organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages o2024-o2025

3-[2-(3-Methyl-2-oxo-1,2-di­hydro­quinoxalin-1-yl)eth­yl]oxazolidin-2-one

aLaboratoire de Chimie Organique Hétérocyclique, Pôle de Compétences, Pharmacochimie, Av Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V-Agdal, Rabat, Morocco, and bLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: l_elammari@fsr.ac.ma

(Received 29 June 2009; accepted 20 July 2009; online 29 July 2009)

The title heterocyclic compound, C14H15N3O3, is a new synthetic mol­ecule containing oxazolidine and quinoxaline rings. It is built up from two fused six-membered rings linked to a five-membered oxazolidin-2-one ring by a C2 chain. Both ring systems are essentially planar [maximum deviation = 0.894 (3) Å, r.m.s. deviation = 0.0043 Å]. The structure is held together by van der Waals forces [electrostatic interactions between dipoles, O⋯C = 3.002 (2) Å] between mol­ecules and by weak ππ stacking between symmetry-related mol­ecules, with an inter­planar distance of 3.579 Å and a centroid–centroid distance of 3.800 (1) Å. Inter­molecular C—H⋯O hydrogen bonds are also observed in the crystal structure.

Related literature

For the biological activity of 3–2(-(3-methyl-2-oxoquinoxalin-1(2H)-yl) eth­yl)oxazolidin-2-one, see: Ferfra (2001[Ferfra, S. (2001). Thèse de Doctorat d'État Université Mohammed V, Agdal, Faculté des Sciences Rabat, Morocco.]); Habib & El-hawash (1997[Habib, N. S. & El-hawash, S. A. (1997). Pharmazie, 52, 750-753.]); Romer et al. (1995[Romer, D. R., Aldrich, B. L., Pews, R. G. & Walter, R. W. (1995). Pestic. Sci. 43, 263-266.]). For pharmaceutical agrochemicals, see: Badran et al. (2003[Badran, M. M., Abouzid, K. A. M. & Hussein, M. H. M. (2003). Arch. Pharm. Res. Part II, 26, 107-113.]); Madhusudhan et al. (2004[Madhusudhan, G., Om Reddy, G., Ramanathan, J. & Dubey, P. K. (2004). Indian J. Chem. Sect. B, 43, 957-963.]); Soad et al. (2006[Soad, A. M., El-Hawash, S. A., Abeer, E. & Wahab, A. (2006). Arch. Pharm. Res. 339, 437-447.]); Sriharsha & Shashikanth (2006[Sriharsha, S. N. & Shashikanth, S. J. (2006). Heterocycl. Commun. 12, 213-218.]); Sarro et al. (2002[Sarro, G. De., Ferreri, G., Gareri, P., Russo, E., Sarro, A. De., Gitto, R. & Chimiri, A. (2002). Pharmacol. Biochem. Behav. 74, 595-602.]). For a related structure, see: Doubia et al. (2007[Doubia, M. L., Bouhfid, R., Ahabchane, N. H., Essassi, E. M. & El Ammari, L. (2007). Acta Cryst. E63, o3305.]).

[Scheme 1]

Experimental

Crystal data
  • C14H15N3O3

  • Mr = 273.29

  • Monoclinic, C 2/c

  • a = 12.280 (3) Å

  • b = 10.736 (3) Å

  • c = 20.406 (4) Å

  • β = 102.32 (1)°

  • V = 2628.3 (11) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 K

  • 0.28 × 0.17 × 0.12 mm

Data collection
  • Bruker X8 APEXII CCD area-detector diffractometer

  • Absorption correction: none

  • 21237 measured reflections

  • 4108 independent reflections

  • 2727 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.157

  • S = 1.04

  • 4108 reflections

  • 204 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H5⋯O3i 0.98 (2) 2.54 (2) 3.462 (2) 157 (2)
C10—H10A⋯O3i 0.97 2.43 3.348 (2) 157
Symmetry code: (i) [-x, y, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The heterocyclic compounds to 5 or 6 Chains occupying a capital in fields as varied,quinoxalines pharmacy (Madhusudhan et al. 2004 and Sarro et al.2002) in agrochemicals (Romer et al. 1995, Habib et al. 1997) biology (Ferfra 2001)etc. The quinoxalines and the oxazolidines are subjets of numerous articles in describing the synthesis of new derivatives presentery antibacterial properties (Badran et al. 2003, Sriharsha et al. 2006) and anti tumor (Soad et al. 2006). We describe here the synthesis of compound 3 to side of the compound 2 per share on the dichlorodiéthylmine quinoxaline-2-one fusion as show in the chemical structural diagram (Fig.1).

The 3–2(-(3-methyl-2-oxoquinoxalin-1(2H)-yl)ethyl)oxazolidin-2-one (I) molecule structure is built up from two fused six-membered rings linked to a five-membered ring (oxazolidin-2-one) by an ethylic groupe. The both rings are essentially planar and forms a dihedral angle of 20.46 (6)° with the oxazolidin-2-one ring. The molecular structure of (I) is shown in Fig.2. The geometric parameters (bond lenghths and angles) are very similar to those observed in previously reported structures (Doubia et al. 2007).

An intermolecular C—H···O hydrogen bond is observed in the cristal structure as shown in the partial plot of the structure (Fig.3). Furthermore, the structure is stabilized by Van der Waals forces and together by weak slipped π-π stzcking between symmetry related molecules (C to C ring) with interplanar distance of 3.579 Å and centroid to centroid vector of 3.800 (1) Å.

Related literature top

For the biological activity of 3–2(-(3-methyl-2-oxoquinoxalin-1(2H)-yl) ethyl)oxazolidin-2-one, see: Ferfra (2001); Habib & El-hawash (1997); Romer et al. (1995). For pharmacy agrochemicals, see: Badran et al. (2003); Madhusudhan et al. (2004); Soad et al. (2006); Sriharsha & Shashikanth (2006); Sarro et al. (2002). For a related structure, see: Doubia et al. (2007).

Experimental top

It reacted 0.0125 moles of quinoxaline-2-one with 2.66 moles of dichlorodiéthylamine in 40 ml dimethyl formamide in the presence of 2.87 moles of K2CO3 and a few milligrams of BTBA. The mixture was brought to reflux in a bath of sand magnetic stirring for 6 h. After vacuum concentration, the separation of compounds was done by column chromatography eluant 4 / 6(hexane - ethyl acetate). Recrystallization occurred in the same eluent. This compound was obtained in 60% and his melting point is 175°C.

Refinement top

All H atoms were located in a difference map and refined without any distance restraints.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. : Schematic of the chemical reaction leading to the title compound.
[Figure 2] Fig. 2. : Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small small circles.
[Figure 3] Fig. 3. : Partial packing view showing the C—H···O interactions (dashed lines).
3-[2-(3-Methyl-2-oxo-1,2-dihydroquinoxalin-1-yl)ethyl]oxazolidin-2-one top
Crystal data top
C14H15N3O3F(000) = 1152
Mr = 273.29Dx = 1.381 Mg m3
Monoclinic, C2/cMelting point: 448 K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 12.280 (3) ÅCell parameters from 21279 reflections
b = 10.736 (3) Åθ = 2.6–30.9°
c = 20.406 (4) ŵ = 0.10 mm1
β = 102.32 (1)°T = 298 K
V = 2628.3 (11) Å3Prism, colourless
Z = 80.28 × 0.17 × 0.12 mm
Data collection top
Bruker X8 APEXII CCD area-detector
diffractometer
Rint = 0.033
Graphite monochromatorθmax = 30.9°, θmin = 2.6°
ϕ and ω scansh = 1717
21237 measured reflectionsk = 1515
4108 independent reflectionsl = 2629
2727 reflections with I > 2σ(I)
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.157H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.081P)2 + 0.6684P]
where P = (Fo2 + 2Fc2)/3
4108 reflections(Δ/σ)max = 0.001
204 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C14H15N3O3V = 2628.3 (11) Å3
Mr = 273.29Z = 8
Monoclinic, C2/cMo Kα radiation
a = 12.280 (3) ŵ = 0.10 mm1
b = 10.736 (3) ÅT = 298 K
c = 20.406 (4) Å0.28 × 0.17 × 0.12 mm
β = 102.32 (1)°
Data collection top
Bruker X8 APEXII CCD area-detector
diffractometer
2727 reflections with I > 2σ(I)
21237 measured reflectionsRint = 0.033
4108 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.157H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.29 e Å3
4108 reflectionsΔρmin = 0.24 e Å3
204 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.11176 (11)0.25753 (10)0.54216 (6)0.0630 (3)
O20.13309 (10)0.52714 (11)0.26113 (5)0.0598 (3)
O30.13793 (10)0.32026 (12)0.24503 (6)0.0662 (4)
N10.11384 (8)0.15986 (10)0.44405 (5)0.0353 (2)
N20.16192 (10)0.06171 (10)0.51654 (5)0.0422 (3)
N30.06491 (10)0.40729 (10)0.34753 (5)0.0411 (3)
C10.12314 (11)0.16145 (12)0.51219 (6)0.0387 (3)
C20.14895 (11)0.04062 (12)0.54680 (6)0.0385 (3)
C30.15128 (10)0.05948 (12)0.44748 (6)0.0375 (3)
C40.16612 (13)0.17122 (14)0.41519 (8)0.0499 (4)
H40.1830 (15)0.2426 (16)0.4433 (9)0.064 (5)*
C50.15685 (13)0.17446 (16)0.34713 (8)0.0550 (4)
H50.0990 (14)0.1222 (17)0.3136 (8)0.061 (5)*
C60.13209 (13)0.06520 (17)0.31028 (8)0.0524 (4)
H60.1300 (16)0.0693 (17)0.2637 (11)0.070 (6)*
C70.11673 (12)0.04585 (15)0.34045 (7)0.0452 (3)
H70.1688 (16)0.2533 (17)0.3259 (9)0.064 (5)*
C80.12719 (10)0.05051 (11)0.40996 (6)0.0341 (3)
C90.15977 (14)0.04223 (15)0.62100 (7)0.0522 (4)
H9A0.17750.04000.63860.090*
H9B0.09070.06900.63130.080*
H9C0.21810.09870.64090.071 (6)*
C100.08780 (11)0.27856 (12)0.40844 (7)0.0414 (3)
H10A0.12300.28110.37020.053 (4)*
H10B0.11710.34690.43810.047 (4)*
C110.03761 (11)0.29325 (13)0.38470 (7)0.0457 (3)
H11A0.06700.22310.35650.062 (5)*
H11B0.07230.29340.42320.069 (5)*
C120.0550 (2)0.52845 (15)0.37655 (9)0.0767 (6)
H12A0.02210.54850.39620.090*
H12B0.09900.53610.41060.088*
C130.10029 (16)0.61022 (15)0.31685 (9)0.0625 (5)
H13A0.16370.65780.32420.081 (6)*
H13B0.04350.66760.30880.089 (7)*
C140.11293 (11)0.40817 (14)0.28215 (7)0.0429 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0931 (9)0.0442 (6)0.0505 (6)0.0055 (6)0.0130 (6)0.0100 (5)
O20.0708 (8)0.0578 (7)0.0454 (6)0.0030 (5)0.0000 (5)0.0146 (5)
O30.0708 (8)0.0718 (8)0.0502 (6)0.0112 (6)0.0005 (5)0.0246 (6)
N10.0362 (5)0.0336 (5)0.0352 (5)0.0005 (4)0.0053 (4)0.0056 (4)
N20.0472 (6)0.0398 (6)0.0353 (6)0.0030 (5)0.0010 (4)0.0057 (4)
N30.0502 (7)0.0332 (5)0.0361 (6)0.0048 (4)0.0009 (5)0.0017 (4)
C10.0397 (6)0.0385 (6)0.0363 (6)0.0027 (5)0.0048 (5)0.0001 (5)
C20.0369 (6)0.0425 (7)0.0329 (6)0.0078 (5)0.0005 (5)0.0033 (5)
C30.0360 (6)0.0370 (6)0.0368 (6)0.0008 (5)0.0016 (5)0.0028 (5)
C40.0525 (8)0.0400 (7)0.0528 (8)0.0061 (6)0.0013 (6)0.0023 (6)
C50.0513 (9)0.0561 (9)0.0557 (9)0.0062 (7)0.0075 (7)0.0160 (7)
C60.0475 (8)0.0734 (11)0.0373 (7)0.0010 (7)0.0110 (6)0.0072 (7)
C70.0434 (7)0.0566 (8)0.0360 (7)0.0010 (6)0.0091 (5)0.0063 (6)
C80.0289 (6)0.0381 (6)0.0345 (6)0.0004 (4)0.0050 (4)0.0036 (5)
C90.0595 (9)0.0622 (9)0.0319 (6)0.0168 (7)0.0030 (6)0.0035 (6)
C100.0425 (7)0.0341 (6)0.0463 (7)0.0008 (5)0.0066 (5)0.0103 (5)
C110.0426 (7)0.0387 (7)0.0533 (8)0.0001 (5)0.0044 (6)0.0121 (6)
C120.1231 (18)0.0380 (8)0.0533 (10)0.0076 (9)0.0162 (10)0.0075 (7)
C130.0684 (11)0.0380 (8)0.0734 (11)0.0008 (7)0.0019 (8)0.0086 (7)
C140.0399 (7)0.0513 (8)0.0368 (6)0.0074 (6)0.0067 (5)0.0016 (6)
Geometric parameters (Å, º) top
O1—C11.2223 (17)C5—H70.976 (19)
O2—C141.3532 (18)C6—C71.373 (2)
O2—C131.434 (2)C6—H60.95 (2)
O3—C141.2080 (18)C7—C81.3975 (18)
N1—C11.3708 (16)C7—H50.984 (18)
N1—C81.3921 (16)C9—H9A0.9600
N1—C101.4680 (16)C9—H9B0.9600
N2—C21.2868 (18)C9—H9C0.9600
N2—C31.3874 (17)C10—C111.5208 (19)
N3—C141.3387 (17)C10—H10A0.9700
N3—C121.4237 (19)C10—H10B0.9700
N3—C111.4415 (16)C11—H11A0.9700
C1—C21.4787 (18)C11—H11B0.9700
C2—C91.4915 (19)C12—C131.508 (2)
C3—C41.3991 (19)C12—H12A0.9700
C3—C81.4041 (17)C12—H12B0.9700
C4—C51.369 (2)C13—H13A0.9700
C4—H40.953 (17)C13—H13B0.9700
C5—C61.392 (2)
C14—O2—C13109.55 (11)C2—C9—H9B109.5
C1—N1—C8121.61 (10)H9A—C9—H9B109.5
C1—N1—C10116.97 (11)C2—C9—H9C109.5
C8—N1—C10121.42 (10)H9A—C9—H9C109.5
C2—N2—C3118.58 (11)H9B—C9—H9C109.5
C14—N3—C12112.86 (11)N1—C10—C11110.28 (10)
C14—N3—C11122.27 (11)N1—C10—H10A109.6
C12—N3—C11124.57 (12)C11—C10—H10A109.6
O1—C1—N1121.63 (12)N1—C10—H10B109.6
O1—C1—C2122.48 (12)C11—C10—H10B109.6
N1—C1—C2115.89 (11)H10A—C10—H10B108.1
N2—C2—C1123.75 (11)N3—C11—C10111.20 (11)
N2—C2—C9120.25 (12)N3—C11—H11A109.4
C1—C2—C9116.00 (12)C10—C11—H11A109.4
N2—C3—C4118.03 (12)N3—C11—H11B109.4
N2—C3—C8122.11 (12)C10—C11—H11B109.4
C4—C3—C8119.85 (12)H11A—C11—H11B108.0
C5—C4—C3120.55 (14)N3—C12—C13102.23 (13)
C5—C4—H4123.4 (11)N3—C12—H12A111.3
C3—C4—H4116.1 (11)C13—C12—H12A111.3
C4—C5—C6119.21 (14)N3—C12—H12B111.3
C4—C5—H7119.0 (11)C13—C12—H12B111.3
C6—C5—H7121.8 (11)H12A—C12—H12B109.2
C7—C6—C5121.64 (14)O2—C13—C12105.73 (13)
C7—C6—H6120.9 (11)O2—C13—H13A110.6
C5—C6—H6117.4 (11)C12—C13—H13A110.6
C6—C7—C8119.63 (14)O2—C13—H13B110.6
C6—C7—H5120.6 (10)C12—C13—H13B110.6
C8—C7—H5119.8 (10)H13A—C13—H13B108.7
N1—C8—C7122.83 (12)O3—C14—N3128.19 (14)
N1—C8—C3118.06 (11)O3—C14—O2122.27 (13)
C7—C8—C3119.10 (12)N3—C14—O2109.53 (12)
C2—C9—H9A109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H5···O3i0.98 (2)2.54 (2)3.462 (2)157 (2)
C10—H10A···O3i0.972.433.348 (2)157
Symmetry code: (i) x, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H15N3O3
Mr273.29
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)12.280 (3), 10.736 (3), 20.406 (4)
β (°) 102.32 (1)
V3)2628.3 (11)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.28 × 0.17 × 0.12
Data collection
DiffractometerBruker X8 APEXII CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
21237, 4108, 2727
Rint0.033
(sin θ/λ)max1)0.723
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.157, 1.04
No. of reflections4108
No. of parameters204
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.29, 0.24

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H5···O3i0.98 (2)2.54 (2)3.462 (2)157 (2)
C10—H10A···O3i0.972.433.348 (2)157
Symmetry code: (i) x, y, z+1/2.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for making possible the present work. They also thank Professors B. Jaber and M. Benaissa for useful discussions and H. Zouihri for his technical assistance during the X-ray measurements.

References

First citationBadran, M. M., Abouzid, K. A. M. & Hussein, M. H. M. (2003). Arch. Pharm. Res. Part II, 26, 107–113.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDoubia, M. L., Bouhfid, R., Ahabchane, N. H., Essassi, E. M. & El Ammari, L. (2007). Acta Cryst. E63, o3305.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFerfra, S. (2001). Thèse de Doctorat d'État Université Mohammed V, Agdal, Faculté des Sciences Rabat, Morocco.  Google Scholar
First citationHabib, N. S. & El-hawash, S. A. (1997). Pharmazie, 52, 750–753.  PubMed Web of Science Google Scholar
First citationMadhusudhan, G., Om Reddy, G., Ramanathan, J. & Dubey, P. K. (2004). Indian J. Chem. Sect. B, 43, 957–963.  Google Scholar
First citationRomer, D. R., Aldrich, B. L., Pews, R. G. & Walter, R. W. (1995). Pestic. Sci. 43, 263–266.  CrossRef CAS Web of Science Google Scholar
First citationSarro, G. De., Ferreri, G., Gareri, P., Russo, E., Sarro, A. De., Gitto, R. & Chimiri, A. (2002). Pharmacol. Biochem. Behav. 74, 595–602.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoad, A. M., El-Hawash, S. A., Abeer, E. & Wahab, A. (2006). Arch. Pharm. Res. 339, 437–447.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSriharsha, S. N. & Shashikanth, S. J. (2006). Heterocycl. Commun. 12, 213–218.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages o2024-o2025
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds