organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-2-(2-Nitro­ethen­yl)furan

aDepartamento de Ciencia de los Materiales e Ingeniería Metalúrgica, Facultad de Ciencias, Campus Universitario del Río San Pedro, Puerto Real 11510, Spain, bCentro de Bioactivos Químicos, Universidad Central Marta Abreu de Las, Villas, Cuba, and cDepartamento de Química Analítica, Facultad de Ciencias, Campus Universitario del Río San Pedro, Puerto Real 11510, Spain
*Correspondence e-mail: pedro.valerga@uca.es

(Received 10 July 2009; accepted 20 July 2009; online 25 July 2009)

The title compound, C6H5NO3, was synthesized via condensation of furfural with nitro­methane in the presence of isobutyl­amine. The compound crystallizes exclusively as the E isomer. The angle between the mean planes of the furan ring and the nitro­alkenyl group is 1.3 (2)°.

Related literature

For general background, see: Wang et al. (2009[Wang, W.-J., Cheng, W.-P., Shao, L.-L., Liu, C.-H. & Yang, J.-G. (2009). Kinetics Catal. 50, 186-191.]); An et al. (2007[An, L.-T., Zou, J.-P., Zhang, L.-L. & Zhang, Y. (2007). Tetrahedron Lett. 48, 4297-4300.]); Rastogi et al. (2006[Rastogi, N., Mohan, R., Panda, D., Mobin, S. M., Namboothiri, I. N. N., Rao, A. S., Srinivas, P. V., Babu, K. S. & Rao, J. M. (2006). Org. Biomolec. Chem. 4, 3211-3214.]); Rao et al. (2005[Rao, A. S., Srinivas, P. V., Babu, K. S. & Rao, J. M. (2005). Tetrahedron Lett. 46, 8141-8143.]); Negrín et al. (2002[Negrín, Z. R., Placeres, E. G., Martínez, B. N. H., Meseguer, G. P. & Montenegro, O. N. (2002). Centro Azúcar, 29, 79-86.], 2003[Negrín, Z. R., Martínez, B. N. H., Meseguer, G. P., Placeres, E. G. & Molina, M. I. D. (2003). Centro Azúcar, 30, 30-34.]); Vallejosa et al. (2005[Vallejosa, G., Fierroa, A., Rezendea, M. C., Sepúlveda-Bozab, S. & Reyes-Paradab, M. (2005). Bioorg. Med. Chem. 14, 4450-4457.]). For related structures, see: Martínez-Bescos et al. (2008[Martínez-Bescos, P., Cagide-Fagin, F., Roa, L. F., Ortiz-Lara, J. C., Kierus, K., Ozores-Viturro, L., Fernández-González, M. & Alonso, R. (2008). J. Org. Chem. 73, 3745-3753.]); Novoa-de-Armas et al. (1997[Novoa-de-Armas, H., Pomes-Hernández, R., Duque-Rodríguez, J. & Toscano, R. A. (1997). Z. Kristallogr. 212, 63-63.]); Pomes et al. (1995[Pomés, R., Duque, J., Novoa, H., Castañedo, N. & Toscano, A. (1995). Acta Cryst. C51, 1368-1369.]).

[Scheme 1]

Experimental

Crystal data
  • C6H5NO3

  • Mr = 139.11

  • Monoclinic, P 21 /n

  • a = 9.0374 (18) Å

  • b = 5.2012 (10) Å

  • c = 13.027 (3) Å

  • β = 97.58 (3)°

  • V = 607.0 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 100 K

  • 0.47 × 0.17 × 0.14 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.916, Tmax = 0.980

  • 4852 measured reflections

  • 1387 independent reflections

  • 1317 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.107

  • S = 1.06

  • 1387 reflections

  • 91 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.28 e Å−3

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Among the biological properties of (nitro-alkenyl)-furan compounds our interest is focused in their antibacterial and antifungal activities. In spite of the importance of the structure to explain physical and chemical properties, there are not reports on the structures of the more simple compounds in this family. We start with this study a series of structural reports about them. The structure of title compound, showing trans or E configuration, is shown in Fig. 1. Ring aromaticity is extended to the alkenyl group being C1—C5 bond length, 1.430 (2), significatively shorter than a single C—C bond. Alkenyl sp2 carbons mantain coplanarity with furan ring as shown by an angle of 1.3 (2)° between ring plane and C5—C6—N1 plane. Crystal packing does not show hydrogen bonds nor N···π intermolecular interactions (Fig. 2).

Related literature top

For general background, see: Wang et al. (2009); An et al. (2007); Rastogi et al. (2006); Rao et al. (2005); Vallejosa et al.(2005); Negrín et al. (2002, 2003). For related structures, see: Martínez-Bescos et al. (2008); Novoa-de-Armas et al. (1997); Pomes et al. (1995).

Experimental top

2-(2-Nitro-ethenyl)-furan, also called G-0, was obtained by a variation of Knoevenagel's method: condensation of an aldehyde with substances containing an active α-hydrogen in the presence of a base (ammonia or amines) as catalyst. The Centro de Bioactivos Químicos (Cuba) has already patented this modified method using furfural, an aromatic compound from acid hydrolisis of sugar cane residuals (straw, sawdust, etc.) and nitromethane in the presence of isobutylamine. A yellow crystalline solid was obtained with purity higher than 98%, melting point 74.5°, scarcely soluble in water and very soluble in nitromethane, carbon tetrachloride, petroleum ether and ethanol.

Refinement top

All H atoms were positioned geometrically and treated as riding (C—H = 0.99Å for methylene and C—H = 0.93Å otherwise). Uiso(H) = 1.2 Ueq(C) of the carrier atom.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP representation of the molecular structure of the title compound showing the atom labelling scheme (thermal ellipsoid probability 50%).
[Figure 2] Fig. 2. Packing diagram of the title compound.
(E)-2-(2-Nitroethenyl)furan top
Crystal data top
C6H5NO3F(000) = 288
Mr = 139.11Dx = 1.522 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2396 reflections
a = 9.0374 (18) Åθ = 2.6–27.5°
b = 5.2012 (10) ŵ = 0.13 mm1
c = 13.027 (3) ÅT = 100 K
β = 97.58 (3)°Prism, yellow
V = 607.0 (2) Å30.47 × 0.17 × 0.14 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
1387 independent reflections
Radiation source: fine-focus sealed tube1317 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
1700 ω scan frames (0.3°, 10)θmax = 27.5°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1111
Tmin = 0.916, Tmax = 0.980k = 66
4852 measured reflectionsl = 1612
Refinement top
Refinement on F20 restraints
Least-squares matrix: full0 constraints
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.107 w = 1/[σ2(Fo2) + (0.0569P)2 + 0.266P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
1387 reflectionsΔρmax = 0.25 e Å3
91 parametersΔρmin = 0.28 e Å3
Crystal data top
C6H5NO3V = 607.0 (2) Å3
Mr = 139.11Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.0374 (18) ŵ = 0.13 mm1
b = 5.2012 (10) ÅT = 100 K
c = 13.027 (3) Å0.47 × 0.17 × 0.14 mm
β = 97.58 (3)°
Data collection top
Bruker SMART APEX
diffractometer
1387 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
1317 reflections with I > 2σ(I)
Tmin = 0.916, Tmax = 0.980Rint = 0.023
4852 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 1.06Δρmax = 0.25 e Å3
1387 reflectionsΔρmin = 0.28 e Å3
91 parameters
Special details top

Experimental. Refinement of F2 against unique set of reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against unique set of reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.67495 (10)0.19614 (17)0.08110 (7)0.0206 (2)
O20.15283 (11)0.49888 (19)0.10417 (8)0.0290 (3)
O30.16242 (10)0.13012 (19)0.18291 (7)0.0254 (3)
N10.21943 (12)0.3007 (2)0.13567 (8)0.0205 (3)
C10.59854 (14)0.0119 (2)0.12894 (9)0.0182 (3)
C20.68866 (14)0.1941 (2)0.15531 (9)0.0202 (3)
H20.66270.34650.18900.024*
C30.82904 (14)0.1370 (3)0.12270 (10)0.0221 (3)
H30.91520.24350.13000.027*
C40.81535 (14)0.0996 (3)0.07909 (10)0.0227 (3)
H40.89300.18700.05080.027*
C50.44755 (13)0.0618 (2)0.14455 (9)0.0185 (3)
H50.39740.06670.17870.022*
C60.37162 (14)0.2755 (3)0.11477 (10)0.0197 (3)
H60.41720.40900.08030.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0179 (4)0.0200 (5)0.0243 (5)0.0009 (3)0.0046 (3)0.0019 (3)
O20.0269 (5)0.0301 (5)0.0303 (5)0.0112 (4)0.0053 (4)0.0047 (4)
O30.0206 (5)0.0269 (5)0.0299 (5)0.0014 (4)0.0074 (4)0.0019 (4)
N10.0189 (5)0.0244 (6)0.0182 (5)0.0026 (4)0.0023 (4)0.0017 (4)
C10.0199 (6)0.0185 (6)0.0163 (6)0.0013 (4)0.0027 (4)0.0017 (4)
C20.0221 (6)0.0199 (6)0.0186 (6)0.0006 (5)0.0019 (5)0.0010 (5)
C30.0201 (6)0.0256 (6)0.0204 (6)0.0042 (5)0.0016 (5)0.0025 (5)
C40.0164 (6)0.0279 (7)0.0242 (6)0.0007 (5)0.0040 (5)0.0011 (5)
C50.0185 (6)0.0212 (6)0.0159 (6)0.0021 (5)0.0028 (4)0.0023 (4)
C60.0170 (6)0.0236 (6)0.0194 (6)0.0002 (5)0.0052 (4)0.0013 (5)
Geometric parameters (Å, º) top
O1—C41.3680 (15)C2—H20.9500
O1—C11.3772 (15)C3—C41.3544 (19)
O2—N11.2361 (14)C3—H30.9500
O3—N11.2309 (15)C4—H40.9500
N1—C61.4428 (16)C5—C61.3366 (18)
C1—C21.3623 (17)C5—H50.9500
C1—C51.4296 (17)C6—H60.9500
C2—C31.4214 (18)
C4—O1—C1105.97 (10)C4—C3—H3126.9
O3—N1—O2123.33 (11)C2—C3—H3126.9
O3—N1—C6120.08 (11)C3—C4—O1111.04 (12)
O2—N1—C6116.59 (11)C3—C4—H4124.5
C2—C1—O1110.03 (11)O1—C4—H4124.5
C2—C1—C5131.07 (12)C6—C5—C1124.94 (12)
O1—C1—C5118.89 (11)C6—C5—H5117.5
C1—C2—C3106.73 (11)C1—C5—H5117.5
C1—C2—H2126.6C5—C6—N1119.11 (12)
C3—C2—H2126.6C5—C6—H6120.4
C4—C3—C2106.23 (11)N1—C6—H6120.4
C4—O1—C1—C20.39 (13)C1—O1—C4—C30.54 (14)
C4—O1—C1—C5178.58 (10)C2—C1—C5—C6179.68 (13)
O1—C1—C2—C30.12 (14)O1—C1—C5—C60.96 (18)
C5—C1—C2—C3178.69 (12)C1—C5—C6—N1179.91 (11)
C1—C2—C3—C40.21 (14)O3—N1—C6—C52.03 (17)
C2—C3—C4—O10.47 (14)O2—N1—C6—C5178.15 (11)

Experimental details

Crystal data
Chemical formulaC6H5NO3
Mr139.11
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)9.0374 (18), 5.2012 (10), 13.027 (3)
β (°) 97.58 (3)
V3)607.0 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.47 × 0.17 × 0.14
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.916, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
4852, 1387, 1317
Rint0.023
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.107, 1.06
No. of reflections1387
No. of parameters91
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.28

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXTL (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

 

Acknowledgements

We thank the SCCYT (Universidad de Cádiz) for the X-ray data collection and the Consejería de Innovación, Ciencia y Empresa de la Junta de Andalucía, for financial support. ZRN thanks the AUIP and Aula Iberoamericana for the stay at UCA.

References

First citationAn, L.-T., Zou, J.-P., Zhang, L.-L. & Zhang, Y. (2007). Tetrahedron Lett. 48, 4297-4300.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationMartínez-Bescos, P., Cagide-Fagin, F., Roa, L. F., Ortiz-Lara, J. C., Kierus, K., Ozores-Viturro, L., Fernández-González, M. & Alonso, R. (2008). J. Org. Chem. 73, 3745–3753.  Web of Science PubMed Google Scholar
First citationNegrín, Z. R., Martínez, B. N. H., Meseguer, G. P., Placeres, E. G. & Molina, M. I. D. (2003). Centro Azúcar, 30, 30–34.  Google Scholar
First citationNegrín, Z. R., Placeres, E. G., Martínez, B. N. H., Meseguer, G. P. & Montenegro, O. N. (2002). Centro Azúcar, 29, 79–86.  Google Scholar
First citationNovoa-de-Armas, H., Pomes-Hernández, R., Duque-Rodríguez, J. & Toscano, R. A. (1997). Z. Kristallogr. 212, 63–63.  CAS Google Scholar
First citationPomés, R., Duque, J., Novoa, H., Castañedo, N. & Toscano, A. (1995). Acta Cryst. C51, 1368–1369.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationRao, A. S., Srinivas, P. V., Babu, K. S. & Rao, J. M. (2005). Tetrahedron Lett. 46, 8141–8143.  CAS Google Scholar
First citationRastogi, N., Mohan, R., Panda, D., Mobin, S. M., Namboothiri, I. N. N., Rao, A. S., Srinivas, P. V., Babu, K. S. & Rao, J. M. (2006). Org. Biomolec. Chem. 4, 3211–3214.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVallejosa, G., Fierroa, A., Rezendea, M. C., Sepúlveda-Bozab, S. & Reyes-Paradab, M. (2005). Bioorg. Med. Chem. 14, 4450–4457.  Google Scholar
First citationWang, W.-J., Cheng, W.-P., Shao, L.-L., Liu, C.-H. & Yang, J.-G. (2009). Kinetics Catal. 50, 186–191.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds