organic compounds
3-[2-(3-Methyl-2-oxo-1,2-dihydroquinoxalin-1-yl)ethyl]oxazolidin-2-one
aLaboratoire de Chimie Organique Hétérocyclique, Pôle de Compétences, Pharmacochimie, Av Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V-Agdal, Rabat, Morocco, and bLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: l_elammari@fsr.ac.ma
The title heterocyclic compound, C14H15N3O3, is a new synthetic molecule containing oxazolidine and quinoxaline rings. It is built up from two fused six-membered rings linked to a five-membered oxazolidin-2-one ring by a C2 chain. Both ring systems are essentially planar [maximum deviation = 0.894 (3) Å, r.m.s. deviation = 0.0043 Å]. The structure is held together by [electrostatic interactions between dipoles, O⋯C = 3.002 (2) Å] between molecules and by weak π–π stacking between symmetry-related molecules, with an interplanar distance of 3.579 Å and a centroid–centroid distance of 3.800 (1) Å. Intermolecular C—H⋯O hydrogen bonds are also observed in the crystal structure.
Related literature
For the biological activity of 3–2(-(3-methyl-2-oxoquinoxalin-1(2H)-yl) ethyl)oxazolidin-2-one, see: Ferfra (2001); Habib & El-hawash (1997); Romer et al. (1995). For pharmaceutical agrochemicals, see: Badran et al. (2003); Madhusudhan et al. (2004); Soad et al. (2006); Sriharsha & Shashikanth (2006); Sarro et al. (2002). For a related structure, see: Doubia et al. (2007).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: APEX2 (Bruker, 2005); cell SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536809028736/fj2233sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809028736/fj2233Isup2.hkl
It reacted 0.0125 moles of quinoxaline-2-one with 2.66 moles of dichlorodiéthylamine in 40 ml dimethyl formamide in the presence of 2.87 moles of K2CO3 and a few milligrams of BTBA. The mixture was brought to reflux in a bath of sand magnetic stirring for 6 h. After vacuum concentration, the separation of compounds was done by
eluant 4 / 6(hexane - ethyl acetate). Recrystallization occurred in the same This compound was obtained in 60% and his melting point is 175°C.All H atoms were located in a difference map and refined without any distance restraints.
Data collection: APEX2 (Bruker, 2005); cell
SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).C14H15N3O3 | F(000) = 1152 |
Mr = 273.29 | Dx = 1.381 Mg m−3 |
Monoclinic, C2/c | Melting point: 448 K |
Hall symbol: -C 2yc | Mo Kα radiation, λ = 0.71073 Å |
a = 12.280 (3) Å | Cell parameters from 21279 reflections |
b = 10.736 (3) Å | θ = 2.6–30.9° |
c = 20.406 (4) Å | µ = 0.10 mm−1 |
β = 102.32 (1)° | T = 298 K |
V = 2628.3 (11) Å3 | Prism, colourless |
Z = 8 | 0.28 × 0.17 × 0.12 mm |
Bruker X8 APEXII CCD area-detector diffractometer | Rint = 0.033 |
Graphite monochromator | θmax = 30.9°, θmin = 2.6° |
ϕ and ω scans | h = −17→17 |
21237 measured reflections | k = −15→15 |
4108 independent reflections | l = −26→29 |
2727 reflections with I > 2σ(I) |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.050 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.157 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | w = 1/[σ2(Fo2) + (0.081P)2 + 0.6684P] where P = (Fo2 + 2Fc2)/3 |
4108 reflections | (Δ/σ)max = 0.001 |
204 parameters | Δρmax = 0.29 e Å−3 |
0 restraints | Δρmin = −0.24 e Å−3 |
C14H15N3O3 | V = 2628.3 (11) Å3 |
Mr = 273.29 | Z = 8 |
Monoclinic, C2/c | Mo Kα radiation |
a = 12.280 (3) Å | µ = 0.10 mm−1 |
b = 10.736 (3) Å | T = 298 K |
c = 20.406 (4) Å | 0.28 × 0.17 × 0.12 mm |
β = 102.32 (1)° |
Bruker X8 APEXII CCD area-detector diffractometer | 2727 reflections with I > 2σ(I) |
21237 measured reflections | Rint = 0.033 |
4108 independent reflections |
R[F2 > 2σ(F2)] = 0.050 | 0 restraints |
wR(F2) = 0.157 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | Δρmax = 0.29 e Å−3 |
4108 reflections | Δρmin = −0.24 e Å−3 |
204 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.11176 (11) | 0.25753 (10) | 0.54216 (6) | 0.0630 (3) | |
O2 | −0.13309 (10) | 0.52714 (11) | 0.26113 (5) | 0.0598 (3) | |
O3 | −0.13793 (10) | 0.32026 (12) | 0.24503 (6) | 0.0662 (4) | |
N1 | 0.11384 (8) | 0.15986 (10) | 0.44405 (5) | 0.0353 (2) | |
N2 | 0.16192 (10) | −0.06171 (10) | 0.51654 (5) | 0.0422 (3) | |
N3 | −0.06491 (10) | 0.40729 (10) | 0.34753 (5) | 0.0411 (3) | |
C1 | 0.12314 (11) | 0.16145 (12) | 0.51219 (6) | 0.0387 (3) | |
C2 | 0.14895 (11) | 0.04062 (12) | 0.54680 (6) | 0.0385 (3) | |
C3 | 0.15128 (10) | −0.05948 (12) | 0.44748 (6) | 0.0375 (3) | |
C4 | 0.16612 (13) | −0.17122 (14) | 0.41519 (8) | 0.0499 (4) | |
H4 | 0.1830 (15) | −0.2426 (16) | 0.4433 (9) | 0.064 (5)* | |
C5 | 0.15685 (13) | −0.17446 (16) | 0.34713 (8) | 0.0550 (4) | |
H5 | 0.0990 (14) | 0.1222 (17) | 0.3136 (8) | 0.061 (5)* | |
C6 | 0.13209 (13) | −0.06520 (17) | 0.31028 (8) | 0.0524 (4) | |
H6 | 0.1300 (16) | −0.0693 (17) | 0.2637 (11) | 0.070 (6)* | |
C7 | 0.11673 (12) | 0.04585 (15) | 0.34045 (7) | 0.0452 (3) | |
H7 | 0.1688 (16) | −0.2533 (17) | 0.3259 (9) | 0.064 (5)* | |
C8 | 0.12719 (10) | 0.05051 (11) | 0.40996 (6) | 0.0341 (3) | |
C9 | 0.15977 (14) | 0.04223 (15) | 0.62100 (7) | 0.0522 (4) | |
H9A | 0.1775 | −0.0400 | 0.6386 | 0.090* | |
H9B | 0.0907 | 0.0690 | 0.6313 | 0.080* | |
H9C | 0.2181 | 0.0987 | 0.6409 | 0.071 (6)* | |
C10 | 0.08780 (11) | 0.27856 (12) | 0.40844 (7) | 0.0414 (3) | |
H10A | 0.1230 | 0.2811 | 0.3702 | 0.053 (4)* | |
H10B | 0.1171 | 0.3469 | 0.4381 | 0.047 (4)* | |
C11 | −0.03761 (11) | 0.29325 (13) | 0.38470 (7) | 0.0457 (3) | |
H11A | −0.0670 | 0.2231 | 0.3565 | 0.062 (5)* | |
H11B | −0.0723 | 0.2934 | 0.4232 | 0.069 (5)* | |
C12 | −0.0550 (2) | 0.52845 (15) | 0.37655 (9) | 0.0767 (6) | |
H12A | 0.0221 | 0.5485 | 0.3962 | 0.090* | |
H12B | −0.0990 | 0.5361 | 0.4106 | 0.088* | |
C13 | −0.10029 (16) | 0.61022 (15) | 0.31685 (9) | 0.0625 (5) | |
H13A | −0.1637 | 0.6578 | 0.3242 | 0.081 (6)* | |
H13B | −0.0435 | 0.6676 | 0.3088 | 0.089 (7)* | |
C14 | −0.11293 (11) | 0.40817 (14) | 0.28215 (7) | 0.0429 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0931 (9) | 0.0442 (6) | 0.0505 (6) | 0.0055 (6) | 0.0130 (6) | −0.0100 (5) |
O2 | 0.0708 (8) | 0.0578 (7) | 0.0454 (6) | 0.0030 (5) | 0.0000 (5) | 0.0146 (5) |
O3 | 0.0708 (8) | 0.0718 (8) | 0.0502 (6) | 0.0112 (6) | 0.0005 (5) | −0.0246 (6) |
N1 | 0.0362 (5) | 0.0336 (5) | 0.0352 (5) | 0.0005 (4) | 0.0053 (4) | 0.0056 (4) |
N2 | 0.0472 (6) | 0.0398 (6) | 0.0353 (6) | −0.0030 (5) | −0.0010 (4) | 0.0057 (4) |
N3 | 0.0502 (7) | 0.0332 (5) | 0.0361 (6) | 0.0048 (4) | 0.0009 (5) | 0.0017 (4) |
C1 | 0.0397 (6) | 0.0385 (6) | 0.0363 (6) | −0.0027 (5) | 0.0048 (5) | −0.0001 (5) |
C2 | 0.0369 (6) | 0.0425 (7) | 0.0329 (6) | −0.0078 (5) | 0.0005 (5) | 0.0033 (5) |
C3 | 0.0360 (6) | 0.0370 (6) | 0.0368 (6) | 0.0008 (5) | 0.0016 (5) | 0.0028 (5) |
C4 | 0.0525 (8) | 0.0400 (7) | 0.0528 (8) | 0.0061 (6) | 0.0013 (6) | −0.0023 (6) |
C5 | 0.0513 (9) | 0.0561 (9) | 0.0557 (9) | 0.0062 (7) | 0.0075 (7) | −0.0160 (7) |
C6 | 0.0475 (8) | 0.0734 (11) | 0.0373 (7) | 0.0010 (7) | 0.0110 (6) | −0.0072 (7) |
C7 | 0.0434 (7) | 0.0566 (8) | 0.0360 (7) | 0.0010 (6) | 0.0091 (5) | 0.0063 (6) |
C8 | 0.0289 (6) | 0.0381 (6) | 0.0345 (6) | 0.0004 (4) | 0.0050 (4) | 0.0036 (5) |
C9 | 0.0595 (9) | 0.0622 (9) | 0.0319 (6) | −0.0168 (7) | 0.0030 (6) | 0.0035 (6) |
C10 | 0.0425 (7) | 0.0341 (6) | 0.0463 (7) | −0.0008 (5) | 0.0066 (5) | 0.0103 (5) |
C11 | 0.0426 (7) | 0.0387 (7) | 0.0533 (8) | 0.0001 (5) | 0.0044 (6) | 0.0121 (6) |
C12 | 0.1231 (18) | 0.0380 (8) | 0.0533 (10) | 0.0076 (9) | −0.0162 (10) | −0.0075 (7) |
C13 | 0.0684 (11) | 0.0380 (8) | 0.0734 (11) | 0.0008 (7) | −0.0019 (8) | 0.0086 (7) |
C14 | 0.0399 (7) | 0.0513 (8) | 0.0368 (6) | 0.0074 (6) | 0.0067 (5) | −0.0016 (6) |
O1—C1 | 1.2223 (17) | C5—H7 | 0.976 (19) |
O2—C14 | 1.3532 (18) | C6—C7 | 1.373 (2) |
O2—C13 | 1.434 (2) | C6—H6 | 0.95 (2) |
O3—C14 | 1.2080 (18) | C7—C8 | 1.3975 (18) |
N1—C1 | 1.3708 (16) | C7—H5 | 0.984 (18) |
N1—C8 | 1.3921 (16) | C9—H9A | 0.9600 |
N1—C10 | 1.4680 (16) | C9—H9B | 0.9600 |
N2—C2 | 1.2868 (18) | C9—H9C | 0.9600 |
N2—C3 | 1.3874 (17) | C10—C11 | 1.5208 (19) |
N3—C14 | 1.3387 (17) | C10—H10A | 0.9700 |
N3—C12 | 1.4237 (19) | C10—H10B | 0.9700 |
N3—C11 | 1.4415 (16) | C11—H11A | 0.9700 |
C1—C2 | 1.4787 (18) | C11—H11B | 0.9700 |
C2—C9 | 1.4915 (19) | C12—C13 | 1.508 (2) |
C3—C4 | 1.3991 (19) | C12—H12A | 0.9700 |
C3—C8 | 1.4041 (17) | C12—H12B | 0.9700 |
C4—C5 | 1.369 (2) | C13—H13A | 0.9700 |
C4—H4 | 0.953 (17) | C13—H13B | 0.9700 |
C5—C6 | 1.392 (2) | ||
C14—O2—C13 | 109.55 (11) | C2—C9—H9B | 109.5 |
C1—N1—C8 | 121.61 (10) | H9A—C9—H9B | 109.5 |
C1—N1—C10 | 116.97 (11) | C2—C9—H9C | 109.5 |
C8—N1—C10 | 121.42 (10) | H9A—C9—H9C | 109.5 |
C2—N2—C3 | 118.58 (11) | H9B—C9—H9C | 109.5 |
C14—N3—C12 | 112.86 (11) | N1—C10—C11 | 110.28 (10) |
C14—N3—C11 | 122.27 (11) | N1—C10—H10A | 109.6 |
C12—N3—C11 | 124.57 (12) | C11—C10—H10A | 109.6 |
O1—C1—N1 | 121.63 (12) | N1—C10—H10B | 109.6 |
O1—C1—C2 | 122.48 (12) | C11—C10—H10B | 109.6 |
N1—C1—C2 | 115.89 (11) | H10A—C10—H10B | 108.1 |
N2—C2—C1 | 123.75 (11) | N3—C11—C10 | 111.20 (11) |
N2—C2—C9 | 120.25 (12) | N3—C11—H11A | 109.4 |
C1—C2—C9 | 116.00 (12) | C10—C11—H11A | 109.4 |
N2—C3—C4 | 118.03 (12) | N3—C11—H11B | 109.4 |
N2—C3—C8 | 122.11 (12) | C10—C11—H11B | 109.4 |
C4—C3—C8 | 119.85 (12) | H11A—C11—H11B | 108.0 |
C5—C4—C3 | 120.55 (14) | N3—C12—C13 | 102.23 (13) |
C5—C4—H4 | 123.4 (11) | N3—C12—H12A | 111.3 |
C3—C4—H4 | 116.1 (11) | C13—C12—H12A | 111.3 |
C4—C5—C6 | 119.21 (14) | N3—C12—H12B | 111.3 |
C4—C5—H7 | 119.0 (11) | C13—C12—H12B | 111.3 |
C6—C5—H7 | 121.8 (11) | H12A—C12—H12B | 109.2 |
C7—C6—C5 | 121.64 (14) | O2—C13—C12 | 105.73 (13) |
C7—C6—H6 | 120.9 (11) | O2—C13—H13A | 110.6 |
C5—C6—H6 | 117.4 (11) | C12—C13—H13A | 110.6 |
C6—C7—C8 | 119.63 (14) | O2—C13—H13B | 110.6 |
C6—C7—H5 | 120.6 (10) | C12—C13—H13B | 110.6 |
C8—C7—H5 | 119.8 (10) | H13A—C13—H13B | 108.7 |
N1—C8—C7 | 122.83 (12) | O3—C14—N3 | 128.19 (14) |
N1—C8—C3 | 118.06 (11) | O3—C14—O2 | 122.27 (13) |
C7—C8—C3 | 119.10 (12) | N3—C14—O2 | 109.53 (12) |
C2—C9—H9A | 109.5 |
D—H···A | D—H | H···A | D···A | D—H···A |
C7—H5···O3i | 0.98 (2) | 2.54 (2) | 3.462 (2) | 157 (2) |
C10—H10A···O3i | 0.97 | 2.43 | 3.348 (2) | 157 |
Symmetry code: (i) −x, y, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C14H15N3O3 |
Mr | 273.29 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 298 |
a, b, c (Å) | 12.280 (3), 10.736 (3), 20.406 (4) |
β (°) | 102.32 (1) |
V (Å3) | 2628.3 (11) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.10 |
Crystal size (mm) | 0.28 × 0.17 × 0.12 |
Data collection | |
Diffractometer | Bruker X8 APEXII CCD area-detector diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 21237, 4108, 2727 |
Rint | 0.033 |
(sin θ/λ)max (Å−1) | 0.723 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.050, 0.157, 1.04 |
No. of reflections | 4108 |
No. of parameters | 204 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.29, −0.24 |
Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
C7—H5···O3i | 0.98 (2) | 2.54 (2) | 3.462 (2) | 157 (2) |
C10—H10A···O3i | 0.97 | 2.43 | 3.348 (2) | 157 |
Symmetry code: (i) −x, y, −z+1/2. |
Acknowledgements
The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for making possible the present work. They also thank Professors B. Jaber and M. Benaissa for useful discussions and H. Zouihri for his technical assistance during the X-ray measurements.
References
Badran, M. M., Abouzid, K. A. M. & Hussein, M. H. M. (2003). Arch. Pharm. Res. Part II, 26, 107–113. Web of Science CrossRef CAS Google Scholar
Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Doubia, M. L., Bouhfid, R., Ahabchane, N. H., Essassi, E. M. & El Ammari, L. (2007). Acta Cryst. E63, o3305. Web of Science CSD CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Ferfra, S. (2001). Thèse de Doctorat d'État Université Mohammed V, Agdal, Faculté des Sciences Rabat, Morocco. Google Scholar
Habib, N. S. & El-hawash, S. A. (1997). Pharmazie, 52, 750–753. PubMed Web of Science Google Scholar
Madhusudhan, G., Om Reddy, G., Ramanathan, J. & Dubey, P. K. (2004). Indian J. Chem. Sect. B, 43, 957–963. Google Scholar
Romer, D. R., Aldrich, B. L., Pews, R. G. & Walter, R. W. (1995). Pestic. Sci. 43, 263–266. CrossRef CAS Web of Science Google Scholar
Sarro, G. De., Ferreri, G., Gareri, P., Russo, E., Sarro, A. De., Gitto, R. & Chimiri, A. (2002). Pharmacol. Biochem. Behav. 74, 595–602. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Soad, A. M., El-Hawash, S. A., Abeer, E. & Wahab, A. (2006). Arch. Pharm. Res. 339, 437–447. Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sriharsha, S. N. & Shashikanth, S. J. (2006). Heterocycl. Commun. 12, 213–218. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The heterocyclic compounds to 5 or 6 Chains occupying a capital in fields as varied,quinoxalines pharmacy (Madhusudhan et al. 2004 and Sarro et al.2002) in agrochemicals (Romer et al. 1995, Habib et al. 1997) biology (Ferfra 2001)etc. The quinoxalines and the oxazolidines are subjets of numerous articles in describing the synthesis of new derivatives presentery antibacterial properties (Badran et al. 2003, Sriharsha et al. 2006) and anti tumor (Soad et al. 2006). We describe here the synthesis of compound 3 to side of the compound 2 per share on the dichlorodiéthylmine quinoxaline-2-one fusion as show in the chemical structural diagram (Fig.1).
The 3–2(-(3-methyl-2-oxoquinoxalin-1(2H)-yl)ethyl)oxazolidin-2-one (I) molecule structure is built up from two fused six-membered rings linked to a five-membered ring (oxazolidin-2-one) by an ethylic groupe. The both rings are essentially planar and forms a dihedral angle of 20.46 (6)° with the oxazolidin-2-one ring. The molecular structure of (I) is shown in Fig.2. The geometric parameters (bond lenghths and angles) are very similar to those observed in previously reported structures (Doubia et al. 2007).
An intermolecular C—H···O hydrogen bond is observed in the cristal structure as shown in the partial plot of the structure (Fig.3). Furthermore, the structure is stabilized by Van der Waals forces and together by weak slipped π-π stzcking between symmetry related molecules (C to C ring) with interplanar distance of 3.579 Å and centroid to centroid vector of 3.800 (1) Å.