organic compounds
6α-Acetoxygedunin
aComparative and Ecological Phytochemistry, University of Vienna, Rennweg 14, A-1030 Vienna, Austria, and bInstitute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/164SC, A-1060 Vienna, Austria
*Correspondence e-mail: kurt.mereiter@tuwien.ac.at
The title compound [systematic name: (1S,3aS,4aR,4bS,5S,6R,6aR,10aR,10bR,12aS)-5,6-bis(acetyloxy)-1-(3-furyl)-1,5,6,6a,7,10a,10b,11,12,12a-decahydro-4b,7,7,10a,12a-pentamethyloxireno[c]phenanthro[1,2-d]pyran-3,8(3aH,4bH)-dione], C30H36O9, is a limonoid-type triterpene isolated from Aglaia elaeagnoidea (A. Juss.) Benth. (Meliaceae) from Queensland, northern Australia. It contains the gedunin core of four trans-fused six-membered rings with an oxirane ring annelated to the fourth ring. A terminal 3-furyl unity and two acetoxy groups in a mutual cis-disposition supplement the molecule. A comparison between the gedunin cores of the title compound, the parent compound gedunin, and three further gedunin derivatives revealed considerable variations in their conformation stemming from the conformational lability of the first screw-boat ring and the third twist-boat ring. A sensitive measure for the third ring is one C—C—C—C torsion angle, which is 14.2 (2)° in the title compound, but varies in other cases from ca 20 to ca −40°. In the crystalline state, 6α-acetoxygedunin shows ten comparatively weak C—H⋯O interactions, with H⋯O distances in the range of 2.33–2.69 Å.
Related literature
For general background to the genus Aglaia and its potential bioctivity, see: Brader et al. (1998); Engelmeier et al. (2000); Fuzzati et al. (1996); Greger et al. (2000, 2001); Hausott et al. (2004); Jimenez et al. (1998); Lavie et al. (1972). For related structures, see: Mitsui et al. (2006); Sutherland et al. (1962); Toscano et al. (1996); Waratchareeyakul et al. (2004). For the NMR spectra of related compounds, see: Connolly et al. (1966); Mitsui et al. (2006); Taylor (1974); Waratchareeyakul et al. (2004).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2003); cell SAINT (Bruker, 2003); data reduction: SAINT, SADABS and XPREP (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536809027998/fj2239sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809027998/fj2239Isup2.hkl
Air-dried root bark of Aglaia elaeagnoidea (28 g) collected at the shore near Port Douglas, Queensland, northern Australia, was ground and extracted with MeOH at room temperature for 3 days, filtered and concentrated. The CHCl3 fraction (1.2 g) of the aqueous residue was roughly separated by α-acetoxygedunin from which 3.8 mg of crystals could be obtained.
(Merck Si gel 60, 35–70 mesh) eluted initially with hexane enriched with EtOAc, followed by an increasing amount of MeOH in EtOAc and finally with MeOH. The fraction eluted with 50% EtOAc in hexane was further separated by repeated preparative MPLC (400 x 40 mm column, Merck LiChroprep silica 60, 25–40 µm, UV detection at 229 and 254 nm) using 5% 2-propanol in hexane yielding 15 mg of impure 6The resonances of the 1H and 13C NMR spectra of the title compound were assigned by two-dimensional NMR (H/H COSY, NOESY, HMBC, HMQC) and relevant literature for 11β-acetoxygedunin (Connolly et al., 1966) and gedunin (Taylor, 1974). 1H NMR (400 MHz, CDCl3, δ/p.p.m.): 7.41 (d, 1H, J= 1.3 Hz, 21-H), 7.41 (d, 1H, J = 1.3 Hz, 23-H), 7.07 (d, 1H, J = 10.1 Hz, 1-H), 6.33 (t, 1H, J = 1.3 Hz, 22-H), 5.94 (d, 1H, J = 10.1 Hz, 2-H), 5.61 (s, 1H, 17-H), 5.27 (dd, 1H, J = 12.4 and 2.4 Hz, 6-H), 4.89 (d, 1H, J = 2.4 Hz, 7-H), 3.61 (s, 1H, 15-H), 2.53 (m, 1H, 9-H), 2.52 (d, 1H, J = 12.4 Hz, 5-H), 2.15 (s, 3H, 7-OAc), 2.03 (s, 3H, 6-OAc), 1.60, 1.35, 1.30, and 1.10 (m, 1H each, 11-H2 and 12-H2), 1.27 (s, 3H, 26-H3), 1.26 (s, 3H, 24-H3), 1.24 (s, 3H, 18-H3), 1.21 (s, 3H, 19-H3), 1.17 (s, 3H, 25-H3). 13C NMR (CDCl3, δ/p.p.m.): 204.1 (s, C-3), 170.1 and 170.0 (s, 6- and 7-acetyl CO), 167.1 (s, C-16), 156.2 (d, C-1), 143.1 (d, C-23), 141.2 (d, C-21), 126.6 (d, C-2), 120.3 (s, C-20), 109.8 (d, C-22), 78.1 (d, C-17), 72.6 (d, C-7), 69.7 (d, C-6), 69.5 (s, C-14), 56.2 (d, C-15), 47.8 (d, C-5), 44.9 (s, C-4), 43.1 (s, C-8), 40.6 (s, C10), 48.8 (s, C-13), 38.4 (d, C-9), 31.6 (q, C-24), 25.9 (t, C-12), 21.4 (q, C-19), 21.2 (q, 6-acetyl CH3), 20.9 (q, 7-acetyl CH3), 20.2 (q, C-25), 18.1 (q, C-26), 17.9 (q, C-18), 15.0 (t, C-11).
All C-bound H atoms were placed in calculated positions (C—H = 0.95–1.00 Å) and thereafter treated as riding. A torsional parameter was refined for each methyl group. Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(Cmethyl) were applied. The
could not be determined from the X-ray analysis, but it is known from earlier work on related compounds (e.g. Sutherland et al., 1962). Friedel pairs were therefore merged before final refinement.Data collection: SMART (Bruker, 2003); cell
SAINT (Bruker, 2003); data reduction: SAINT, SADABS and XPREP (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme. | |
Fig. 2. Superposition plot of the title compound (red) and 11α-hydroxygedunin (Mitsui et al., 2006; two independent molecules in blue and pink) after least squares fit of the A/B/C/D rings. | |
Fig. 3. Superposition plot of the title compound (red) and gedunin (Toscano et al., 1996; green) after least squares fit of the B/C/D rings. The distance between the two terminal keto oxygen atoms O(1) (leftmost red and green atom) is 2.01 Å. | |
Fig. 4. Superposition plot the title compound (red) and 7-oxogedunin (Waratchareeyakul et al., 2004; cyan) after least squares fit of the A/B/C/D rings. Note the difference in torsion angle T2 = C9—C11—C12—C13 (upper part of ring C), which is +14.2 (2)° in 6α-acetoxygedunin and -38.9° in 7-oxogedunin. | |
Fig. 5. Packing diagram of 6α-acetoxygedunin viewed down the a axis. |
C30H36O9 | F(000) = 1152 |
Mr = 540.59 | Dx = 1.295 Mg m−3 |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 852 reflections |
a = 6.475 (2) Å | θ = 2.4–29.8° |
b = 14.914 (5) Å | µ = 0.10 mm−1 |
c = 28.713 (9) Å | T = 173 K |
V = 2772.8 (15) Å3 | Prism, colourless |
Z = 4 | 0.62 × 0.40 × 0.25 mm |
Bruker SMART APEX CCD diffractometer | 4509 independent reflections |
Radiation source: fine-focus sealed tube | 4077 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.031 |
ω scans | θmax = 30.0°, θmin = 2.5° |
Absorption correction: multi-scan (SADABS; Bruker, 2003) | h = −9→9 |
Tmin = 0.89, Tmax = 0.98 | k = −20→20 |
39048 measured reflections | l = −40→40 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.037 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.099 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0617P)2 + 0.3403P] where P = (Fo2 + 2Fc2)/3 |
4509 reflections | (Δ/σ)max < 0.001 |
359 parameters | Δρmax = 0.26 e Å−3 |
0 restraints | Δρmin = −0.24 e Å−3 |
C30H36O9 | V = 2772.8 (15) Å3 |
Mr = 540.59 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 6.475 (2) Å | µ = 0.10 mm−1 |
b = 14.914 (5) Å | T = 173 K |
c = 28.713 (9) Å | 0.62 × 0.40 × 0.25 mm |
Bruker SMART APEX CCD diffractometer | 4509 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2003) | 4077 reflections with I > 2σ(I) |
Tmin = 0.89, Tmax = 0.98 | Rint = 0.031 |
39048 measured reflections |
R[F2 > 2σ(F2)] = 0.037 | 0 restraints |
wR(F2) = 0.099 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.26 e Å−3 |
4509 reflections | Δρmin = −0.24 e Å−3 |
359 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.0587 (3) | 0.73999 (11) | 0.23019 (6) | 0.0535 (4) | |
O2 | 0.3222 (2) | 0.68452 (7) | 0.40284 (4) | 0.0308 (3) | |
O3 | 0.21379 (17) | 0.50631 (7) | 0.42004 (3) | 0.0218 (2) | |
O4 | 0.67376 (18) | 0.33557 (9) | 0.41784 (4) | 0.0303 (3) | |
O5 | 0.3916 (2) | 0.20217 (8) | 0.45502 (4) | 0.0311 (3) | |
O6 | 0.3600 (2) | 0.29114 (9) | 0.51630 (4) | 0.0371 (3) | |
O7 | 0.3049 (7) | −0.02998 (11) | 0.35841 (9) | 0.1021 (11) | |
O8 | 0.6555 (3) | 0.70255 (12) | 0.42549 (6) | 0.0546 (4) | |
O9 | 0.3152 (3) | 0.55979 (10) | 0.49051 (4) | 0.0413 (3) | |
C1 | 0.1155 (3) | 0.51480 (13) | 0.26444 (5) | 0.0295 (3) | |
H1 | 0.0712 | 0.4558 | 0.2569 | 0.035* | |
C2 | 0.0178 (3) | 0.58569 (14) | 0.24571 (6) | 0.0342 (4) | |
H2 | −0.0937 | 0.5765 | 0.2247 | 0.041* | |
C3 | 0.0830 (3) | 0.67781 (14) | 0.25763 (6) | 0.0354 (4) | |
C4 | 0.1727 (3) | 0.69563 (11) | 0.30666 (6) | 0.0289 (3) | |
C5 | 0.2297 (2) | 0.60496 (10) | 0.33182 (5) | 0.0220 (3) | |
H5 | 0.0998 | 0.5837 | 0.3471 | 0.026* | |
C6 | 0.3893 (2) | 0.61484 (10) | 0.37098 (5) | 0.0230 (3) | |
H6 | 0.5258 | 0.6318 | 0.3573 | 0.028* | |
C7 | 0.4135 (2) | 0.52809 (10) | 0.39934 (5) | 0.0210 (3) | |
H7 | 0.5176 | 0.5376 | 0.4246 | 0.025* | |
C8 | 0.4803 (2) | 0.44830 (10) | 0.36887 (5) | 0.0198 (3) | |
C9 | 0.3279 (2) | 0.43982 (10) | 0.32698 (5) | 0.0208 (3) | |
H9 | 0.1901 | 0.4274 | 0.3413 | 0.025* | |
C10 | 0.2973 (2) | 0.52800 (10) | 0.29783 (5) | 0.0217 (3) | |
C11 | 0.3781 (3) | 0.35593 (11) | 0.29761 (5) | 0.0302 (3) | |
H11A | 0.4995 | 0.3692 | 0.2778 | 0.036* | |
H11B | 0.2600 | 0.3436 | 0.2767 | 0.036* | |
C12 | 0.4241 (3) | 0.27008 (11) | 0.32647 (6) | 0.0300 (3) | |
H12A | 0.3503 | 0.2188 | 0.3122 | 0.036* | |
H12B | 0.5739 | 0.2572 | 0.3249 | 0.036* | |
C13 | 0.3597 (2) | 0.27762 (10) | 0.37810 (5) | 0.0230 (3) | |
C14 | 0.4749 (2) | 0.35925 (10) | 0.39801 (5) | 0.0210 (3) | |
C15 | 0.5091 (2) | 0.35775 (11) | 0.44934 (5) | 0.0248 (3) | |
H15 | 0.5181 | 0.4171 | 0.4654 | 0.030* | |
C16 | 0.4171 (3) | 0.28141 (11) | 0.47670 (5) | 0.0268 (3) | |
C17 | 0.4394 (3) | 0.19354 (11) | 0.40509 (6) | 0.0325 (4) | |
H17 | 0.5926 | 0.1892 | 0.4012 | 0.039* | |
C18 | 0.1228 (2) | 0.28506 (11) | 0.38491 (5) | 0.0254 (3) | |
H18A | 0.0824 | 0.3484 | 0.3851 | 0.038* | |
H18B | 0.0840 | 0.2574 | 0.4146 | 0.038* | |
H18C | 0.0522 | 0.2541 | 0.3594 | 0.038* | |
C19 | 0.4839 (3) | 0.55432 (12) | 0.26637 (5) | 0.0286 (3) | |
H19A | 0.5308 | 0.5016 | 0.2490 | 0.043* | |
H19B | 0.5969 | 0.5767 | 0.2859 | 0.043* | |
H19C | 0.4413 | 0.6012 | 0.2445 | 0.043* | |
C20 | 0.3434 (4) | 0.10558 (12) | 0.39106 (7) | 0.0455 (5) | |
C21 | 0.4335 (7) | 0.04307 (15) | 0.36416 (10) | 0.0767 (11) | |
H21 | 0.5673 | 0.0484 | 0.3509 | 0.092* | |
C22 | 0.1459 (5) | 0.06906 (14) | 0.40432 (10) | 0.0588 (7) | |
H22 | 0.0451 | 0.0969 | 0.4235 | 0.071* | |
C23 | 0.1322 (8) | −0.01205 (18) | 0.38421 (13) | 0.0876 (13) | |
H23 | 0.0181 | −0.0516 | 0.3875 | 0.105* | |
C24 | −0.0104 (3) | 0.74131 (13) | 0.33278 (7) | 0.0399 (4) | |
H24A | −0.0409 | 0.7993 | 0.3182 | 0.060* | |
H24B | 0.0274 | 0.7507 | 0.3655 | 0.060* | |
H24C | −0.1327 | 0.7027 | 0.3311 | 0.060* | |
C25 | 0.3518 (3) | 0.76299 (12) | 0.30263 (7) | 0.0367 (4) | |
H25A | 0.3057 | 0.8158 | 0.2852 | 0.055* | |
H25B | 0.4678 | 0.7348 | 0.2863 | 0.055* | |
H25C | 0.3961 | 0.7813 | 0.3339 | 0.055* | |
C26 | 0.7086 (2) | 0.46280 (12) | 0.35367 (6) | 0.0269 (3) | |
H26A | 0.7211 | 0.5204 | 0.3375 | 0.040* | |
H26B | 0.7507 | 0.4142 | 0.3327 | 0.040* | |
H26C | 0.7978 | 0.4629 | 0.3813 | 0.040* | |
C27 | 0.4760 (4) | 0.72270 (14) | 0.42919 (7) | 0.0419 (5) | |
C28 | 0.3892 (6) | 0.79118 (17) | 0.46226 (9) | 0.0655 (8) | |
H28A | 0.4966 | 0.8349 | 0.4702 | 0.098* | |
H28B | 0.3415 | 0.7612 | 0.4907 | 0.098* | |
H28C | 0.2729 | 0.8221 | 0.4475 | 0.098* | |
C29 | 0.1864 (3) | 0.52448 (11) | 0.46639 (5) | 0.0268 (3) | |
C30 | −0.0241 (3) | 0.49403 (14) | 0.48189 (6) | 0.0382 (4) | |
H30A | −0.0316 | 0.4956 | 0.5160 | 0.057* | |
H30B | −0.0485 | 0.4327 | 0.4710 | 0.057* | |
H30C | −0.1294 | 0.5340 | 0.4688 | 0.057* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0596 (10) | 0.0553 (9) | 0.0454 (8) | 0.0088 (8) | −0.0091 (7) | 0.0263 (7) |
O2 | 0.0402 (7) | 0.0240 (5) | 0.0281 (5) | −0.0007 (5) | 0.0018 (5) | −0.0018 (4) |
O3 | 0.0219 (5) | 0.0257 (5) | 0.0177 (4) | −0.0016 (4) | 0.0032 (4) | 0.0006 (4) |
O4 | 0.0194 (5) | 0.0432 (6) | 0.0284 (5) | 0.0036 (5) | 0.0000 (4) | 0.0133 (5) |
O5 | 0.0357 (6) | 0.0287 (6) | 0.0289 (6) | −0.0005 (5) | −0.0027 (5) | 0.0088 (5) |
O6 | 0.0407 (7) | 0.0463 (7) | 0.0242 (5) | −0.0066 (6) | 0.0035 (5) | 0.0092 (5) |
O7 | 0.200 (3) | 0.0281 (8) | 0.0781 (14) | 0.0038 (15) | −0.016 (2) | −0.0129 (8) |
O8 | 0.0467 (9) | 0.0676 (10) | 0.0496 (8) | −0.0210 (8) | −0.0039 (7) | −0.0149 (8) |
O9 | 0.0463 (8) | 0.0528 (8) | 0.0247 (5) | −0.0105 (7) | 0.0018 (6) | −0.0083 (6) |
C1 | 0.0263 (8) | 0.0408 (9) | 0.0213 (6) | −0.0019 (7) | −0.0024 (6) | 0.0031 (6) |
C2 | 0.0247 (8) | 0.0528 (10) | 0.0251 (7) | 0.0013 (8) | −0.0037 (6) | 0.0097 (7) |
C3 | 0.0259 (8) | 0.0483 (10) | 0.0319 (8) | 0.0067 (8) | 0.0012 (7) | 0.0147 (7) |
C4 | 0.0283 (8) | 0.0298 (7) | 0.0285 (7) | 0.0048 (7) | 0.0039 (6) | 0.0101 (6) |
C5 | 0.0198 (6) | 0.0259 (7) | 0.0202 (6) | 0.0005 (5) | 0.0021 (5) | 0.0052 (5) |
C6 | 0.0242 (7) | 0.0232 (7) | 0.0215 (6) | −0.0016 (6) | 0.0023 (6) | 0.0006 (5) |
C7 | 0.0198 (6) | 0.0250 (7) | 0.0182 (6) | −0.0022 (5) | 0.0004 (5) | 0.0015 (5) |
C8 | 0.0178 (6) | 0.0238 (6) | 0.0179 (6) | 0.0006 (5) | 0.0002 (5) | 0.0035 (5) |
C9 | 0.0211 (6) | 0.0248 (6) | 0.0166 (6) | −0.0007 (6) | 0.0007 (5) | 0.0023 (5) |
C10 | 0.0205 (6) | 0.0278 (7) | 0.0169 (6) | 0.0005 (6) | 0.0011 (5) | 0.0037 (5) |
C11 | 0.0451 (10) | 0.0276 (7) | 0.0178 (6) | 0.0009 (7) | 0.0028 (7) | −0.0010 (6) |
C12 | 0.0372 (9) | 0.0284 (7) | 0.0244 (7) | 0.0084 (7) | 0.0042 (6) | −0.0021 (6) |
C13 | 0.0253 (7) | 0.0213 (6) | 0.0224 (6) | 0.0049 (6) | 0.0016 (5) | 0.0015 (5) |
C14 | 0.0184 (6) | 0.0259 (7) | 0.0187 (6) | 0.0027 (5) | 0.0010 (5) | 0.0037 (5) |
C15 | 0.0224 (7) | 0.0308 (7) | 0.0212 (6) | −0.0018 (6) | −0.0020 (6) | 0.0065 (5) |
C16 | 0.0229 (7) | 0.0325 (8) | 0.0249 (7) | −0.0006 (6) | −0.0026 (6) | 0.0093 (6) |
C17 | 0.0406 (9) | 0.0257 (7) | 0.0311 (8) | 0.0103 (7) | 0.0012 (7) | 0.0049 (6) |
C18 | 0.0242 (7) | 0.0258 (7) | 0.0262 (7) | −0.0016 (6) | −0.0013 (6) | 0.0031 (6) |
C19 | 0.0257 (7) | 0.0383 (8) | 0.0217 (6) | 0.0022 (7) | 0.0056 (6) | 0.0082 (6) |
C20 | 0.0767 (16) | 0.0233 (8) | 0.0365 (9) | 0.0091 (10) | −0.0058 (10) | 0.0034 (7) |
C21 | 0.138 (3) | 0.0313 (10) | 0.0610 (15) | 0.0238 (15) | 0.0115 (19) | −0.0033 (10) |
C22 | 0.0819 (18) | 0.0284 (9) | 0.0661 (14) | −0.0109 (11) | −0.0189 (14) | 0.0047 (9) |
C23 | 0.142 (4) | 0.0335 (12) | 0.087 (2) | −0.0168 (18) | −0.032 (3) | −0.0012 (13) |
C24 | 0.0366 (9) | 0.0372 (9) | 0.0458 (10) | 0.0111 (8) | 0.0102 (8) | 0.0104 (8) |
C25 | 0.0387 (9) | 0.0318 (8) | 0.0397 (9) | −0.0024 (7) | 0.0049 (8) | 0.0140 (7) |
C26 | 0.0180 (6) | 0.0364 (8) | 0.0263 (7) | 0.0001 (6) | 0.0030 (6) | 0.0083 (6) |
C27 | 0.0607 (13) | 0.0341 (9) | 0.0309 (8) | −0.0134 (9) | −0.0003 (9) | −0.0065 (7) |
C28 | 0.095 (2) | 0.0476 (13) | 0.0538 (13) | −0.0037 (15) | −0.0014 (14) | −0.0251 (11) |
C29 | 0.0343 (8) | 0.0266 (7) | 0.0195 (6) | −0.0010 (7) | 0.0055 (6) | −0.0014 (5) |
C30 | 0.0412 (10) | 0.0434 (10) | 0.0299 (8) | −0.0086 (8) | 0.0164 (7) | −0.0055 (7) |
O1—C3 | 1.227 (2) | C12—C13 | 1.544 (2) |
O2—C27 | 1.374 (3) | C12—H12A | 0.9900 |
O2—C6 | 1.4510 (18) | C12—H12B | 0.9900 |
O3—C29 | 1.3697 (18) | C13—C14 | 1.538 (2) |
O3—C7 | 1.4600 (18) | C13—C18 | 1.551 (2) |
O4—C15 | 1.436 (2) | C13—C17 | 1.562 (2) |
O4—C14 | 1.4517 (18) | C14—C15 | 1.491 (2) |
O5—C16 | 1.346 (2) | C15—C16 | 1.506 (2) |
O5—C17 | 1.472 (2) | C15—H15 | 1.0000 |
O6—C16 | 1.204 (2) | C17—C20 | 1.507 (3) |
O7—C23 | 1.368 (6) | C17—H17 | 1.0000 |
O7—C21 | 1.381 (5) | C18—H18A | 0.9800 |
O8—C27 | 1.205 (3) | C18—H18B | 0.9800 |
O9—C29 | 1.205 (2) | C18—H18C | 0.9800 |
C1—C2 | 1.344 (2) | C19—H19A | 0.9800 |
C1—C10 | 1.531 (2) | C19—H19B | 0.9800 |
C1—H1 | 0.9500 | C19—H19C | 0.9800 |
C2—C3 | 1.478 (3) | C20—C21 | 1.344 (3) |
C2—H2 | 0.9500 | C20—C22 | 1.441 (4) |
C3—C4 | 1.546 (3) | C21—H21 | 0.9500 |
C4—C25 | 1.539 (3) | C22—C23 | 1.343 (4) |
C4—C24 | 1.560 (3) | C22—H22 | 0.9500 |
C4—C5 | 1.577 (2) | C23—H23 | 0.9500 |
C5—C6 | 1.534 (2) | C24—H24A | 0.9800 |
C5—C10 | 1.569 (2) | C24—H24B | 0.9800 |
C5—H5 | 1.0000 | C24—H24C | 0.9800 |
C6—C7 | 1.537 (2) | C25—H25A | 0.9800 |
C6—H6 | 1.0000 | C25—H25B | 0.9800 |
C7—C8 | 1.539 (2) | C25—H25C | 0.9800 |
C7—H7 | 1.0000 | C26—H26A | 0.9800 |
C8—C26 | 1.557 (2) | C26—H26B | 0.9800 |
C8—C9 | 1.561 (2) | C26—H26C | 0.9800 |
C8—C14 | 1.570 (2) | C27—C28 | 1.504 (3) |
C9—C11 | 1.544 (2) | C28—H28A | 0.9800 |
C9—C10 | 1.571 (2) | C28—H28B | 0.9800 |
C9—H9 | 1.0000 | C28—H28C | 0.9800 |
C10—C19 | 1.559 (2) | C29—C30 | 1.504 (3) |
C11—C12 | 1.554 (2) | C30—H30A | 0.9800 |
C11—H11A | 0.9900 | C30—H30B | 0.9800 |
C11—H11B | 0.9900 | C30—H30C | 0.9800 |
C27—O2—C6 | 115.28 (15) | C15—C14—C8 | 122.44 (13) |
C29—O3—C7 | 117.80 (12) | C13—C14—C8 | 118.83 (12) |
C15—O4—C14 | 62.14 (9) | O4—C15—C14 | 59.43 (9) |
C16—O5—C17 | 120.09 (12) | O4—C15—C16 | 116.61 (14) |
C23—O7—C21 | 105.9 (2) | C14—C15—C16 | 117.91 (14) |
C2—C1—C10 | 120.74 (16) | O4—C15—H15 | 116.8 |
C2—C1—H1 | 119.6 | C14—C15—H15 | 116.8 |
C10—C1—H1 | 119.6 | C16—C15—H15 | 116.8 |
C1—C2—C3 | 120.26 (16) | O6—C16—O5 | 120.32 (15) |
C1—C2—H2 | 119.9 | O6—C16—C15 | 121.52 (16) |
C3—C2—H2 | 119.9 | O5—C16—C15 | 118.11 (14) |
O1—C3—C2 | 121.14 (18) | O5—C17—C20 | 104.45 (14) |
O1—C3—C4 | 120.21 (19) | O5—C17—C13 | 110.09 (13) |
C2—C3—C4 | 118.58 (14) | C20—C17—C13 | 115.47 (15) |
C25—C4—C3 | 109.08 (14) | O5—C17—H17 | 108.9 |
C25—C4—C24 | 108.90 (16) | C20—C17—H17 | 108.9 |
C3—C4—C24 | 103.16 (15) | C13—C17—H17 | 108.9 |
C25—C4—C5 | 114.70 (14) | C13—C18—H18A | 109.5 |
C3—C4—C5 | 110.96 (14) | C13—C18—H18B | 109.5 |
C24—C4—C5 | 109.39 (13) | H18A—C18—H18B | 109.5 |
C6—C5—C10 | 109.77 (12) | C13—C18—H18C | 109.5 |
C6—C5—C4 | 114.27 (13) | H18A—C18—H18C | 109.5 |
C10—C5—C4 | 114.05 (12) | H18B—C18—H18C | 109.5 |
C6—C5—H5 | 106.0 | C10—C19—H19A | 109.5 |
C10—C5—H5 | 106.0 | C10—C19—H19B | 109.5 |
C4—C5—H5 | 106.0 | H19A—C19—H19B | 109.5 |
O2—C6—C5 | 109.22 (12) | C10—C19—H19C | 109.5 |
O2—C6—C7 | 107.43 (12) | H19A—C19—H19C | 109.5 |
C5—C6—C7 | 112.10 (12) | H19B—C19—H19C | 109.5 |
O2—C6—H6 | 109.3 | C21—C20—C22 | 106.0 (3) |
C5—C6—H6 | 109.3 | C21—C20—C17 | 125.3 (3) |
C7—C6—H6 | 109.3 | C22—C20—C17 | 128.7 (2) |
O3—C7—C6 | 108.21 (12) | C20—C21—O7 | 110.8 (4) |
O3—C7—C8 | 107.95 (11) | C20—C21—H21 | 124.6 |
C6—C7—C8 | 112.24 (12) | O7—C21—H21 | 124.6 |
O3—C7—H7 | 109.5 | C23—C22—C20 | 106.6 (3) |
C6—C7—H7 | 109.5 | C23—C22—H22 | 126.7 |
C8—C7—H7 | 109.5 | C20—C22—H22 | 126.7 |
C7—C8—C26 | 108.58 (13) | C22—C23—O7 | 110.8 (4) |
C7—C8—C9 | 108.85 (12) | C22—C23—H23 | 124.6 |
C26—C8—C9 | 113.32 (11) | O7—C23—H23 | 124.6 |
C7—C8—C14 | 110.18 (11) | C4—C24—H24A | 109.5 |
C26—C8—C14 | 106.74 (12) | C4—C24—H24B | 109.5 |
C9—C8—C14 | 109.15 (12) | H24A—C24—H24B | 109.5 |
C11—C9—C8 | 110.69 (12) | C4—C24—H24C | 109.5 |
C11—C9—C10 | 114.45 (11) | H24A—C24—H24C | 109.5 |
C8—C9—C10 | 114.98 (12) | H24B—C24—H24C | 109.5 |
C11—C9—H9 | 105.2 | C4—C25—H25A | 109.5 |
C8—C9—H9 | 105.2 | C4—C25—H25B | 109.5 |
C10—C9—H9 | 105.2 | H25A—C25—H25B | 109.5 |
C1—C10—C19 | 105.40 (12) | C4—C25—H25C | 109.5 |
C1—C10—C5 | 105.61 (13) | H25A—C25—H25C | 109.5 |
C19—C10—C5 | 113.12 (13) | H25B—C25—H25C | 109.5 |
C1—C10—C9 | 108.83 (13) | C8—C26—H26A | 109.5 |
C19—C10—C9 | 114.95 (13) | C8—C26—H26B | 109.5 |
C5—C10—C9 | 108.42 (11) | H26A—C26—H26B | 109.5 |
C9—C11—C12 | 114.64 (12) | C8—C26—H26C | 109.5 |
C9—C11—H11A | 108.6 | H26A—C26—H26C | 109.5 |
C12—C11—H11A | 108.6 | H26B—C26—H26C | 109.5 |
C9—C11—H11B | 108.6 | O8—C27—O2 | 123.16 (18) |
C12—C11—H11B | 108.6 | O8—C27—C28 | 125.8 (2) |
H11A—C11—H11B | 107.6 | O2—C27—C28 | 111.0 (2) |
C13—C12—C11 | 113.60 (13) | C27—C28—H28A | 109.5 |
C13—C12—H12A | 108.8 | C27—C28—H28B | 109.5 |
C11—C12—H12A | 108.8 | H28A—C28—H28B | 109.5 |
C13—C12—H12B | 108.8 | C27—C28—H28C | 109.5 |
C11—C12—H12B | 108.8 | H28A—C28—H28C | 109.5 |
H12A—C12—H12B | 107.7 | H28B—C28—H28C | 109.5 |
C14—C13—C12 | 106.49 (13) | O9—C29—O3 | 123.71 (16) |
C14—C13—C18 | 112.10 (13) | O9—C29—C30 | 126.10 (15) |
C12—C13—C18 | 113.16 (13) | O3—C29—C30 | 110.19 (14) |
C14—C13—C17 | 106.91 (13) | C29—C30—H30A | 109.5 |
C12—C13—C17 | 109.19 (13) | C29—C30—H30B | 109.5 |
C18—C13—C17 | 108.77 (14) | H30A—C30—H30B | 109.5 |
O4—C14—C15 | 58.43 (9) | C29—C30—H30C | 109.5 |
O4—C14—C13 | 112.54 (12) | H30A—C30—H30C | 109.5 |
C15—C14—C13 | 115.33 (12) | H30B—C30—H30C | 109.5 |
O4—C14—C8 | 113.27 (12) | ||
C10—C1—C2—C3 | −0.8 (3) | C11—C12—C13—C18 | 66.3 (2) |
C1—C2—C3—O1 | 151.7 (2) | C11—C12—C13—C17 | −172.40 (15) |
C1—C2—C3—C4 | −31.5 (3) | C15—O4—C14—C13 | −106.78 (14) |
O1—C3—C4—C25 | −41.8 (2) | C15—O4—C14—C8 | 114.90 (14) |
C2—C3—C4—C25 | 141.42 (17) | C12—C13—C14—O4 | −90.70 (14) |
O1—C3—C4—C24 | 73.9 (2) | C18—C13—C14—O4 | 145.05 (12) |
C2—C3—C4—C24 | −102.93 (18) | C17—C13—C14—O4 | 25.94 (16) |
O1—C3—C4—C5 | −169.06 (17) | C12—C13—C14—C15 | −155.18 (13) |
C2—C3—C4—C5 | 14.1 (2) | C18—C13—C14—C15 | 80.56 (16) |
C25—C4—C5—C6 | 33.94 (19) | C17—C13—C14—C15 | −38.54 (18) |
C3—C4—C5—C6 | 158.10 (13) | C12—C13—C14—C8 | 45.10 (17) |
C24—C4—C5—C6 | −88.73 (17) | C18—C13—C14—C8 | −79.16 (16) |
C25—C4—C5—C10 | −93.47 (17) | C17—C13—C14—C8 | 161.74 (13) |
C3—C4—C5—C10 | 30.69 (18) | C7—C8—C14—O4 | −95.19 (14) |
C24—C4—C5—C10 | 143.86 (15) | C26—C8—C14—O4 | 22.52 (16) |
C27—O2—C6—C5 | −157.85 (14) | C9—C8—C14—O4 | 145.34 (12) |
C27—O2—C6—C7 | 80.34 (16) | C7—C8—C14—C15 | −28.89 (19) |
C10—C5—C6—O2 | −178.48 (11) | C26—C8—C14—C15 | 88.82 (16) |
C4—C5—C6—O2 | 51.94 (16) | C9—C8—C14—C15 | −148.36 (14) |
C10—C5—C6—C7 | −59.54 (15) | C7—C8—C14—C13 | 129.32 (13) |
C4—C5—C6—C7 | 170.89 (12) | C26—C8—C14—C13 | −112.97 (14) |
C29—O3—C7—C6 | −103.01 (14) | C9—C8—C14—C13 | 9.85 (17) |
C29—O3—C7—C8 | 135.29 (13) | C14—O4—C15—C16 | 108.19 (15) |
O2—C6—C7—O3 | 59.79 (15) | C13—C14—C15—O4 | 101.94 (14) |
C5—C6—C7—O3 | −60.21 (15) | C8—C14—C15—O4 | −99.15 (15) |
O2—C6—C7—C8 | 178.81 (12) | O4—C14—C15—C16 | −106.01 (16) |
C5—C6—C7—C8 | 58.81 (16) | C13—C14—C15—C16 | −4.1 (2) |
O3—C7—C8—C26 | −170.06 (11) | C8—C14—C15—C16 | 154.85 (14) |
C6—C7—C8—C26 | 70.76 (15) | C17—O5—C16—O6 | 172.96 (16) |
O3—C7—C8—C9 | 66.16 (14) | C17—O5—C16—C15 | −4.3 (2) |
C6—C7—C8—C9 | −53.01 (16) | O4—C15—C16—O6 | 143.88 (16) |
O3—C7—C8—C14 | −53.49 (14) | C14—C15—C16—O6 | −148.35 (16) |
C6—C7—C8—C14 | −172.67 (12) | O4—C15—C16—O5 | −38.9 (2) |
C7—C8—C9—C11 | −175.38 (12) | C14—C15—C16—O5 | 28.8 (2) |
C26—C8—C9—C11 | 63.71 (16) | C16—O5—C17—C20 | −166.21 (16) |
C14—C8—C9—C11 | −55.09 (15) | C16—O5—C17—C13 | −41.7 (2) |
C7—C8—C9—C10 | 53.01 (15) | C14—C13—C17—O5 | 61.47 (17) |
C26—C8—C9—C10 | −67.90 (16) | C12—C13—C17—O5 | 176.30 (14) |
C14—C8—C9—C10 | 173.30 (12) | C18—C13—C17—O5 | −59.77 (18) |
C2—C1—C10—C19 | −75.97 (19) | C14—C13—C17—C20 | 179.41 (16) |
C2—C1—C10—C5 | 44.02 (19) | C12—C13—C17—C20 | −65.8 (2) |
C2—C1—C10—C9 | 160.24 (15) | C18—C13—C17—C20 | 58.2 (2) |
C6—C5—C10—C1 | 172.32 (12) | O5—C17—C20—C21 | −135.9 (2) |
C4—C5—C10—C1 | −57.99 (16) | C13—C17—C20—C21 | 103.1 (3) |
C6—C5—C10—C19 | −72.91 (15) | O5—C17—C20—C22 | 41.4 (3) |
C4—C5—C10—C19 | 56.78 (17) | C13—C17—C20—C22 | −79.6 (2) |
C6—C5—C10—C9 | 55.81 (15) | C22—C20—C21—O7 | 1.5 (3) |
C4—C5—C10—C9 | −174.49 (12) | C17—C20—C21—O7 | 179.3 (2) |
C11—C9—C10—C1 | 61.00 (17) | C23—O7—C21—C20 | −2.0 (3) |
C8—C9—C10—C1 | −169.21 (12) | C21—C20—C22—C23 | −0.3 (3) |
C11—C9—C10—C19 | −56.92 (18) | C17—C20—C22—C23 | −178.1 (2) |
C8—C9—C10—C19 | 72.88 (16) | C20—C22—C23—O7 | −0.9 (3) |
C11—C9—C10—C5 | 175.40 (13) | C21—O7—C23—C22 | 1.8 (4) |
C8—C9—C10—C5 | −54.81 (16) | C6—O2—C27—O8 | 2.3 (3) |
C8—C9—C11—C12 | 43.91 (19) | C6—O2—C27—C28 | −177.72 (17) |
C10—C9—C11—C12 | 175.79 (14) | C7—O3—C29—O9 | 2.3 (2) |
C9—C11—C12—C13 | 14.2 (2) | C7—O3—C29—C30 | −177.55 (13) |
C11—C12—C13—C14 | −57.29 (18) |
D—H···A | D—H | H···A | D···A | D—H···A |
C11—H11B···O1i | 0.99 | 2.59 | 3.410 (3) | 141 |
C18—H18C···O1i | 0.98 | 2.68 | 3.571 (2) | 152 |
C18—H18B···O6ii | 0.98 | 2.56 | 3.497 (2) | 160 |
C22—H22···O6ii | 0.95 | 2.69 | 3.601 (3) | 162 |
C24—H24B···O2 | 0.98 | 2.40 | 3.066 (3) | 125 |
C25—H25C···O2 | 0.98 | 2.50 | 3.112 (2) | 121 |
C5—H5···O3 | 1.00 | 2.50 | 2.931 (2) | 105 |
C9—H9···O3 | 1.00 | 2.55 | 2.944 (2) | 103 |
C18—H18B···O5 | 0.98 | 2.45 | 2.934 (2) | 110 |
C7—H7···O9 | 1.00 | 2.33 | 2.735 (2) | 103 |
Symmetry codes: (i) −x, y−1/2, −z+1/2; (ii) x−1/2, −y+1/2, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C30H36O9 |
Mr | 540.59 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 173 |
a, b, c (Å) | 6.475 (2), 14.914 (5), 28.713 (9) |
V (Å3) | 2772.8 (15) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.10 |
Crystal size (mm) | 0.62 × 0.40 × 0.25 |
Data collection | |
Diffractometer | Bruker SMART APEX CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2003) |
Tmin, Tmax | 0.89, 0.98 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 39048, 4509, 4077 |
Rint | 0.031 |
(sin θ/λ)max (Å−1) | 0.703 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.037, 0.099, 1.04 |
No. of reflections | 4509 |
No. of parameters | 359 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.26, −0.24 |
Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SAINT, SADABS and XPREP (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
C11—H11B···O1i | 0.99 | 2.59 | 3.410 (3) | 141 |
C18—H18C···O1i | 0.98 | 2.68 | 3.571 (2) | 152 |
C18—H18B···O6ii | 0.98 | 2.56 | 3.497 (2) | 160 |
C22—H22···O6ii | 0.95 | 2.69 | 3.601 (3) | 162 |
C24—H24B···O2 | 0.98 | 2.40 | 3.066 (3) | 125 |
C25—H25C···O2 | 0.98 | 2.50 | 3.112 (2) | 121 |
C5—H5···O3 | 1.00 | 2.50 | 2.931 (2) | 105 |
C9—H9···O3 | 1.00 | 2.55 | 2.944 (2) | 103 |
C18—H18B···O5 | 0.98 | 2.45 | 2.934 (2) | 110 |
C7—H7···O9 | 1.00 | 2.33 | 2.735 (2) | 103 |
Symmetry codes: (i) −x, y−1/2, −z+1/2; (ii) x−1/2, −y+1/2, −z+1. |
Acknowledgements
We dedicate this paper to the memory of Professor Otmar Hofer (1942–2009), an oustanding scientist and magnificent person, who contributed his expertise to this as well as many other works.
References
Brader, G., Vajrodaya, S., Greger, H., Bacher, M., Kalchhauser, H. & Hofer, O. (1998). J. Nat. Prod. 61, 1482–1490. Web of Science CrossRef CAS PubMed Google Scholar
Bruker (2003). SMART, SAINT, SADABS and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Connolly, J. D., McCrindle, R., Overton, K. H. & Feeney, J. (1966). Tetrahedron, 22, 891–896. CrossRef CAS Web of Science Google Scholar
Engelmeier, D., Hadacek, F., Pacher, T., Vajrodaya, S. & Greger, H. (2000). J. Agric. Food. Chem. 48, 1400–1404. Web of Science CrossRef PubMed CAS Google Scholar
Fuzzati, N., Dyatmiko, W., Rahman, A., Achmad, F. & Hostettmann, K. (1996). Phytochemistry, 42, 1395–1398. CrossRef CAS Web of Science Google Scholar
Greger, H., Pacher, T., Brem, B., Bacher, M. & Hofer, O. (2001). Phytochemistry, 57, 57–64. Web of Science CrossRef PubMed CAS Google Scholar
Greger, H., Pacher, T., Vajrodaya, S., Bacher, M. & Hofer, O. (2000). J. Nat. Prod. 63, 616–620. Web of Science CrossRef PubMed CAS Google Scholar
Hausott, B., Greger, H. & Marian, B. (2004). Int. J. Cancer, 109, 933–940. Web of Science CrossRef PubMed CAS Google Scholar
Jimenez, A., Villarreal, C., Toscano, R. A., Cook, M., Arnason, J. T., Bye, R. & Mata, R. (1998). Phytochemistry, 49, 1981–1988. Web of Science CSD CrossRef CAS Google Scholar
Lavie, D., Levy, E. C. & Zelnik, R. (1972). Bioorg. Chem. 2, 59–64. CrossRef CAS Google Scholar
Mitsui, K., Saito, H., Yamamura, R., Fukaya, H., Hitotsuyanagi, Y. & Takeya, K. (2006). J. Nat. Prod. 69, 1310–1314. Web of Science CSD CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sutherland, S. A., Sim, G. A. & Robertson, J. M. (1962). Proc. Chem. Soc. pp. 222. Google Scholar
Taylor, D. A. H. (1974). J. Chem. Soc. Perkin Trans. pp. 437–441. CrossRef Web of Science Google Scholar
Toscano, R. A., Mata, R., Calderon, J. & Segura, R. (1996). J. Chem. Crystallogr. 26, 707–711. CSD CrossRef CAS Web of Science Google Scholar
Waratchareeyakul, W., Chantrapromma, S., Fun, H.-K., Razak, I. A., Karalai, C. & Ponglimanont, C. (2004). Acta Cryst. E60, o1964–o1966. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The genus Aglaia of the family Meliaceae has received scientific attention due to its bioactivity potential. Besides its unique chemical capacity to produce flavaglines with pronounced insecticidal, antifungal, and anticancer activities (Greger et al., 2001; Engelmeier et al., 2000; Hausott et al., 2004), Aglaia is also characterized by the accumulation of bisamides, lignans, and triterpenes (Greger et al., 2000). However, in contrast to other genera of that family the highly active triterpenoid limonoids appear to be rare in Aglaia only known so far from Aglaia elaeagnoidea collected in Sempu Island, Java, Indonesia (6α,11β-diacetoxygedunin; Fuzzati et al., 1996), but not from samples collected in India and Thailand (Brader et al., 1998). Our investigation of the root bark of Aglaia elaeagnoidea originating from northern Australia led now to the second isolation of a limonoid from this genus, namely the title compound 6α-acetoxygedunin. This compound was previously isolated from several other genera of the Meliaceae family, such as Guarea grandiflora Decne.ex Steud. (Jimenez et al., 1998) or Carapa guianensis Aubl. (Lavie et al., 1972), but its crystal structure has not been determined as yet.
6α-Acetoxygedunin contains the gedunin skeleton with four six-membered rings (A, B, C, D), which are all trans-fused and adopt screw-boat, chair, twist-boat, and twisted half-chair conformation, respectively (Fig. 1). The D-ring, a lactone, is stiffened by fusion with an oxiran ring and bears in equatorial position a furan ring in approximately perpendicular orientation to the main plane of the molecule. Bond length and angles are normal (cf. geometric parameters) and compare well with the parent compound gedunin (Toscano et al., 1996), which is devoid of the 6-acetoxy group O2—(C27O8)—C28H3, and with three more gedunin derivatives, 11α-hydroxygedunin (Mitsui et al., 2006), 11β-hydroxygedunin (Mitsui et al., 2006), and 7-oxogedunin (Waratchareeyakul et al., 2004; 7-acetoxy group replaced by a carbonyl oxygen with concomitant change of C7 from sp3 to sp2 hybridization). However, the torsion angles within the A/B/C/D rings of these five compounds show in part considerable variations and consequently the molecular conformations as well. This is visualized by three superposition plots of 6α-acetoxygedunin and its congeners shown in Figures 2 to 4. Fig. 2 demonstrates that 6α-acetoxygedunin and 11α-hydroxygedunin (Mitsui et al. 2006; it contains two independent molecules) have relatively closely matching conformations of their A/B/C/D rings. Fig. 3 compares 6α-acetoxygedunin and gedunin showing that their B, C, and D rings match very well, but that the A-rings display a significant mismatch. The torsion angle T1 = C3—C4—C5—C10 may be used as a qualitative measure for this match/mismatch: It is 30.7 (2)° in 6α-acetoxygedunin and 51.2° in gedunin, while the remaining three gedunin-type compounds have T1 angles between 32.2° (11α-hydroxygedunin) and 45.3° (7-oxogedunin). Fig. 4 demonstrates that the most outstanding difference in conformation exists between 6α-acetoxygedunin and 7-oxogedunin. This difference does not arise from the unlike hybridization of C7 (sp3 in title compound and sp2 in 7-oxogedunin), but is clearly provoked by ring C, which switches from a twist-boat conformation in 6α-acetoxygedunin via a virtual boat-intermediate into a twist-boat conformation of opposite twist in 7-oxogedunin. This can be tracked by the torsion angle T2 = C9—C11—C12—C13, which is +14.2 (2)° in 6α-acetoxygedunin (+21.6° in gedunin; +9.5° and +14.5° for the two independent molecules in 11α-hydroxygedunin), while it is -38.9° in 7-oxogedunin and -20.7° in 11β-hydroxygedunin. The described variations come essentially from the fact that B– and D-rings behave hard (B-ring in a relaxed and essentially invariant chair-conformation, D-ring in a twisted half-chair conformation fixed by oxiran ring and lacton group) while A-rings (screw-boat) and C-rings (between boat and twist-boat) behave soft and labile in conformation. The soft parts of the molecules are certainly controlled by the steric requirements of the ring substituents and by the crystal packing with its interplay of intra- and intermolecular forces. In the title compound 6α-acetoxygedunin such forces involve only several quite weak intra- and inter-molecular C—H···O interactions, which are listed in Table 1. For a packing diagram of 6α-acetoxygedunin, see Fig. 5.