metal-organic compounds
Aqua(2,2′-bipyridine-κ2N,N′)bis(thiophene-2-carboxylato-κO)copper(II)
aInstitut für Anorganische und Analytische Chemie, Universität Freiburg, Albertstrasse 21, D-79104 Freiburg, Germany
*Correspondence e-mail: janiak@uni-freiburg.de
In the title complex, [Cu(C5H3O2S)2(C10H8N2)(H2O)], the CuII atom is in a distorted square-pyramidal environment, with an Addison τ parameter of 0.07. The coordination geometry is defined by two nitrogen donors from the 2,2′-bipyridine ligand, two O atoms from two monodentate thiophene-2-carboxylate ligands and one O atom from the aqua ligand. The latter occupies the elongated apical position. This is different from the related structure of aqua(1,10-phenanthroline)bis(thiophene-2-carboxylato)copper(II) where a carboxylate O atom is in the apical position [Feng et al. (2005). Z. Kristallogr. New Cryst. Struct. 220, 429–430]. The uncoordinated carboxylate O atoms form intra- and intermolecular hydrogen bonds to the aqua ligand. Two neighbouring 2,2′-bipyridine ligands form a π-stack, with a centroid–centroid distance of 3.683 (2) Å.
Related literature
Thiophenes substituted in the 2-position are an important constituent of the drugs methapyrilene, temidap, tienilic acid and temocillin (Rance & Damani, 1989). Metal complexes containing the thiophene unit have exhibited enhanced anti-amoebic activity (Bharti et al., 2003). For the use of thiophene-2-carboxylic acid (Htpc) to prepare single molecular magnet (SMM) and materials, see: Kuroda-Sowa et al. (2003); Teotonio et al. (2004). For the thermal behavior of metal–tpc complexes, see: Lumme & Korvola (1975). For the structures of 2-thiophenecarboxylate complexes, see: Feng et al. (2005); Panagoulis et al. (2007); Byrnes et al. (2004); Yin & Sun (2005); Yin et al. (2004). For hydrogen bonds from the aqua ligand to uncoordinated carboxyl O atoms, see: Habib & Janiak (2008); Wisser & Janiak (2007a,b); Janiak (2000). For details of the Addison τ parameter, see: Addison et al. (1984).
Experimental
Crystal data
|
Refinement
|
|
Data collection: CrystalClear (Rigaku, 2007); cell CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Crystal Impact, 2009); software used to prepare material for publication: publCIF (Westrip, 2009).
Supporting information
10.1107/S1600536809026713/fj2230sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809026713/fj2230Isup2.hkl
A mixture of copper acetate, Cu(CH3COO)2. H2O (57.9 mg, 0.29 mmol) and thiophene-2-carboxylic acid, Htpc (76.9 mg, 0.6 mmol) in 10 ml water was added to a 10 ml CH3OH solution of 2,2'-bipyridine (48.4 mg, 0.31 mmol). Then the resulting solution was set aside and the solvent allowed to evaporate at room temperature. After three days, blue rod-shaped crystals were obtained in (yield 99 mg, 32% based on Htpc). Elemental analysis C22H16CuN2O5S2(516.05) calcd. C 51.20, H 3.13, N 5.43, S 12.43; found: C 50.97, H 3.16, N 5.33, S 12.20%.
Hydrogen atoms for aromatic CH were positioned geometrically (C—H = 0.94 Å) and refined using a riding model. Protic hydrogen atoms of the aqua ligand were found and refined with Uiso(H) = 1.5Ueq(O).
Data collection: D*TREK in CrystalClear (Rigaku, 2007); cell
FSPROC in CrystalClear (Rigaku, 2007); data reduction: FSPROC in CrystalClear (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Crystal Impact, 2009); software used to prepare material for publication: publCIF (Westrip, 2009).[Cu(C5H3O2S)2(C10H8N2)(H2O)] | F(000) = 1004 |
Mr = 492.01 | Dx = 1.574 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 28386 reflections |
a = 6.8458 (5) Å | θ = 3.0–27.5° |
b = 18.3799 (15) Å | µ = 1.29 mm−1 |
c = 16.8421 (12) Å | T = 123 K |
β = 101.5164 (19)° | Column, blue |
V = 2076.5 (3) Å3 | 0.35 × 0.22 × 0.18 mm |
Z = 4 |
Rigaku R-AXIS Spider image-plate detector diffractometer | 4224 independent reflections |
Radiation source: fine-focus sealed tube | 3637 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.034 |
ω scans | θmax = 26.4°, θmin = 3.0° |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | h = −8→8 |
Tmin = 0.661, Tmax = 0.801 | k = −22→22 |
32855 measured reflections | l = −21→21 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.037 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.099 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0489P)2 + 2.2127P] where P = (Fo2 + 2Fc2)/3 |
4224 reflections | (Δ/σ)max < 0.001 |
277 parameters | Δρmax = 0.64 e Å−3 |
0 restraints | Δρmin = −0.60 e Å−3 |
[Cu(C5H3O2S)2(C10H8N2)(H2O)] | V = 2076.5 (3) Å3 |
Mr = 492.01 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 6.8458 (5) Å | µ = 1.29 mm−1 |
b = 18.3799 (15) Å | T = 123 K |
c = 16.8421 (12) Å | 0.35 × 0.22 × 0.18 mm |
β = 101.5164 (19)° |
Rigaku R-AXIS Spider image-plate detector diffractometer | 4224 independent reflections |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | 3637 reflections with I > 2σ(I) |
Tmin = 0.661, Tmax = 0.801 | Rint = 0.034 |
32855 measured reflections |
R[F2 > 2σ(F2)] = 0.037 | 0 restraints |
wR(F2) = 0.099 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | Δρmax = 0.64 e Å−3 |
4224 reflections | Δρmin = −0.60 e Å−3 |
277 parameters |
Experimental. IR (ATR): 3315 (m, br, νO-H, H-bonded), 3075 (m, sh, νC-H, aromatic), 3115 (m, sh) 1557 (s, sh, νasymCO2, ionically bonded to COO-Cu), 1520 (s, sh, νasymCO2, intramolecularly H-bonded), 1470 (m, sh) 1422 (s, sh) 1370 (s, sh, νsymCO2), 1336 (m, sh) (νC-O, free), 1312 (w, br, νC-O···H—O, H-bonded), 1224 (m, sh, νC-O), 1115 (s, sh, νC-N), 1056 (m, sh), 1026 (s, sh), 982 (m, sh), 911 (m, sh), 860 (s, sh), 808 (m, sh), 770 (s, sh), 713 (s, sh), 659 (w, sh), 631 (w, br), 539 (w, sh, νCu-O), 506 (m, sh), 461 (m, sh), 412 (s, sh, νCu-N) cm-1. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu | 0.67488 (4) | 0.151034 (16) | 0.393556 (18) | 0.02638 (11) | |
S1 | 0.63575 (13) | 0.46085 (4) | 0.37885 (5) | 0.0465 (2) | |
S2 | 0.31914 (12) | 0.17767 (6) | 0.10820 (5) | 0.0497 (2) | |
O1 | 0.5925 (3) | 0.25157 (10) | 0.40169 (12) | 0.0373 (4) | |
O2 | 0.8271 (3) | 0.31699 (10) | 0.35780 (12) | 0.0355 (4) | |
O3 | 0.5534 (3) | 0.15076 (10) | 0.27585 (11) | 0.0331 (4) | |
O4 | 0.2930 (3) | 0.12147 (11) | 0.32959 (11) | 0.0351 (4) | |
O5 | 0.9860 (3) | 0.18398 (12) | 0.38761 (14) | 0.0391 (5) | |
H5A | 0.964 (6) | 0.221 (2) | 0.374 (2) | 0.059* | |
H5B | 1.062 (6) | 0.168 (2) | 0.368 (2) | 0.059* | |
N1 | 0.7125 (3) | 0.04250 (12) | 0.39954 (12) | 0.0266 (4) | |
N2 | 0.7215 (3) | 0.13725 (11) | 0.51474 (12) | 0.0277 (4) | |
C1 | 0.7038 (4) | −0.00185 (15) | 0.33635 (17) | 0.0340 (6) | |
H1 | 0.6855 | 0.0186 | 0.2836 | 0.041* | |
C2 | 0.7204 (4) | −0.07660 (16) | 0.34483 (19) | 0.0391 (6) | |
H2 | 0.7140 | −0.1069 | 0.2987 | 0.047* | |
C3 | 0.7463 (4) | −0.10622 (15) | 0.4214 (2) | 0.0395 (7) | |
H3 | 0.7583 | −0.1574 | 0.4288 | 0.047* | |
C4 | 0.7545 (4) | −0.06063 (14) | 0.48737 (18) | 0.0324 (6) | |
H4 | 0.7713 | −0.0802 | 0.5405 | 0.039* | |
C5 | 0.7381 (3) | 0.01361 (13) | 0.47514 (15) | 0.0256 (5) | |
C6 | 0.7470 (3) | 0.06754 (13) | 0.54036 (15) | 0.0252 (5) | |
C7 | 0.7786 (4) | 0.05039 (16) | 0.62249 (16) | 0.0331 (6) | |
H7 | 0.7931 | 0.0011 | 0.6398 | 0.040* | |
C8 | 0.7884 (4) | 0.10584 (18) | 0.67850 (17) | 0.0398 (7) | |
H8 | 0.8117 | 0.0951 | 0.7348 | 0.048* | |
C9 | 0.7643 (5) | 0.17670 (18) | 0.65216 (18) | 0.0423 (7) | |
H9 | 0.7712 | 0.2155 | 0.6899 | 0.051* | |
C10 | 0.7296 (4) | 0.19039 (15) | 0.56982 (17) | 0.0371 (6) | |
H10 | 0.7108 | 0.2393 | 0.5516 | 0.045* | |
C11 | 0.6649 (4) | 0.30992 (14) | 0.37863 (14) | 0.0289 (5) | |
C12 | 0.5375 (4) | 0.37527 (14) | 0.38065 (15) | 0.0300 (5) | |
C13 | 0.3272 (5) | 0.37346 (17) | 0.38295 (17) | 0.0406 (7) | |
H13 | 0.2457 | 0.3316 | 0.3830 | 0.049* | |
C14 | 0.2658 (5) | 0.45070 (18) | 0.3853 (2) | 0.0508 (8) | |
H14 | 0.1336 | 0.4647 | 0.3878 | 0.061* | |
C15 | 0.4127 (5) | 0.49975 (17) | 0.3835 (2) | 0.0488 (8) | |
H15 | 0.3930 | 0.5509 | 0.3847 | 0.059* | |
C16 | 0.3672 (4) | 0.13855 (13) | 0.27060 (15) | 0.0285 (5) | |
C17 | 0.2351 (4) | 0.14483 (13) | 0.18962 (16) | 0.0300 (5) | |
C18 | 0.0315 (4) | 0.12344 (15) | 0.16881 (17) | 0.0351 (6) | |
H18 | −0.0438 | 0.1036 | 0.2053 | 0.042* | |
C19 | −0.0425 (5) | 0.13653 (18) | 0.0838 (2) | 0.0492 (8) | |
H19 | −0.1754 | 0.1259 | 0.0573 | 0.059* | |
C20 | 0.0926 (5) | 0.1648 (2) | 0.04594 (19) | 0.0513 (8) | |
H20 | 0.0657 | 0.1767 | −0.0101 | 0.062* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu | 0.02852 (17) | 0.02612 (17) | 0.02524 (17) | 0.00260 (12) | 0.00714 (12) | 0.00575 (12) |
S1 | 0.0513 (5) | 0.0344 (4) | 0.0543 (5) | 0.0013 (3) | 0.0115 (4) | 0.0014 (3) |
S2 | 0.0458 (4) | 0.0696 (6) | 0.0346 (4) | 0.0073 (4) | 0.0100 (3) | 0.0159 (4) |
O1 | 0.0436 (11) | 0.0269 (9) | 0.0451 (11) | 0.0056 (8) | 0.0177 (9) | 0.0092 (8) |
O2 | 0.0343 (10) | 0.0339 (10) | 0.0397 (11) | 0.0042 (8) | 0.0108 (8) | 0.0075 (8) |
O3 | 0.0298 (9) | 0.0420 (11) | 0.0278 (9) | 0.0031 (8) | 0.0064 (7) | 0.0086 (8) |
O4 | 0.0352 (10) | 0.0409 (11) | 0.0318 (10) | 0.0069 (8) | 0.0131 (8) | 0.0117 (8) |
O5 | 0.0311 (10) | 0.0376 (11) | 0.0523 (13) | 0.0088 (9) | 0.0172 (9) | 0.0111 (10) |
N1 | 0.0231 (10) | 0.0294 (11) | 0.0269 (11) | 0.0020 (8) | 0.0041 (8) | 0.0024 (8) |
N2 | 0.0280 (10) | 0.0299 (11) | 0.0261 (11) | −0.0029 (9) | 0.0078 (8) | 0.0020 (9) |
C1 | 0.0312 (13) | 0.0391 (14) | 0.0308 (14) | 0.0027 (11) | 0.0042 (11) | −0.0032 (11) |
C2 | 0.0318 (14) | 0.0390 (15) | 0.0462 (17) | 0.0003 (12) | 0.0070 (12) | −0.0111 (13) |
C3 | 0.0303 (14) | 0.0276 (13) | 0.0612 (19) | −0.0002 (11) | 0.0102 (13) | −0.0010 (13) |
C4 | 0.0243 (12) | 0.0282 (13) | 0.0446 (15) | 0.0018 (10) | 0.0061 (11) | 0.0085 (11) |
C5 | 0.0163 (10) | 0.0302 (12) | 0.0298 (12) | −0.0006 (9) | 0.0031 (9) | 0.0050 (10) |
C6 | 0.0186 (11) | 0.0306 (12) | 0.0265 (12) | −0.0020 (9) | 0.0047 (9) | 0.0050 (10) |
C7 | 0.0273 (12) | 0.0415 (15) | 0.0300 (13) | −0.0001 (11) | 0.0044 (10) | 0.0094 (11) |
C8 | 0.0358 (15) | 0.0585 (18) | 0.0254 (13) | −0.0037 (13) | 0.0064 (11) | 0.0026 (13) |
C9 | 0.0448 (16) | 0.0499 (17) | 0.0327 (15) | −0.0066 (14) | 0.0088 (12) | −0.0107 (13) |
C10 | 0.0449 (16) | 0.0333 (14) | 0.0347 (15) | −0.0039 (12) | 0.0115 (12) | −0.0035 (12) |
C11 | 0.0346 (14) | 0.0301 (13) | 0.0207 (12) | 0.0040 (11) | 0.0024 (10) | 0.0043 (10) |
C12 | 0.0379 (14) | 0.0268 (12) | 0.0257 (12) | 0.0017 (11) | 0.0073 (10) | 0.0048 (10) |
C13 | 0.0475 (16) | 0.0420 (16) | 0.0388 (15) | 0.0290 (14) | 0.0243 (13) | 0.0167 (13) |
C14 | 0.0514 (19) | 0.0436 (17) | 0.064 (2) | 0.0156 (15) | 0.0272 (17) | 0.0092 (15) |
C15 | 0.063 (2) | 0.0322 (15) | 0.0548 (19) | 0.0135 (14) | 0.0199 (16) | 0.0066 (14) |
C16 | 0.0322 (13) | 0.0258 (12) | 0.0285 (13) | 0.0059 (10) | 0.0088 (10) | 0.0048 (10) |
C17 | 0.0350 (14) | 0.0272 (12) | 0.0280 (13) | 0.0054 (11) | 0.0067 (11) | 0.0058 (10) |
C18 | 0.0321 (13) | 0.0338 (14) | 0.0334 (14) | 0.0017 (11) | −0.0081 (11) | 0.0038 (11) |
C19 | 0.0461 (17) | 0.0504 (18) | 0.0441 (18) | −0.0021 (15) | −0.0081 (14) | 0.0014 (15) |
C20 | 0.056 (2) | 0.066 (2) | 0.0277 (15) | 0.0155 (17) | −0.0012 (14) | 0.0041 (14) |
Cu—O1 | 1.9447 (18) | C4—C5 | 1.381 (3) |
Cu—O3 | 1.9909 (19) | C4—H4 | 0.9500 |
Cu—N1 | 2.011 (2) | C5—C6 | 1.472 (4) |
Cu—N2 | 2.018 (2) | C6—C7 | 1.393 (3) |
Cu—O5 | 2.236 (2) | C7—C8 | 1.381 (4) |
S1—C15 | 1.702 (3) | C7—H7 | 0.9500 |
S1—C12 | 1.714 (3) | C8—C9 | 1.375 (4) |
S2—C17 | 1.700 (3) | C8—H8 | 0.9500 |
S2—C20 | 1.706 (3) | C9—C10 | 1.383 (4) |
O1—C11 | 1.274 (3) | C9—H9 | 0.9500 |
O2—C11 | 1.236 (3) | C10—H10 | 0.9500 |
O3—C16 | 1.280 (3) | C11—C12 | 1.489 (4) |
O4—C16 | 1.243 (3) | C12—C13 | 1.448 (4) |
O5—H5A | 0.73 (4) | C13—C14 | 1.483 (4) |
O5—H5B | 0.73 (4) | C13—H13 | 0.9500 |
N1—C1 | 1.332 (3) | C14—C15 | 1.355 (5) |
N1—C5 | 1.358 (3) | C14—H14 | 0.9500 |
N2—C10 | 1.340 (3) | C15—H15 | 0.9500 |
N2—C6 | 1.352 (3) | C16—C17 | 1.483 (4) |
C1—C2 | 1.384 (4) | C17—C18 | 1.423 (4) |
C1—H1 | 0.9500 | C18—C19 | 1.440 (4) |
C2—C3 | 1.378 (4) | C18—H18 | 0.9500 |
C2—H2 | 0.9500 | C19—C20 | 1.330 (5) |
C3—C4 | 1.384 (4) | C19—H19 | 0.9500 |
C3—H3 | 0.9500 | C20—H20 | 0.9500 |
O1—Cu—O3 | 90.18 (8) | C8—C7—H7 | 120.4 |
O1—Cu—N1 | 167.13 (8) | C6—C7—H7 | 120.4 |
O3—Cu—N1 | 94.08 (8) | C9—C8—C7 | 119.5 (3) |
O1—Cu—N2 | 92.15 (8) | C9—C8—H8 | 120.3 |
O3—Cu—N2 | 163.16 (8) | C7—C8—H8 | 120.3 |
N1—Cu—N2 | 80.33 (8) | C8—C9—C10 | 118.8 (3) |
O1—Cu—O5 | 92.18 (8) | C8—C9—H9 | 120.6 |
O3—Cu—O5 | 99.70 (8) | C10—C9—H9 | 120.6 |
N1—Cu—O5 | 99.04 (8) | N2—C10—C9 | 122.5 (3) |
N2—Cu—O5 | 96.87 (8) | N2—C10—H10 | 118.8 |
C15—S1—C12 | 91.48 (15) | C9—C10—H10 | 118.8 |
C17—S2—C20 | 91.96 (15) | O2—C11—O1 | 126.9 (2) |
C11—O1—Cu | 129.96 (17) | O2—C11—C12 | 119.0 (2) |
C16—O3—Cu | 106.35 (16) | O1—C11—C12 | 114.0 (2) |
Cu—O5—H5A | 97 (3) | C13—C12—C11 | 124.9 (2) |
Cu—O5—H5B | 133 (3) | C13—C12—S1 | 114.7 (2) |
H5A—O5—H5B | 110 (4) | C11—C12—S1 | 120.4 (2) |
C1—N1—C5 | 119.1 (2) | C12—C13—C14 | 105.5 (3) |
C1—N1—Cu | 125.59 (18) | C12—C13—H13 | 127.3 |
C5—N1—Cu | 115.21 (17) | C14—C13—H13 | 127.3 |
C10—N2—C6 | 119.0 (2) | C15—C14—C13 | 114.9 (3) |
C10—N2—Cu | 125.80 (18) | C15—C14—H14 | 122.5 |
C6—N2—Cu | 115.21 (17) | C13—C14—H14 | 122.5 |
N1—C1—C2 | 122.4 (3) | C14—C15—S1 | 113.4 (2) |
N1—C1—H1 | 118.8 | C14—C15—H15 | 123.3 |
C2—C1—H1 | 118.8 | S1—C15—H15 | 123.3 |
C3—C2—C1 | 118.8 (3) | O4—C16—O3 | 123.3 (2) |
C3—C2—H2 | 120.6 | O4—C16—C17 | 118.9 (2) |
C1—C2—H2 | 120.6 | O3—C16—C17 | 117.8 (2) |
C2—C3—C4 | 119.3 (3) | C18—C17—C16 | 126.3 (2) |
C2—C3—H3 | 120.4 | C18—C17—S2 | 111.8 (2) |
C4—C3—H3 | 120.4 | C16—C17—S2 | 121.8 (2) |
C5—C4—C3 | 119.3 (3) | C17—C18—C19 | 109.4 (3) |
C5—C4—H4 | 120.4 | C17—C18—H18 | 125.3 |
C3—C4—H4 | 120.4 | C19—C18—H18 | 125.3 |
N1—C5—C4 | 121.2 (2) | C20—C19—C18 | 113.7 (3) |
N1—C5—C6 | 114.5 (2) | C20—C19—H19 | 123.2 |
C4—C5—C6 | 124.3 (2) | C18—C19—H19 | 123.2 |
N2—C6—C7 | 121.1 (2) | C19—C20—S2 | 113.2 (2) |
N2—C6—C5 | 114.6 (2) | C19—C20—H20 | 123.4 |
C7—C6—C5 | 124.3 (2) | S2—C20—H20 | 123.4 |
C8—C7—C6 | 119.2 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H5A···O2 | 0.73 (4) | 1.99 (4) | 2.682 (3) | 160 (4) |
O5—H5B···O4i | 0.73 (4) | 2.02 (4) | 2.741 (3) | 171 (4) |
Symmetry code: (i) x+1, y, z. |
Experimental details
Crystal data | |
Chemical formula | [Cu(C5H3O2S)2(C10H8N2)(H2O)] |
Mr | 492.01 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 123 |
a, b, c (Å) | 6.8458 (5), 18.3799 (15), 16.8421 (12) |
β (°) | 101.5164 (19) |
V (Å3) | 2076.5 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.29 |
Crystal size (mm) | 0.35 × 0.22 × 0.18 |
Data collection | |
Diffractometer | Rigaku R-AXIS Spider image-plate detector diffractometer |
Absorption correction | Multi-scan (ABSCOR; Higashi, 1995) |
Tmin, Tmax | 0.661, 0.801 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 32855, 4224, 3637 |
Rint | 0.034 |
(sin θ/λ)max (Å−1) | 0.625 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.037, 0.099, 1.05 |
No. of reflections | 4224 |
No. of parameters | 277 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.64, −0.60 |
Computer programs: D*TREK in CrystalClear (Rigaku, 2007), FSPROC in CrystalClear (Rigaku, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Crystal Impact, 2009), publCIF (Westrip, 2009).
Cu—O1 | 1.9447 (18) | Cu—N2 | 2.018 (2) |
Cu—O3 | 1.9909 (19) | Cu—O5 | 2.236 (2) |
Cu—N1 | 2.011 (2) | ||
O1—Cu—O3 | 90.18 (8) | N1—Cu—N2 | 80.33 (8) |
O1—Cu—N1 | 167.13 (8) | O1—Cu—O5 | 92.18 (8) |
O3—Cu—N1 | 94.08 (8) | O3—Cu—O5 | 99.70 (8) |
O1—Cu—N2 | 92.15 (8) | N1—Cu—O5 | 99.04 (8) |
O3—Cu—N2 | 163.16 (8) | N2—Cu—O5 | 96.87 (8) |
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H5A···O2 | 0.73 (4) | 1.99 (4) | 2.682 (3) | 160 (4) |
O5—H5B···O4i | 0.73 (4) | 2.02 (4) | 2.741 (3) | 171 (4) |
Symmetry code: (i) x+1, y, z. |
Acknowledgements
Support through DFG grant Ja466/14–1 is acknowledged.
References
Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356. CSD CrossRef Web of Science Google Scholar
Bharti, S.-N., Naqvi, F. & Azam, A. (2003). Bioorg. Med. Chem. Lett. 13, 689-692. CrossRef PubMed CAS Google Scholar
Byrnes, M. J., Chisholm, M. H., Clark, R. J. H., Gallucci, J. C., Hadad, C. M. & Patmore, N. J. (2004). Inorg. Chem. 43, 6334–6344. Web of Science CSD CrossRef PubMed CAS Google Scholar
Crystal Impact (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Feng, D.-M., He, H.-Y., Jin, H.-X. & Zhu, L.-G. (2005). Z. Kristallogr. New Ctyst. Struct. 220, 429-430. CAS Google Scholar
Habib, H. A. & Janiak, C. (2008). Acta Cryst. E64, o1199. Web of Science CSD CrossRef IUCr Journals Google Scholar
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896. Web of Science CrossRef Google Scholar
Kuroda-Sowa, T., Nogami, T., Konaka, H., Maekawa, M., Munakata, M., Miyasaka, H. & Yamashita, M. (2003). Polyhedron, 22, 1795–1801. Web of Science CSD CrossRef CAS Google Scholar
Lumme, P. & Korvola, M. L. (1975). Thermochim. Acta, 13, 419–439. CrossRef CAS Web of Science Google Scholar
Panagoulis, D., Pontiki, E., Skeva, E., Raptopoulou, C., Girousi, S., Hadjipavlou-Litina, D. & Dendrinou-Samara, C. (2007). J. Inorg. Biochem. 101, 623–634. Web of Science CSD CrossRef PubMed CAS Google Scholar
Rance, D. J. & Damani, L. A. (1989). Editors. Sulfur-Containing Drugs and Related Organic Compounds, Vol. 1, part B, ch. 9. Chichester: Ellis Horwood. Google Scholar
Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Teotonio, E. E. S., Felinto, M. C. F. C., Brito, M. F., Malta, O. L., Trindade, A. C., Najjar, R. & Strek, W. (2004). Inorg. Chim. Acta, 357, 451–460. Web of Science CSD CrossRef CAS Google Scholar
Westrip, S. P. (2009). publCIF. In preparation. Google Scholar
Wisser, B. & Janiak, C. (2007a). Acta Cryst. E63, m1732–m1733. Web of Science CSD CrossRef IUCr Journals Google Scholar
Wisser, B. & Janiak, C. (2007b). Acta Cryst. E63, o2871–o2872. Web of Science CSD CrossRef IUCr Journals Google Scholar
Yin, M. & Sun, J. (2005). J. Coord. Chem. 58, 335–342. Web of Science CSD CrossRef CAS Google Scholar
Yin, M.-C., Yuan, L.-J., Ai, C.-C., Wang, C.-W., Yuan, E.-T. & Sun, J.-T. (2004). Polyhedron, 23, 529–536. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Thiophenes substituted in the 2-position are an important constituent of the drugs methapyrilene, temidap, tienilic acid and temocillin (Rance & Damani, 1989). Metal complexes containing the thiophene moiety have exhibited enhanced antiamoebic activity (Bharti et al., 2003). Knowledge of the structural peculiarities of a biologically active molecule and its inherent 3 -dimensional structure is a necessary condition for investigating the interaction with metal ions and for designing new compounds. Recently, thiophene-2-carboxylic acid (Htpc) has been used to prepare single molecular magnet (SMM) and photoluminescence materials (Kuroda-Sowa et al., 2003; Teotonio et al., 2004). The thermal behavior of metal-tpc complexes was studied (Lumme & Korvola, 1975). Single crystal structures of 2- thiophenecarboxylate complexes are still limited (Feng et al., 2005), with recent additions of a tpc-bridged di-copper (Panagoulis et al., 2007), di-molybdenum (Byrnes et al., 2004), di-terbium and di-europium complex (Yin & Sun, 2005; Yin et al., 2004).
The molecular structure of the title complex is shown in Fig. 1. The Cu atoms are in a square-pyramidal environment with a long apical Cu—OH2 bond due to the Jahn-Teller effect. No relevant π—π or C—H···π interactions are found between the thiophene rings only between bipyridine ligands (Fig. 2). There, the π-stacking interactions can be viewed as strong because of the rather short centroid-centroid contacts (3.683 Å), small slip angles (22.9°) and short interplanar separation (3.4 Å) which translate into a sizable overlap of the near parallel aromatic planes (interplanar angle 2.5°) (Janiak, 2000). The intra- and intermolecular hydrogen bonds from the aqua ligand to the uncoordinated carboxyl oxygen atoms are normal (Habib & Janiak, 2008; Wisser & Janiak, 2007a; Wisser & Janiak, 2007b).