organic compounds
(E)-2-(2-Nitroethenyl)furan
aDepartamento de Ciencia de los Materiales e Ingeniería Metalúrgica, Facultad de Ciencias, Campus Universitario del Río San Pedro, Puerto Real 11510, Spain, bCentro de Bioactivos Químicos, Universidad Central Marta Abreu de Las, Villas, Cuba, and cDepartamento de Química Analítica, Facultad de Ciencias, Campus Universitario del Río San Pedro, Puerto Real 11510, Spain
*Correspondence e-mail: pedro.valerga@uca.es
The title compound, C6H5NO3, was synthesized via condensation of furfural with nitromethane in the presence of isobutylamine. The compound crystallizes exclusively as the E isomer. The angle between the mean planes of the furan ring and the nitroalkenyl group is 1.3 (2)°.
Related literature
For general background, see: Wang et al. (2009); An et al. (2007); Rastogi et al. (2006); Rao et al. (2005); Negrín et al. (2002, 2003); Vallejosa et al. (2005). For related structures, see: Martínez-Bescos et al. (2008); Novoa-de-Armas et al. (1997); Pomes et al. (1995).
Experimental
Crystal data
|
Data collection: SMART (Bruker, 2001); cell SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S160053680902861X/fj2237sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053680902861X/fj2237Isup2.hkl
2-(2-Nitro-ethenyl)-furan, also called G-0, was obtained by a variation of Knoevenagel's method: condensation of an aldehyde with substances containing an active α-hydrogen in the presence of a base (ammonia or amines) as catalyst. The Centro de Bioactivos Químicos (Cuba) has already patented this modified method using furfural, an aromatic compound from acid hydrolisis of sugar cane residuals (straw, sawdust, etc.) and nitromethane in the presence of isobutylamine. A yellow crystalline solid was obtained with purity higher than 98%, melting point 74.5°, scarcely soluble in water and very soluble in nitromethane, carbon tetrachloride, petroleum ether and ethanol.
All H atoms were positioned geometrically and treated as riding (C—H = 0.99Å for methylene and C—H = 0.93Å otherwise). Uiso(H) = 1.2 Ueq(C) of the carrier atom.
Data collection: SMART (Bruker, 2001); cell
SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. ORTEP representation of the molecular structure of the title compound showing the atom labelling scheme (thermal ellipsoid probability 50%). | |
Fig. 2. Packing diagram of the title compound. |
C6H5NO3 | F(000) = 288 |
Mr = 139.11 | Dx = 1.522 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 2396 reflections |
a = 9.0374 (18) Å | θ = 2.6–27.5° |
b = 5.2012 (10) Å | µ = 0.13 mm−1 |
c = 13.027 (3) Å | T = 100 K |
β = 97.58 (3)° | Prism, yellow |
V = 607.0 (2) Å3 | 0.47 × 0.17 × 0.14 mm |
Z = 4 |
Bruker SMART APEX diffractometer | 1387 independent reflections |
Radiation source: fine-focus sealed tube | 1317 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.023 |
1700 ω scan frames (0.3°, 10) | θmax = 27.5°, θmin = 2.6° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) | h = −11→11 |
Tmin = 0.916, Tmax = 0.980 | k = −6→6 |
4852 measured reflections | l = −16→12 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | 0 constraints |
R[F2 > 2σ(F2)] = 0.041 | H-atom parameters constrained |
wR(F2) = 0.107 | w = 1/[σ2(Fo2) + (0.0569P)2 + 0.266P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max < 0.001 |
1387 reflections | Δρmax = 0.25 e Å−3 |
91 parameters | Δρmin = −0.28 e Å−3 |
C6H5NO3 | V = 607.0 (2) Å3 |
Mr = 139.11 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 9.0374 (18) Å | µ = 0.13 mm−1 |
b = 5.2012 (10) Å | T = 100 K |
c = 13.027 (3) Å | 0.47 × 0.17 × 0.14 mm |
β = 97.58 (3)° |
Bruker SMART APEX diffractometer | 1387 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) | 1317 reflections with I > 2σ(I) |
Tmin = 0.916, Tmax = 0.980 | Rint = 0.023 |
4852 measured reflections |
R[F2 > 2σ(F2)] = 0.041 | 0 restraints |
wR(F2) = 0.107 | H-atom parameters constrained |
S = 1.06 | Δρmax = 0.25 e Å−3 |
1387 reflections | Δρmin = −0.28 e Å−3 |
91 parameters |
Experimental. Refinement of F2 against unique set of reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against unique set of reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.67495 (10) | 0.19614 (17) | 0.08110 (7) | 0.0206 (2) | |
O2 | 0.15283 (11) | 0.49888 (19) | 0.10417 (8) | 0.0290 (3) | |
O3 | 0.16242 (10) | 0.13012 (19) | 0.18291 (7) | 0.0254 (3) | |
N1 | 0.21943 (12) | 0.3007 (2) | 0.13567 (8) | 0.0205 (3) | |
C1 | 0.59854 (14) | 0.0119 (2) | 0.12894 (9) | 0.0182 (3) | |
C2 | 0.68866 (14) | −0.1941 (2) | 0.15531 (9) | 0.0202 (3) | |
H2 | 0.6627 | −0.3465 | 0.1890 | 0.024* | |
C3 | 0.82904 (14) | −0.1370 (3) | 0.12270 (10) | 0.0221 (3) | |
H3 | 0.9152 | −0.2435 | 0.1300 | 0.027* | |
C4 | 0.81535 (14) | 0.0996 (3) | 0.07909 (10) | 0.0227 (3) | |
H4 | 0.8930 | 0.1870 | 0.0508 | 0.027* | |
C5 | 0.44755 (13) | 0.0618 (2) | 0.14455 (9) | 0.0185 (3) | |
H5 | 0.3974 | −0.0667 | 0.1787 | 0.022* | |
C6 | 0.37162 (14) | 0.2755 (3) | 0.11477 (10) | 0.0197 (3) | |
H6 | 0.4172 | 0.4090 | 0.0803 | 0.024* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0179 (4) | 0.0200 (5) | 0.0243 (5) | 0.0009 (3) | 0.0046 (3) | 0.0019 (3) |
O2 | 0.0269 (5) | 0.0301 (5) | 0.0303 (5) | 0.0112 (4) | 0.0053 (4) | 0.0047 (4) |
O3 | 0.0206 (5) | 0.0269 (5) | 0.0299 (5) | −0.0014 (4) | 0.0074 (4) | 0.0019 (4) |
N1 | 0.0189 (5) | 0.0244 (6) | 0.0182 (5) | 0.0026 (4) | 0.0023 (4) | −0.0017 (4) |
C1 | 0.0199 (6) | 0.0185 (6) | 0.0163 (6) | −0.0013 (4) | 0.0027 (4) | −0.0017 (4) |
C2 | 0.0221 (6) | 0.0199 (6) | 0.0186 (6) | 0.0006 (5) | 0.0019 (5) | −0.0010 (5) |
C3 | 0.0201 (6) | 0.0256 (6) | 0.0204 (6) | 0.0042 (5) | 0.0016 (5) | −0.0025 (5) |
C4 | 0.0164 (6) | 0.0279 (7) | 0.0242 (6) | 0.0007 (5) | 0.0040 (5) | −0.0011 (5) |
C5 | 0.0185 (6) | 0.0212 (6) | 0.0159 (6) | −0.0021 (5) | 0.0028 (4) | −0.0023 (4) |
C6 | 0.0170 (6) | 0.0236 (6) | 0.0194 (6) | 0.0002 (5) | 0.0052 (4) | −0.0013 (5) |
O1—C4 | 1.3680 (15) | C2—H2 | 0.9500 |
O1—C1 | 1.3772 (15) | C3—C4 | 1.3544 (19) |
O2—N1 | 1.2361 (14) | C3—H3 | 0.9500 |
O3—N1 | 1.2309 (15) | C4—H4 | 0.9500 |
N1—C6 | 1.4428 (16) | C5—C6 | 1.3366 (18) |
C1—C2 | 1.3623 (17) | C5—H5 | 0.9500 |
C1—C5 | 1.4296 (17) | C6—H6 | 0.9500 |
C2—C3 | 1.4214 (18) | ||
C4—O1—C1 | 105.97 (10) | C4—C3—H3 | 126.9 |
O3—N1—O2 | 123.33 (11) | C2—C3—H3 | 126.9 |
O3—N1—C6 | 120.08 (11) | C3—C4—O1 | 111.04 (12) |
O2—N1—C6 | 116.59 (11) | C3—C4—H4 | 124.5 |
C2—C1—O1 | 110.03 (11) | O1—C4—H4 | 124.5 |
C2—C1—C5 | 131.07 (12) | C6—C5—C1 | 124.94 (12) |
O1—C1—C5 | 118.89 (11) | C6—C5—H5 | 117.5 |
C1—C2—C3 | 106.73 (11) | C1—C5—H5 | 117.5 |
C1—C2—H2 | 126.6 | C5—C6—N1 | 119.11 (12) |
C3—C2—H2 | 126.6 | C5—C6—H6 | 120.4 |
C4—C3—C2 | 106.23 (11) | N1—C6—H6 | 120.4 |
C4—O1—C1—C2 | −0.39 (13) | C1—O1—C4—C3 | 0.54 (14) |
C4—O1—C1—C5 | 178.58 (10) | C2—C1—C5—C6 | 179.68 (13) |
O1—C1—C2—C3 | 0.12 (14) | O1—C1—C5—C6 | 0.96 (18) |
C5—C1—C2—C3 | −178.69 (12) | C1—C5—C6—N1 | −179.91 (11) |
C1—C2—C3—C4 | 0.21 (14) | O3—N1—C6—C5 | 2.03 (17) |
C2—C3—C4—O1 | −0.47 (14) | O2—N1—C6—C5 | −178.15 (11) |
Experimental details
Crystal data | |
Chemical formula | C6H5NO3 |
Mr | 139.11 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 100 |
a, b, c (Å) | 9.0374 (18), 5.2012 (10), 13.027 (3) |
β (°) | 97.58 (3) |
V (Å3) | 607.0 (2) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.13 |
Crystal size (mm) | 0.47 × 0.17 × 0.14 |
Data collection | |
Diffractometer | Bruker SMART APEX diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2004) |
Tmin, Tmax | 0.916, 0.980 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4852, 1387, 1317 |
Rint | 0.023 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.041, 0.107, 1.06 |
No. of reflections | 1387 |
No. of parameters | 91 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.25, −0.28 |
Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXTL (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).
Acknowledgements
We thank the SCCYT (Universidad de Cádiz) for the X-ray data collection and the Consejería de Innovación, Ciencia y Empresa de la Junta de Andalucía, for financial support. ZRN thanks the AUIP and Aula Iberoamericana for the stay at UCA.
References
An, L.-T., Zou, J.-P., Zhang, L.-L. & Zhang, Y. (2007). Tetrahedron Lett. 48, 4297-4300. Web of Science CSD CrossRef CAS Google Scholar
Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Martínez-Bescos, P., Cagide-Fagin, F., Roa, L. F., Ortiz-Lara, J. C., Kierus, K., Ozores-Viturro, L., Fernández-González, M. & Alonso, R. (2008). J. Org. Chem. 73, 3745–3753. Web of Science PubMed Google Scholar
Negrín, Z. R., Martínez, B. N. H., Meseguer, G. P., Placeres, E. G. & Molina, M. I. D. (2003). Centro Azúcar, 30, 30–34. Google Scholar
Negrín, Z. R., Placeres, E. G., Martínez, B. N. H., Meseguer, G. P. & Montenegro, O. N. (2002). Centro Azúcar, 29, 79–86. Google Scholar
Novoa-de-Armas, H., Pomes-Hernández, R., Duque-Rodríguez, J. & Toscano, R. A. (1997). Z. Kristallogr. 212, 63–63. CAS Google Scholar
Pomés, R., Duque, J., Novoa, H., Castañedo, N. & Toscano, A. (1995). Acta Cryst. C51, 1368–1369. CSD CrossRef Web of Science IUCr Journals Google Scholar
Rao, A. S., Srinivas, P. V., Babu, K. S. & Rao, J. M. (2005). Tetrahedron Lett. 46, 8141–8143. CAS Google Scholar
Rastogi, N., Mohan, R., Panda, D., Mobin, S. M., Namboothiri, I. N. N., Rao, A. S., Srinivas, P. V., Babu, K. S. & Rao, J. M. (2006). Org. Biomolec. Chem. 4, 3211–3214. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Vallejosa, G., Fierroa, A., Rezendea, M. C., Sepúlveda-Bozab, S. & Reyes-Paradab, M. (2005). Bioorg. Med. Chem. 14, 4450–4457. Google Scholar
Wang, W.-J., Cheng, W.-P., Shao, L.-L., Liu, C.-H. & Yang, J.-G. (2009). Kinetics Catal. 50, 186–191. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Among the biological properties of (nitro-alkenyl)-furan compounds our interest is focused in their antibacterial and antifungal activities. In spite of the importance of the structure to explain physical and chemical properties, there are not reports on the structures of the more simple compounds in this family. We start with this study a series of structural reports about them. The structure of title compound, showing trans or E configuration, is shown in Fig. 1. Ring aromaticity is extended to the alkenyl group being C1—C5 bond length, 1.430 (2), significatively shorter than a single C—C bond. Alkenyl sp2 carbons mantain coplanarity with furan ring as shown by an angle of 1.3 (2)° between ring plane and C5—C6—N1 plane. Crystal packing does not show hydrogen bonds nor N···π intermolecular interactions (Fig. 2).