (10)0.0294 (11)0.0269 (11)0.0020 (8)0.0041 (8)0.0024 (8)
N20.0280 (10)0.0299 (11)0.0261 (11)0.0029 (9)0.0078 (8)0.0020 (9)
C10.0312 (13)0.0391 (14)0.0308 (14)0.0027 (11)0.0042 (11)0.0032 (11)
C20.0318 (14)0.0390 (15)0.0462 (17)0.0003 (12)0.0070 (12)0.0111 (13)
C30.0303 (14)0.0276 (13)0.0612 (19)0.0002 (11)0.0102 (13)0.0010 (13)
C40.0243 (12)0.0282 (13)0.0446 (15)0.0018 (10)0.0061 (11)0.0085 (11)
C50.0163 (10)0.0302 (12)0.0298 (12)0.0006 (9)0.0031 (9)0.0050 (10)
C60.0186 (11)0.0306 (12)0.0265 (12)0.0020 (9)0.0047 (9)0.0050 (10)
C70.0273 (12)0.0415 (15)0.0300 (13)0.0001 (11)0.0044 (10)0.0094 (11)
C80.0358 (15)0.0585 (18)0.0254 (13)0.0037 (13)0.0064 (11)0.0026 (13)
C90.0448 (16)0.0499 (17)0.0327 (15)0.0066 (14)0.0088 (12)0.0107 (13)
C100.0449 (16)0.0333 (14)0.0347 (15)0.0039 (12)0.0115 (12)0.0035 (12)
C110.0346 (14)0.0301 (13)0.0207 (12)0.0040 (11)0.0024 (10)0.0043 (10)
C120.0379 (14)0.0268 (12)0.0257 (12)0.0017 (11)0.0073 (10)0.0048 (10)
C130.0475 (16)0.0420 (16)0.0388 (15)0.0290 (14)0.0243 (13)0.0167 (13)
C140.0514 (19)0.0436 (17)0.064 (2)0.0156 (15)0.0272 (17)0.0092 (15)
C150.063 (2)0.0322 (15)0.0548 (19)0.0135 (14)0.0199 (16)0.0066 (14)
C160.0322 (13)0.0258 (12)0.0285 (13)0.0059 (10)0.0088 (10)0.0048 (10)
C170.0350 (14)0.0272 (12)0.0280 (13)0.0054 (11)0.0067 (11)0.0058 (10)
C180.0321 (13)0.0338 (14)0.0334 (14)0.0017 (11)0.0081 (11)0.0038 (11)
C190.0461 (17)0.0504 (18)0.0441 (18)0.0021 (15)0.0081 (14)0.0014 (15)
C200.056 (2)0.066 (2)0.0277 (15)0.0155 (17)0.0012 (14)0.0041 (14)
Geometric parameters (Å, º) top
Cu—O11.9447 (18)C4—C51.381 (3)
Cu—O31.9909 (19)C4—H40.9500
Cu—N12.011 (2)C5—C61.472 (4)
Cu—N22.018 (2)C6—C71.393 (3)
Cu—O52.236 (2)C7—C81.381 (4)
S1—C151.702 (3)C7—H70.9500
S1—C121.714 (3)C8—C91.375 (4)
S2—C171.700 (3)C8—H80.9500
S2—C201.706 (3)C9—C101.383 (4)
O1—C111.274 (3)C9—H90.9500
O2—C111.236 (3)C10—H100.9500
O3—C161.280 (3)C11—C121.489 (4)
O4—C161.243 (3)C12—C131.448 (4)
O5—H5A0.73 (4)C13—C141.483 (4)
O5—H5B0.73 (4)C13—H130.9500
N1—C11.332 (3)C14—C151.355 (5)
N1—C51.358 (3)C14—H140.9500
N2—C101.340 (3)C15—H150.9500
N2—C61.352 (3)C16—C171.483 (4)
C1—C21.384 (4)C17—C181.423 (4)
C1—H10.9500C18—C191.440 (4)
C2—C31.378 (4)C18—H180.9500
C2—H20.9500C19—C201.330 (5)
C3—C41.384 (4)C19—H190.9500
C3—H30.9500C20—H200.9500
O1—Cu—O390.18 (8)C8—C7—H7120.4
O1—Cu—N1167.13 (8)C6—C7—H7120.4
O3—Cu—N194.08 (8)C9—C8—C7119.5 (3)
O1—Cu—N292.15 (8)C9—C8—H8120.3
O3—Cu—N2163.16 (8)C7—C8—H8120.3
N1—Cu—N280.33 (8)C8—C9—C10118.8 (3)
O1—Cu—O592.18 (8)C8—C9—H9120.6
O3—Cu—O599.70 (8)C10—C9—H9120.6
N1—Cu—O599.04 (8)N2—C10—C9122.5 (3)
N2—Cu—O596.87 (8)N2—C10—H10118.8
C15—S1—C1291.48 (15)C9—C10—H10118.8
C17—S2—C2091.96 (15)O2—C11—O1126.9 (2)
C11—O1—Cu129.96 (17)O2—C11—C12119.0 (2)
C16—O3—Cu106.35 (16)O1—C11—C12114.0 (2)
Cu—O5—H5A97 (3)C13—C12—C11124.9 (2)
Cu—O5—H5B133 (3)C13—C12—S1114.7 (2)
H5A—O5—H5B110 (4)C11—C12—S1120.4 (2)
C1—N1—C5119.1 (2)C12—C13—C14105.5 (3)
C1—N1—Cu125.59 (18)C12—C13—H13127.3
C5—N1—Cu115.21 (17)C14—C13—H13127.3
C10—N2—C6119.0 (2)C15—C14—C13114.9 (3)
C10—N2—Cu125.80 (18)C15—C14—H14122.5
C6—N2—Cu115.21 (17)C13—C14—H14122.5
N1—C1—C2122.4 (3)C14—C15—S1113.4 (2)
N1—C1—H1118.8C14—C15—H15123.3
C2—C1—H1118.8S1—C15—H15123.3
C3—C2—C1118.8 (3)O4—C16—O3123.3 (2)
C3—C2—H2120.6O4—C16—C17118.9 (2)
C1—C2—H2120.6O3—C16—C17117.8 (2)
C2—C3—C4119.3 (3)C18—C17—C16126.3 (2)
C2—C3—H3120.4C18—C17—S2111.8 (2)
C4—C3—H3120.4C16—C17—S2121.8 (2)
C5—C4—C3119.3 (3)C17—C18—C19109.4 (3)
C5—C4—H4120.4C17—C18—H18125.3
C3—C4—H4120.4C19—C18—H18125.3
N1—C5—C4121.2 (2)C20—C19—C18113.7 (3)
N1—C5—C6114.5 (2)C20—C19—H19123.2
C4—C5—C6124.3 (2)C18—C19—H19123.2
N2—C6—C7121.1 (2)C19—C20—S2113.2 (2)
N2—C6—C5114.6 (2)C19—C20—H20123.4
C7—C6—C5124.3 (2)S2—C20—H20123.4
C8—C7—C6119.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O20.73 (4)1.99 (4)2.682 (3)160 (4)
O5—H5B···O4i0.73 (4)2.02 (4)2.741 (3)171 (4)
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Cu(C5H3O2S)2(C10H8N2)(H2O)]
Mr492.01
Crystal system, space groupMonoclinic, P21/c
Temperature (K)123
a, b, c (Å)6.8458 (5), 18.3799 (15), 16.8421 (12)
β (°) 101.5164 (19)
V3)2076.5 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.29
Crystal size (mm)0.35 × 0.22 × 0.18
Data collection
DiffractometerRigaku R-AXIS Spider image-plate detector
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.661, 0.801
No. of measured, independent and
observed [I > 2σ(I)] reflections
32855, 4224, 3637
Rint0.034
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.099, 1.05
No. of reflections4224
No. of parameters277
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.64, 0.60

Computer programs: D*TREK in CrystalClear (Rigaku, 2007), FSPROC in CrystalClear (Rigaku, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Crystal Impact, 2009), publCIF (Westrip, 2009).

Selected geometric parameters (Å, º) top
Cu—O11.9447 (18)Cu—N22.018 (2)
Cu—O31.9909 (19)Cu—O52.236 (2)
Cu—N12.011 (2)
O1—Cu—O390.18 (8)N1—Cu—N280.33 (8)
O1—Cu—N1167.13 (8)O1—Cu—O592.18 (8)
O3—Cu—N194.08 (8)O3—Cu—O599.70 (8)
O1—Cu—N292.15 (8)N1—Cu—O599.04 (8)
O3—Cu—N2163.16 (8)N2—Cu—O596.87 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O20.73 (4)1.99 (4)2.682 (3)160 (4)
O5—H5B···O4i0.73 (4)2.02 (4)2.741 (3)171 (4)
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

Support through DFG grant Ja466/14–1 is acknowledged.

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationBharti, S.-N., Naqvi, F. & Azam, A. (2003). Bioorg. Med. Chem. Lett. 13, 689-692.  CrossRef PubMed CAS Google Scholar
First citationByrnes, M. J., Chisholm, M. H., Clark, R. J. H., Gallucci, J. C., Hadad, C. M. & Patmore, N. J. (2004). Inorg. Chem. 43, 6334–6344.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationCrystal Impact (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFeng, D.-M., He, H.-Y., Jin, H.-X. & Zhu, L.-G. (2005). Z. Kristallogr. New Ctyst. Struct. 220, 429-430.  CAS Google Scholar
First citationHabib, H. A. & Janiak, C. (2008). Acta Cryst. E64, o1199.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationJaniak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896.  Web of Science CrossRef Google Scholar
First citationKuroda-Sowa, T., Nogami, T., Konaka, H., Maekawa, M., Munakata, M., Miyasaka, H. & Yamashita, M. (2003). Polyhedron, 22, 1795–1801.  Web of Science CSD CrossRef CAS Google Scholar
First citationLumme, P. & Korvola, M. L. (1975). Thermochim. Acta, 13, 419–439.  CrossRef CAS Web of Science Google Scholar
First citationPanagoulis, D., Pontiki, E., Skeva, E., Raptopoulou, C., Girousi, S., Hadjipavlou-Litina, D. & Dendrinou-Samara, C. (2007). J. Inorg. Biochem. 101, 623–634.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRance, D. J. & Damani, L. A. (1989). Editors. Sulfur-Containing Drugs and Related Organic Compounds, Vol. 1, part B, ch. 9. Chichester: Ellis Horwood.  Google Scholar
First citationRigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTeotonio, E. E. S., Felinto, M. C. F. C., Brito, M. F., Malta, O. L., Trindade, A. C., Najjar, R. & Strek, W. (2004). Inorg. Chim. Acta, 357, 451–460.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar
First citationWisser, B. & Janiak, C. (2007a). Acta Cryst. E63, m1732–m1733.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWisser, B. & Janiak, C. (2007b). Acta Cryst. E63, o2871–o2872.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYin, M. & Sun, J. (2005). J. Coord. Chem. 58, 335–342.  Web of Science CSD CrossRef CAS Google Scholar
First citationYin, M.-C., Yuan, L.-J., Ai, C.-C., Wang, C.-W., Yuan, E.-T. & Sun, J.-T. (2004). Polyhedron, 23, 529–536.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages m909-m910
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds